
Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

AUDIO ANALYSIS IN PWGLSYNTH

Vesa Norilo

CMT,
Sibelius Academy
Helsinki, Finland

vnorilo@siba.fi

Mikael Laurson

CMT,
Sibelius Academy
Helsinki, Finland

laurson@siba.fi

ABSTRACT

In this paper, we present an incremental improvement of a known
fundamental frequency estimation algorithm for monophonic sig-
nals. This is viewed as a case study of using our signal graph based
synthesis language, PWGLSynth, for audio analysis. The roles of
audio and control signals are discussed in both analysis andsyn-
thesis contexts. The suitability of the PWGLSynth system for this
field of applications is examined and some problems and future
work is identified.

1. INTRODUCTION

PWGLSynth is an audio synthesis subset of the visual program-
ming language PWGL[1]. Most of our prior work deals with gen-
erating control information from the integrated notation package
ENP [2] and applying it to, for example, physical models of acous-
tic instruments.

Recently, our system’s input capabilities have been added in
the form of realtime audio and MIDI inputs as well as a forthcom-
ing streaming sound file player. These extensions provide motiva-
tion to examine the viability of PWGLSynth in the case of audio
analysis.

The rest of this paper is organized as follows. In the first sec-
tion, ’Analysis vs. Synthesis’, we discuss the kinds of abstrac-
tions and signal models commonly used in programming for these
two scenarios. The second section, ’A Case study: f0 estimation
in PWGL’, presents the details of our pitch estimation algorithm.
The implementation details are discussed in the section ’Design
of analysis boxes’. Finally, the viability of PWGLSynth forau-
dio analysis and future improvements are outlined in the section
’Further development’.

2. ANALYSIS VS. SYNTHESIS

In some ways, audio analysis and sound synthesis can be viewed
as opposites. What is reversed is the flow of signal, from high
level to low level or the opposite. In this case, signals related to
human perception such as ’pitch’ or ’amplitude’ are considered
high level signals while the signal containing the largest amount of
raw information, the audio signal, is considered a low levelsignal.

In sound synthesis, we devise algorithms to create low level
audio signal from a set of high level signals that have musical
meaning. A lot of seminal work has been done in the field, and
the challenges in sound synthesis often deal with very fine musi-
cal nuance or radically novel timbres. In audio analysis, wetry
to retrieve high level meaning from a raw waveform, which is a

task less ideally suited to a computer. The situation is quite differ-
ent from sound synthesis, and work is still being done to achieve
robust detection of some fairly basic musical parameters such as
pitch or tone color.

Traditionally in the field of sound synthesis, high level sig-
nals are considered control signals. The separation of signals to
control rate signals or control events and audio rate signals is well
established, and serves to optimize the computation of a synthesis
patch. While the control signal paths are equally if not moreim-
portant than audio signal paths in determining the musical timbre
and personality of a synthesizer, they require a slower update rate
than the actual audio computation.

A typical implementation of a synthesizer would run the con-
trol section separately from the inner DSP loop, conceptually ’be-
fore’ the synthesis computation is performed. The control section
would then update some signal slots available to the synthesizer
part, which is run as a separate subroutine. The dependency of the
synthesis computation on the control computation is in thiscase
implicitly recognized by always evaluating the control section be-
fore synthesis section. This general scheme is also the one for
which PWGLSynth was originally designed [3].

For audio analysis, the situation is reversed. The patch is
driven by audio input, either from a sound file or a real time audio
input, generating high level events or signals from the low level
data stream. Now the signal rate tends to decrease instead ofin-
creasing as we traverse the patch downstream. Analysis and syn-
thesis processes are not formally reciprocal by any means, but the
processing stages of each kind of patch resemble a mirror image
of the other. One major focus of this paper is the difficulities this
presents to the current PWGLSynth signal model and potential av-
enues of improvement.

3. A CASE STUDY: F0 ESTIMATION IN PWGL

As a case study, we examine a variant of the harmonic product
spectrum[4] estimation method for fundamental frequency of a
monophonic signal. This algorithm was developed by the first
author for a violin intonation trainer software Sonic Finetune, a
Sibelius Academy project [5]. This section will briefly outline the
algorithm.

