

SPCL – McGill University CIRMMT

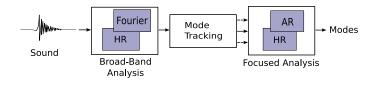
DAFx'08 - Sept. 2nd, 2008

CIR Centre for Interdisciplinary Research MMT in Music Media and Technology

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
Outline				

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
What for ?				

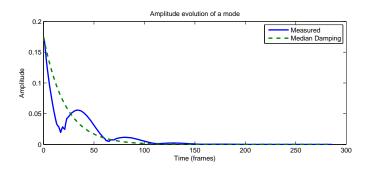
Tool for the modal analysis of percussive sounds for:


Motivation	Sound Model	Analysis Method	Experiments	Conclusion
What for ?				

Tool for the modal analysis of percussive sounds for:

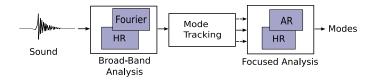
- musical instrument modeling
- synthesize impact sounds between objects for virtual environments
- ..

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
2 steps ?				



Two-step modal parameters estimation:

● Broad-band analysis ⇒ global spectro-temporal structure of the sound (with limited frequency resolution)


Motivation	Sound Model	Analysis Method	Experiments	Conclusion
2 steps ?				

CIR Centre for Interdisciplinary Research MMT in Music Media and Technology

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
2 steps ?				

Two-step modal parameters estimation:

- Broad-band analysis ⇒ global spectro-temporal structure of the sound (with limited frequency resolution)
- Pocused analysis ⇒ better modeling of each component identified during the first "pass"

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
Interest				

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
Intoract				
Interest				

• a lot of a priori knowledge

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
Interest				

 a lot of a priori knowledge ⇒ physical model parameter estimation

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
Interest				

- a lot of *a priori* knowledge ⇒ physical model parameter estimation
- not much a priori knowledge

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
Interest				

- a lot of *a priori* knowledge ⇒ physical model parameter estimation
- not much a priori knowledge ⇒ "realistic enough" sound synthesis

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
Sound N	Model			

We assume that:

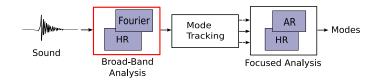
• the signal is made of a **sum of exponentially decaying cisoids**

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
Sound I	Model			

We assume that:

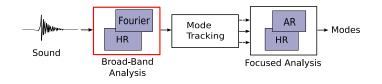
- the signal is made of a **sum of exponentially decaying cisoids**
- the physical properties of the impacted object remain constant ⇒ mode frequencies and damping factors are constant

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
Sound N	Model			


We assume that:

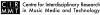
- the signal is made of a **sum of exponentially decaying cisoids**
- the physical properties of the impacted object remain constant ⇒ mode frequencies and damping factors are constant

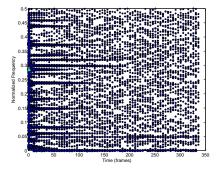
$$\hat{x}(t) = \sum_{k=1}^{K} A_k e^{\delta_k t} e^{j(2\pi f_k t + \phi_k)}$$


Broad-Band Analysis

Fourier-Based Analysis:

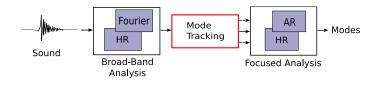
- STFT ⇒ one spectrum per frame
- Peaks picking using improved amplitude, frequency and phase estimation techniques [Lagrange et al. JAES'07]
- δ_k estimated by fitting an exponential on the amplitude profile, or Energy Decay Relief [Jot ICASSP'92] of one mode


Broad-Band Analysis


High Resolution Analysis:

- Using the adaptive implementation of the ESPRIT algorithm [Badeau et al. WASSPA'05]
- Frame-based analysis:
 - pre-processing
 - f_k and δ_k estimation
 - A_k and ϕ_k estimation

