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INTRODUCTION
[ Distortion is an essential effect especially in electric guitar playing

[ Conventionally distortion circuitry modifies
the signal amplitude

\ Hyperbolic trigonometric function
] Nonlinearity often found in electric cir-

cuits
] sinh (Yeh et al., 2007)
] tanh (Huovilainen, 2004)

\ Chebychev polynomials (Gustafsson
et al., 2004)

In figure: f(x) =
tanh(2x)
tanh(2)
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AMPLITUDE DISTORTION BY PHASE MODULATION

[ Any signal can be represented at any time in-
stant using amplitude and phase

⇒ Nonlinear amplitude modification can be
interpreted as a modification of the phase
increment of the input signal!

[ Phase modulation of an arbitrary signal by
means of adaptive frequency modulation
(AdFM) (Lazzarini et al., 2007)

[ Direct AdFM approach not practical

\ Complex control logic

\ Requires a (long) delay line
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COEFFICIENT-MODULATED ALLPASS FILTERS

[ An allpass filter modifies only the phase of
the input signal

\ Frequency-dependent delay

[ Allow the coefficients of a low-order allpass
filter to be time-varying

⇒ Time-varying frequency-dependent delay

\ Modification of the phase increment of an
input signal

\ The resulting filter no longer allpass!

In Figure: Phase delay of a first-order allpass filter

H(z) = a1+z−1

1+a1z−1 for different values of a1.

 

 

Frequency (×π)
P

h
as

e
d
el

ay
(s

am
p
le

s)

a1 = 0.1
a1 = −0.3
a1 = −0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Jussi Pekonen DAFx-08 presentation September 2, 2008 — Slide 5/11

COEFFICIENT-MODULATED FIRST-ORDER ALLPASS FILTER AS

DISTORTION EFFECT

COEFFICIENT-MODULATED ALLPASS FILTERS
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Signal Processing and Acoustics

COEFFICIENT-MODULATED FIRST-ORDER ALLPASS FILTER

z
−1

x(n) y(n)

m(n)

−m(n)

w(n)

8<:w(n) = x(n) + m(n)y(n) and

y(n) = −m(n)x(n) + w(n− 1),

Expansion of w(n) yields:

y(n) = −m(n)x(n) + (1−m2(n− 1))x(n− 1)

+

∞X
k=2

k−1Y
l=1

m(n− l)(1−m2(n− k))x(n− k).

[ Time-varying first-order allpass filter used previously in modeling

\ nonlinear spring termination (Pierce and van Duyne, 1997)

] Switching between two fixed values

\ tension modulation phenomenon (Pakarinen et al., 2005)

] Phase delay at DC limited between zero and one

[ Now m(n) is not limited! Except with conditions for stability. . .
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PROPERTIES OF THE PROPOSED FILTER

STABILITY ANALYSIS

[ Stability criteria of time-invariant recursive filters NOT applicable to time-varying filters
(Laroche, 2007)

[ Conditions for stability can be derived from the state-space representation of the filter
⇒ For the proposed filter |m(n)| ≤ 1

PHASE DELAY AT DC

[ D(n) = 1−m(n)
1+m(n)

(Jaffe and Smith, 1983)⇒ DC delay always nonnegative

[ m(n) = 1⇒D(n) = 0; m(n) = −1⇒D(n) = ∞

[ When phase delay at DC is large, the filter is highly dispersive
⇒ unnatural artefacts not desirable in distortion effect when the input is a broadband signal
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MODULATION SIGNAL CHOICE FOR ELECTRIC GUITAR PLAYING
[ For a mild distortion light modulation and for heavier distortion more drastic

[ The range of values m(n) gets affects the resulting effect
⇒ Example: input signal a 1000 Hz sine
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HOW TO CHOOSE THE MODULATION SIGNAL?

[ The input signal as is

\ Usually non-smooth⇒ large distortion

[ Lowpass filtered input signal

[ Constant modulation signal, e.g., a sinusoid

DEMOS

Example 1

I Input signal
≡≡≡≡��� ·

II Modulated by lowpass filtered input signal
≡≡≡≡��� ·

III Modulated by a 800 Hz sine, (−1, 0.6)

≡≡≡≡��� ·

Example 2

I Input signal
≡≡≡≡��� ·

II Modulated by lowpass filtered input signal
≡≡≡≡��� ·

III Modulated by a 800 Hz sine, (−1, 0.6)

≡≡≡≡��� ·
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CONCLUSIONS
[ Amplitude distortion can be obtained by phase modulation

[ Efficient implementation with a coefficient-modulated low-order allpass filter

[ Coeffient-modulated first-order allpass filter tested

\ Pros

] Computationally efficient
] Freedom to choose the modulation signal
] Possibility to be almost alias-free

\ Cons

] Only one degree of freedom
] Difficulty to choose the modulation signal?
] Too simplified approach?

Demos available at: http://www.acoustics.hut.fi/~jpekonen/Papers/dafx08/
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