A harmonic product spectrum based method was chosen over
the currently popular autocorrelation methods after initial testing.
In this method, several compressed copies of the spectrum are cre-
ated. In each copy, the frequencies of the components are divided
by an integer number. The product of all these copies has peaks
at the frequencies that exhibit strong overtones, as overtones are
spaced at integer multiplies of the fundamental frequency.The
frequency resolution limitations of HPS were overcome withphase

DAFX-1

 http://cmt.siba.fi/
mailto:vnorilo@siba.fi
http://cmt.siba.fi/
mailto:laurson@siba.fi

Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

unwrapping, a technique adapted from phase vocoders[6]. Inmany
ways, this is similiar to the Max MSP fiddle-object,[7] whichim-
proves HPS frequency resolution by phase unwrapping the domi-
nant frequency bin.

For the current algorithm, a partial analysis is carried out, con-
trasting the phase behavior of each FFT bin to that of a steadystate
sinusoid over a number of subsequent FFT frames. This technique
will favour steady, sustained tones and achieves quite a high fre-
quency resolution with relatively small frame size.

A product spectrum is then computed over the frequency as a
continuous domain with the detected partials represented as delta
functions. Frequency uncertainty is allowed between a set of delta
functions near each other since the partial analysis is a heuristic
method. The final frequency value for the product spectrum delta
function is computed as an amplitude weighted average of theset
of delta functions that contributed to the product. This technique
allows for a relatively small FFT frame with large overlap tobe
used for a relatively high analysis time resolution withoutcom-
promising the frequency resolution for monophonic signals, as the
frequency resolution for this algorithm is more dependent on the
window step size than the FFT size.

A high data rate in turn allows for some data redundancy which
can be leveraged during post processing. This makes the algorithm
well suited for examining some fine details of vibrato, for instance.
In informal testing with emphasis on passages requiring high time
resolution, the algorithm performed at least equally well or better
on most sound clips than an excellent implementation of the au-
tocorrelation pitch detection by McLeod and Wyvill in the Tartini
software package[8]. Full scientific evaluation of the performance
of this algorithm is dependent on continued funding for the Sonic
Finetune project.

4. DESIGN OF ANALYSIS BOXES

The most straightforward way to implement the pitch detection al-
gorithm for PWGL would be to create a single monolithic box that
converts an audio signal into f0. However, this is not preferable
for a number of reasons. Since PWGL is a programming envi-
ronment, generality and modularity are prioritized over extreme
simplicity. The most beneficial approach would be to create aset
of analysis boxes that can be combined in various ways to realize
different analysis algorithms, much as synthesis algorithms have
traditionally been accomplished in PWGLSynth.

However, this brings up a design problem: we have previ-
ously spent much effort on avoiding multiple protocols within the
patch[9]. The traditional example of this division is the presence
of separate control rate and audio rate paths within a system. This
division is not present in PWGL, greatly simplifying patching and
reducing the number of box types and permutations needed by the
user.

A set of analysis boxes will have yet another class of signal
needs, such as transforming the signal between time domain and
frequency domain. Integration of these kinds of signals into the
PWGLSynth framework while achieving as much reusability as
possible from the previous set of synthesis boxes is the goalof the
analysis box design.

4.1. FFT transform box

When transforming an audio signal into the frequency domain,
the waveform signal model in PWGLSynth no longer directly ap-

plies. The most practical implementation is to provide a short time
Fourier transform based box that buffers the audio signal and trans-
forms each buffer into the frequency domain. The applications and
benefits of this scheme are common to much of fundamental signal
processing. Our implementation offers the standard set of choices
in window size, step size, zero padding and windowing. Together,
these parameters allow for applications ranging from analysis to
efficient convolution.

The extended multichannel capacity of PWGLSynth[10] is lever-
aged in formatting the output of the FFT box. For a N-point trans-
form, the output signal is a N-channel vectored signal containing
the real and imaginary parts of the positive frequency side of the
transformed signal. The components are mapped as follows:

Table 1:FFT transform data format

0 ... n/2 n/2 + 1 ... n − 1

bin 0 ... bin n/2 bin 1 ... bin n − 1

re re re img img img

This non-interleaved format will allow the user to split theout-
put into a real part and imaginary part vectors with minimal over-
head. This scheme in turn allows the user to employ the existing
rich set of vector operations with FFT transform results.

The FFT box will, in addition, provide refresh events to notify
the downstream patch whenever a new transform is computed.

4.2. Partial analysis

The partial analysis computes the phase delta for each frequency
bin between subsequent FFT frames. Phase delta history is stored
for a user defined number of adjacent FFT frames. While the FFT
analysis result is a series of phase and amplitude vectors for a dis-
crete set of frequencies determined by the window size, the phase
vocoder algorithm is able to exchange phase information forin-
creased frequency resolution.