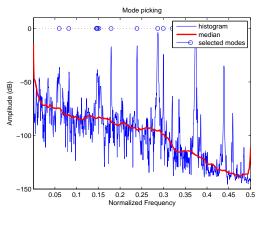
Broad-Band Analysis



Corresponding sound

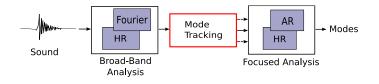
CIR MMT in Music Media and Technology

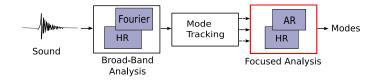
Mode identification and Tracking



Frequency marginal to identify main modes

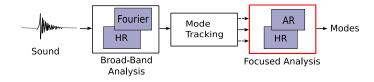
CIR MMT in Music Media and Technology


Mode identification and Tracking

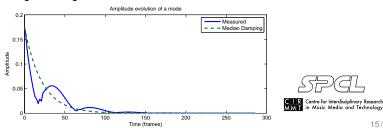


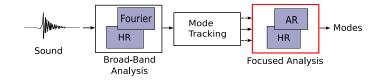
Mode identification and Tracking

- Frequency marginal to identify main modes
- Oetected modes tracked over time using standard frequency proximity criterion

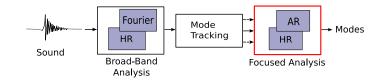


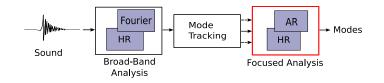
Selection of the partial track to process

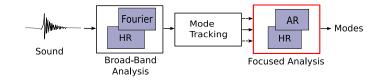

- amplitude high enough, lasts long enough
- error between measured and estimated amplitude profiles high enough:



Selection of the partial track to process


- amplitude high enough, lasts long enough
- error between measured and estimated amplitude profiles high enough:

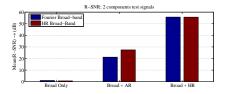

- Selection of the partial track to process
- Pre-processing [Laroche, JASA'93]
 - complex FIR filter around fk
 - modulation + downsampling

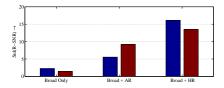

- Selection of the partial track to process
- Pre-processing [Laroche, JASA'93]
- Stimation of frequencies and damping
 - AR analysis as done in [Karjalainen et al., EUSIPCO'05]
 - HR analysis using a non adaptive ESPRIT (not frame-based)

- Selection of the partial track to process
- Pre-processing [Laroche, JASA'93]
- Estimation of frequencies and damping
- Leat Squares amplitude and phase estimation

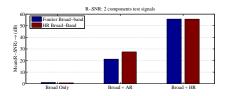
- Selection of the partial track to process
- Pre-processing [Laroche, JASA'93]
- Estimation of frequencies and damping
- Leat Squares amplitude and phase estimation
- Sorting components
 - discarding: $\delta_k > 0$ and $|f_{mode} f_k| > \Delta f_{max}$

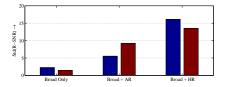
•
$$\frac{A_k}{max(A_k)}$$
 > threshold



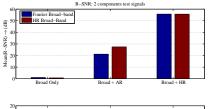

- *A_k*: uniform pdf in [0.9, 1]
- *δ_k*: uniform pdf in [0.0001, 0.001]
- *f_k*
- 2 freqs \in [0.2499, 0.2501]
- 20 freqs \in [0.2, 0.3]

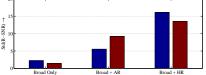
- *A_k*: uniform pdf in [0.9, 1]
- *δ_k*: uniform pdf in [0.0001, 0.001]
- *f_k*
 - 2 freqs ∈ [0.2499, 0.2501]
 - 20 freqs \in [0.2, 0.3]
- \Rightarrow 1000 sounds



