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ABSTRACT

Sound reflections are usually modelled either as specular reflections or as diffusely scattered reflections
(Lambert’s cosine law). In the Odeon room acoustic model a weighted combination of the two models has been
used. In the present study is derived a new model that takes into account the wavelength and the finite area of a
rectangular reflecting surface. The model is based on sound transmission theory and the use of Babinet’s
principle that describes the equivalence between transmission and reflection. As could be expected, the result
depends very much on the dimension of the reflecting surface relative to the wavelength. In stead of the
solution for a single frequency, a simple approximation has been found for the case of an octave band.

1. INTRODUCTION

In the Odeon room acoustic computer model the sound reflections are currently simulated by a weighted
combination of the two simple reflection models for specular reflection and diffuse reflection [1], see Fig.1.
Snell’s law for the specular reflection states that angle of reflection is equal to the angle of incidence, 6, = 6.
Lambert’s law for the diffuse reflection states that the directional distribution of the reflected intensity is
proportional to cos 8,.. In the following the angle a relative to the plane of the surface will be used instead of
0,
1, .
7 = cos(d.) = cos(zr—a) = sin(a) (1)

r,max

Both reflection models are based on the assumption of a very short wavelength compared to the dimensions of
the reflecting surface. However, the reflection of a sound wave from a surface of finite size can never be
perfectly specular due to the wavelength of the sound. In the following is derived a model for this reflection
with special reference to the application in a ray tracing model.

b)

Figure 1. Reflection models (asymptotic high-frequency models), a) Snell’s law for specular reflection,
b) Lambert’s law for diffuse reflection
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2. BABINET’S PRINCIPLE

Babinet’s principle states that the reflection from a plane rigid surface is equivalent to the transmission through
an opening of the same geometrical shape surrounded by an infinite rigid baffle, see Fig. 2. The advantage of
this principle in the present case is that a known solution to the problem of sound transmission through an
opening can be applied to the equivalent problem of sound reflection from a surface of finite area.

e
N\ e

a) b)

Figure 2. An example of Babinet’s principle, a) reflection from a surface, b) transmission through an
opening

It is assumed that the incident sound is a plane wave and the surface is rectangular with dimensions 2a - 2b.
The wavenumber is k = 2z f/ ¢, where f'is the frequency and c¢ is the speed of sound. The direction of the
incident sound is defined by the angles o, and f relative to the x- and y-axis, see Fig. 3. Similarly, the direction
towards the receiver point is defined by the angles a and /. The specular reflection will be in the direction (o =
ao, B = Po). Using the result for sound transmission through a rectangular opening as derived in [2], the
intensity of the reflected sound relative to the maximum value is:

L, _ (sinX.sian2 )
1) max X Y
where
X = ka(cosa —cosa) 3
Y = kb(cosf —cospfy)

Figure 3. Definition of angles of incidence and reflection from a rectangular surface
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Figure 4. The radiation function (sin (X)/X)’ for a single frequency

Figure 5. Measured radiation pattern from a plane surface, after Kleiner [3]

The radiation function (sin X / X)* is shown in Fig. 4. It is noted that there are some side lobes, which are also
seen in the measured result Fig. 5.

3. APPROXIMATION VALID FOR AN OCTAVE BAND

The radiation function (sin X / X)* is valid for a single frequency, but in a room acoustic model it is more
relevant to consider an octave band represented by the centre frequency. Averaging the radiated sound intensity
in an octave band leads to the curve labelled octave band in Fig. 7. The radiation function for the centre
frequency is not a bad approximation, but it has some drawbacks: For X > 2 z the function has much stronger

fluctuations than the octave band average and for X = 0 the function has a singularity, which needs special
consideration in a calculation.
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Figure 6. The radiation function (sin (X)/X)’ for 11 frequencies covering an octave band

An approximation to the octave band average that does not have the same drawbacks has been found:

sin X ? 2
( ¥ ) ~ (cosh(0.67- X)) 4)

This function is shown in Fig. 7. The difference between the octave band average and this approximation is
shown in Fig. 8 and it is seen that the maximum deviation is very small, around 0.03. It is noted that the side
lopes of the radiation function have disappeared when the octave band average is considered. The constant 0.67
is found to be the optimum value in order to minimize the deviations from the true octave band average.
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Figure 7. The radiation functions for an octave band and for the centre frequency as a single frequency.
The suggested approximation with the constant A = 0.67 is also shown.
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Figure 8. The difference between the octave band average and the suggested approximation with the
constant A = 0.67.