The next step is to compute a more accurate frequency value
for each FFT bin, examining the behavior of the phase of the bin
over a a number of FFT frames. In the traditional phase vocoder
algorithm, the phase change between two frames is examined as
an indicator of what is the precise frequency of a sinusoid the FFT
bin is picking up. In a number of cases the phase behavior can be
caused by transients or changing signals, and this can result in a
phase vocoder picking up erroneous partials.

A steady state sinusoid will produce a constant phase delta
between frames. In our algorithm, the average phase delta ofthe
history set is examined along with the deviation of phase delta.
The phase unwrapped partials are inversely scaled by the phase
delta deviation, thus decreasing the weight of detected partials less
closely resembling steady state sinusoids.

Finally, partials that are close to each other will be merged,
the resulting partial having the total amplitude of the two partials
and a frequency that is an amplitude weighted average of the par-
tials. This step is carried out to compensate for the tendency of
the phase vocoder analysis to produce a cluster of pseudo-partials
near the actual components of the input signal. With suitable pa-
rameters, the merged average partial of such a cluster very closely
matched the source signal. Merging the partials also reduces the
combinatory load of the eventual f0 analysis.

DAFX-2

Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

In a synthetic test, the algorithm was able to follow a the fun-
damental frequency of a rich geometrical waveform within anerror
margin of0.2Hz with a frame size of 1024 samples with 8 over-
lapping frames, with the sampling rate of44.1kHz. This will in
turn yield a data rate of of344.5Hz with a time uncertainty in the
range of20ms due to window size.

The partial analysis box output will consist of a user-defined
number of partials sorted by their relative amplitude. The output
data format is as follows, the data represented by a vector with
length2n for n partials.

Table 2:Partial analysis data format

0 1 2 3 2n − 2 2n − 1

freq amp freq amp freq amp
partial1 partial2 ... partialn

4.3. F0 estimation

Like in the traditional HPS method, our estimator creates spectral
copies compressed in frequency and multiplies them for a product
spectrum. In this case, unlike the usual FFT spectrum, the set
of partials from the partial analysis module will be used. Due to
the heuristic nature of the algorithm and also the fact that exact
equality for floating point math is undefined in computer hardware,
exact rigor in multiplying the compressed spectra togetheris not
followed.

Mathematically, the set of partials is a group of delta functions
over a continuous frequency axis, and only partials with exactly the
same frequency will have a non-zero product. That is why fuzzy
matches are accepted when multiplying partial amplitudes over the
frequency axis. For example, multiplying two partials whose fre-
quencies differ by less than a user defined threshold will produce
a partial with a frequency between the two multiplicands anda
product amplitude. Also, a floor amplitude value will be added to
each multiplicand amplitude to prevent a missing harmonic from
canceling out the whole product. The most prominent frequency
component of the product spectrum is treated as the f0 candidate.

The tweaking of the partial merge threshold, the number of
partials contributing to the f0 estimation and the floor value control
the response quality and robustness of the algorithm.

4.4. Pre- and post-processing

Before analysis, the signal is bandpass filtered with a corner fre-
quency of the lowest fundamental frequency expected. This re-
duces the amount of less significant low and high frequency con-
tent in the signal and emphasizes low frequency partials relative to
higher partials. This in turn increases the robustness of the analysis
and reduces the rate of octave errors in the detected pitch.

The frequency biasing is performed with standard audio filters.
In addition, averaging and median filters can be used on the f0
output to smooth out noise and blips in the analysis result.

4.5. The algorithm

A PWGLSynth patch displaying the full implementation of theal-
gorithm is show in Figure 1. The sound source for the patch is a

realtime audio input and the resulting f0 analysis is used todrive a
simple pitch following sinusoid oscillator.

Figure 1:A patch featuring the f0 estimation algorithm

5. FURTHER DEVELOPMENT

Implementing audio analysis on PWGLSynth reveals some disad-
vantages in the current signal model, resulting from the fact that
PWGLSynth was originally strictly designed for the synthesis sce-
nario. In this context, signals flow from sparse control signals to
dense audio signals. For audio analysis, the case is the opposite.
For instance, a method for computing the power spectrum of an
audio signal is presented in the patch shown in Figure 2.

However, the way this patch is evaluated in the current imple-
mentation is suboptimal, as the mul-vector, add-vector, accum and
sqrt boxes run at the audio rate, operating on very large vectors on
every single sample frame. There is currently no way to commu-
nicate the FFT update rate to these audio rate boxes unless they
specifically implement a control rate interface. This in turn would
require the box developer to implement processing routinestwice,
once for audio rate and once for control events. More generally,
this problem persists for any patch that generates lower rate signal
from a higher rate signal.