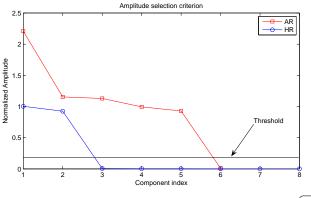


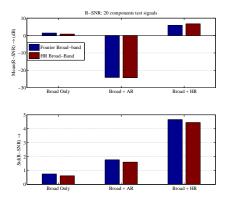
CIR Centre for Interdisciplinary Research in Music Media and Technology

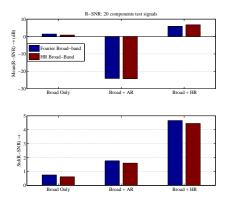




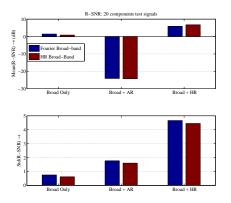
 AR < HR: over-estimation of the number of components using our empirical metric


CIR Centre for Interdisciplinary Research MMT in Music Media and Technology


- AR < HR: over-estimation of the number of components using our empirical metric
- HR broad + HR ≈ Fourier broad + HR



CIR Centre for Interdisciplinary Research MMT in Music Media and Technology



 HR focused analysis improves results for both broad-band analyses

- HR focused analysis improves results for both broad-band analyses
- Fourier Broadband + HR focused analysis = good compromise: computation load / good results

CIR Centre for Interdisciplinary Research MMT in Music Media and Technology

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
"Real w	orld" cases			

Type of sound:

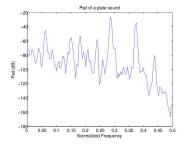
• Metallic plate struck by ceramic hammer

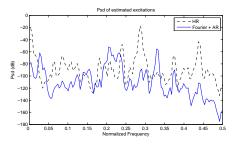
Performance Assessment

 Context: Excitation estimation using standard deconvolution method [Laroche et al. TSAP'94]

Performance Assessment

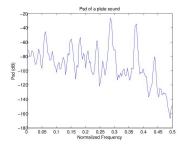
- Context: Excitation estimation using standard deconvolution method [Laroche et al. TSAP'94]
- We compare HR broadband (state of the art in terms of resolution) and Fourier broadband + AR focused analysis



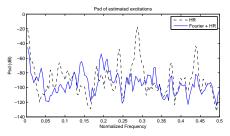

Performance Assessment

- Context: Excitation estimation using standard deconvolution method [Laroche et al. TSAP'94]
- We compare HR broadband (state of the art in terms of resolution) and Fourier broadband + AR focused analysis
- We compare HR broadband and Fourier broadband + HR focused analysis

HR vs. Fourier-AR:


Original

HR excitation Fourier + AR excitation



CIR Centre for Interdisciplinary Research in Music Media and Technology

HR vs. Fourier-HR:

Original

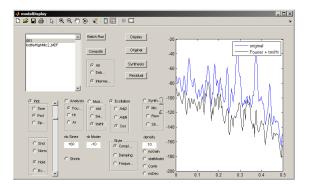
HR excitation Fourier + HR excitation

SPCL

CIR Centre for Interdisciplinary Research MMT in Music Media and Technology

Motivation	Sound Model	Analysis Method	Experiments	Conclusion
Results				

- Main modes of the sounds are generally absent from excitation signals
- Presence of strong modes in excitation = artifact of deconvolution method



Motivation	Sound Model	Analysis Method	Experiments	Conclusion
Conclus	sion			

A two-step analysis scheme for the estimation of modal parameters from recorded sounds.

- alleviating parametrization and manual post-processing
- interest demonstrated in the case of synthetic signals
- interest demonstrated in the context of excitation estimation for source filter modeling

Toolbox available upon request: mathieu.lagrange@mcgill.ca

Motivation	Sound Model	Analysis Method	Experiments	Conclusion

Thank you for your attention.

Motivation	Sound Model	Analysis Method	Experiments	Conclusion

Questions, comments ?