4. EXAMPLES OF THE RADIATION FUNCTION

In the following Fig. 9 — 10 are displayed examples of the suggested approximate directivity function for
different values of the parameter ka. The chosen angle of incidence o, is 90° and 30°, respectively. However,
all angles of incidence including the grazing 0° are allowed in the model.

In addition to the directivity functions of the new reflection model is also shown the Lambert’s law of diffuse
reflection for comparison.

—ca = 1/4

—a = 1/2
ka=1
ka =2

—a =4

— 0 = 8

_ka = 16
—o = 32
— - — -Lambert

180

Figure 9. The directivity functions for the angle of incidence ay = 90°.

Joint Baltic-Nordic Acoustics Meeting 2004, 8-10 June 2004, Mariehamn, Aland BNAM2004-5



\‘fixswll!/iy

1/
Vé’//;z

e

Figure 10. The directivity functions for the angle of incidence oy = 30°.

From the examples in Figures 9 and 10 is seen that the reflections are highly directive in the direction of the
specular reflection for the high ka values, whereas the reflections are radiated with a nearly uniform directivity
for the low ka values. The Lambert model is not particularly close to any of the examples. To give an idea of

the surface dimensions and frequencies related to the various ka values, see Table 1.

—ca = 1/4
—a = 1/2
ka=1
ka =2
—a = 4
—ka =8
—a = 16
—a = 32
- - — -Lambert

2a ka=14 ka=1/2 Ka=1 ka=2 ka =4 ka =8 ka=16 ka=32
0,22 m 125 250 500 1000 2000 4000 8000
0,44 m 63 125 250 500 1000 2000 4000 8000
0,88 m 63 125 250 500 1000 2000 4000
1,75 m 63 125 250 500 1000 2000
3,50 m 63 125 250 500 1000

Table 1. The relation between ka values and octave band centre frequencies, 2a is the dimension of the

reflecting surface
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5. APPLICATION TO A RAY TRACING MODEL

In the Odeon room acoustic model the reflection points of the rays are used as secondary sources that radiate to
the receiver point with a certain directivity pattern. If the new reflection model should be applied to such a ray
tracing model it is necessary to consider the fact that there is a limited number of rays available, and this may
cause a problem for high ka values when the reflections are highly directive. In Fig. 11 is shown the radiation
to a receiver point from two reflection points with the distance d.

v

Figure 11. Left: Two rays reflected to a receiver point. Right: The 3 dB bandwidth of the directivity
function

The distance d between two neighbour rays depends of the total number of rays N and the distance r the rays
have travelled from the source point:

2
d = 1/“”]'V”l _ 2r1\/% 5)

In order to avoid a gap between the neighbouring contributions it is suggested that the two reflections should
lay within the 3 dB bandwidth of the directivity pattern, i.e. within the reflection angles a; and o,, see Fig. 11.
With the directivity function (4) the corresponding values of X; and X; are:

cosh (067X 5| J=v2 = X,,=%13155 (6)

and thus the angles o, and a, can be determined from:

1.3155
ka

Xy =ka(cosa;, —cosay) = cosq, =cosq

(7
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The angles a; and o, can also be expressed by the distances d and r;:

cosa, —cosey = dlr, = 2.- N 21.3}{155
nv7T a

®)

It is concluded from this that the directivity function (4) can be used in a ray tracing model below a certain
frequency, which depends on the distance to source and receiver, number of rays and the size of the reflecting
surface:

(ka),.. ~ 1315522 & )
7"1 T

If the number of rays o is not sufficient to allow the directivity function to be used at all frequencies of interest,
the pragmatic solution could be to lock the directivity function at the max ka value, and apply this at the
highest frequencies.

6. CONCLUSIONS

The reflection from finite size surfaces has been analyzed and a simple approximation to the octave band
averaged directivity pattern has been derived. At high frequencies and large surfaces the directivity is very
sharp in the direction of the specular reflection, but at low frequencies and small surfaces the directivity tends
to be uniform. The Lambert cosine law is not a particularly good approximation.
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