In contrast, a similar algorithm implemented in Pure Data -
like environment would have the benefit of packaging each trans-
formed buffer as a single message, and downstream nodes can sim-
ply respond to receiving messages. The downside is the problem
of combining event streams that is a requisite in the ubiquitous
class of nodes that combine a set of parameters to produce a sin-
gle result. This scheme requires the user to explicitly control the
scheduling of the patch by using bang events and observing some-
what arbitrary scheduling rules.

The need for a signal model that retains the generality of our
current model while providing extended support for a diverse range
of signal rate changes within a patch independent of individual box

DAFX-3

Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

Figure 2:A patch featuring a power spectrum computation.

implementation becomes apparent. The ideal model would com-
bine a computationally optimal DSP scheduling with freely mixing
signal rates, yet without a need for specialized control andaudio
rate boxes. A natural application of such a system is a patch con-
taining both analysis and synthesis elements. A simple example
of a combination of these two paradigms is a pitch following os-
cillator, but the implications are much broader, especially in the
context of live performance.

The authors have proposed a new signal model combining data
driven and request driven processing. The model involves analyz-
ing the state space of a patch and generating dependency based
procedures for each state that contain the minimal set of operations
required to synchronize the rest of the states in the patch whenever
a state update is triggered. This model was designed to address
the needs of audio analysis and other cases, where the signalflow
tends to be more complicated than in the common control and syn-
thesis case.

6. CONCLUSIONS

In this paper, we examined the general suitability of PWGLSynth
for audio analysis and an implementation of a fundamental fre-
quency estimator specific to PWGLSynth. The presence of analy-
sis suggests the intriguing possibility of combined analysis/synthesis
patches. The topology and the conceptual modularization and map-
ping of the algorithm into general purpose PWGLSynth boxes was
presented. Some features of the current signal model were found
suboptimal for the audioanalysis case, and future work addressing
the improvement of the model was laid out.

7. ACKNOWLEDGMENTS

The work of has been supported by the Academy of Finland (SA
105557 and SA 114116).

8. REFERENCES

[1] Mikael Laurson and Mika Kuuskankare, “PWGL: A Visual
Programming Language for Computer Aided Composition,
Music Analysis and Sound Synthesis,” 2004.

[2] Mika Kuuskankare and Mikael Laurson, “Expressive Nota-
tion Package,”Computer Music Journal, vol. 30, no. 4, pp.
67–79, 2006.

[3] Mikael Laurson, Vesa Norilo, and Mika Kuuskankare,
“PWGLSynth: A Visual Synthesis Language for Virtual In-
strument Design and Control,”Computer Music Journal, vol.
29, no. 3, pp. 29–41, Fall 2005.

[4] M. R. Schroeder, “Period histogram and product spectrum:
New methds for fundamental frequency measurement,”Jour-
nal of the Acoustical Society of America, vol. 43, no. 4, pp.
829–834, 1968.

[5] Noa Nakai, “Viulunsoiton opetus ja teknologia,” M.S. thesis,
Sibelius Academy, Helsinki, Finland, 2008.

[6] James Moorer, “The use of the phase vocoder in computer
music applications,”Journal of the Audio Engineering Soci-
ety, vol. 26, no. 1/2, pp. 42–45, January 1978.

[7] M. Puckette, T. Apel, and D. Zicarelli, “Real-time audio
analysis tools for pd and msp,” 1998.

[8] Philip McLeod and Geoff Wyvill, “A smarter way to find
pitch,” in Proceedings of International Computer Music
Conference, Barcelona, Spain, September 2005, pp. 138–
141.

[9] Mikael Laurson and Vesa Norilo, “Recent Developments in
PWSynth,” inProceedings of DAFx 2003, London, England,
2003, pp. 69–72.

[10] Mikael Laurson and Vesa Norilo, “Multichannel Signal Rep-
resentation in PWGLSynth,” inConference on Digital Audio
Effects, 2006.

DAFX-4

	1 Introduction
	2 Analysis vs. Synthesis
	3 A Case study: f0 estimation in PWGL
	4 Design of analysis boxes
	4.1 FFT transform box
	4.2 Partial analysis
	4.3 F0 estimation
	4.4 Pre- and post-processing
	4.5 The algorithm

	5 Further development
	6 Conclusions
	7 Acknowledgments
	8 References

