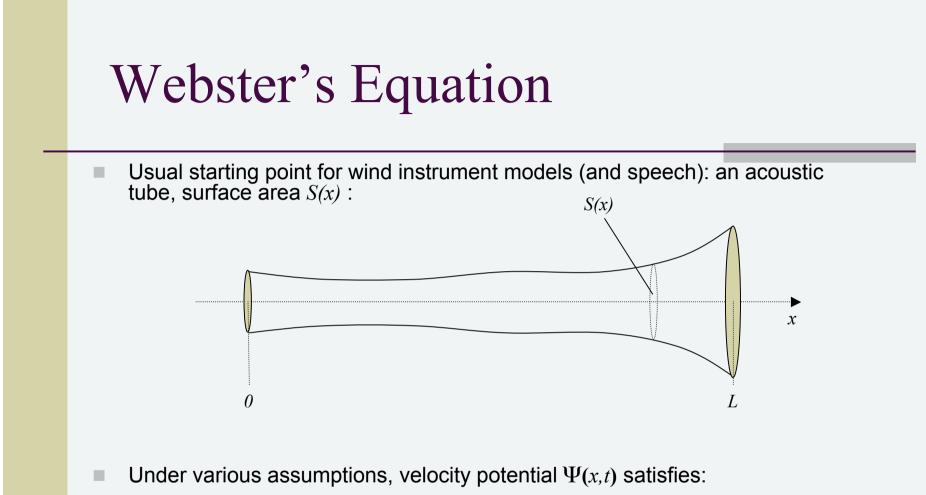
Direct Simulation for Wind Instrument Synthesis

DAFX 08

Stefan Bilbao Acoustics and Fluid Dynamics Group / Music University of Edinburgh

Webster's equation Finite difference schemes Efficiency, accuracy and stability Sound examples: Single reed wind instruments

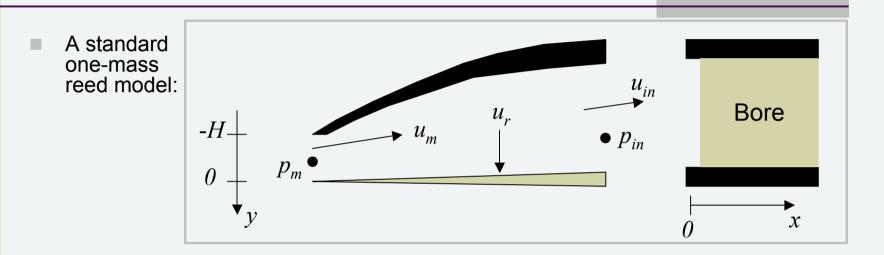


$$\Psi_{tt} = c^2 \left(S \Psi_x \right)_x$$

• $\Psi(x,t)$ related to pressure p(x,t) and volume velocity u(x,t) by:

$$p = \rho \Psi_t \qquad \qquad u = -S \Psi_x$$

Single Reed Model



A driven oscillator:

$$\ddot{y} + g\dot{y} + \omega_0^2 y + \omega_1^{1+\alpha} ([-y - H]^+)^{\alpha} = -a_1 p_{\Delta}$$

Linear oscillator terms Collision term Driving term

Mouthpiece pressure drop	Flow conservation	Bore coupling
$p_{\Delta} = p_m - p_{in}$	$u_{in} = u_m - u_r$	$p_{in} = \rho \Psi_t(0, t)$
Flow nonlinearity $u_m = a_2[y + H]^+ \sqrt{ p_{\Delta} } \operatorname{sgn}(p_{\Delta})$	Flow induced by reed $u_r = a_3 \dot{y}$	$u_{in} = -S(0)\Psi_x(0,t)$

Radiation Boundary Condition

At the radiating end (x=L), an approximate boundary condition is often given in impedance form:

 $P(s) = Z(s)U(s) \qquad \qquad Z(s) = As - Bs^{2}$

- Models inertial mass and loss.
- BUT: not positive real \rightarrow not passive.
- A better approximation (p.r., passive):

$$Z(s) = \frac{As}{1 + Bs / A}$$

When converted to the time domain:

$$\Psi_x + q_1 \Psi_t + q_2 \Psi = 0 \qquad \text{at} \qquad x = L$$

Finite Difference Scheme

- Sample bore profile S at locations x = lh, l = 0, ..., N $()S_0$ S_{I} S_2 h = grid spacing0 2
 - Introduce grid function Ψ , at locations x = lh, l = 0, ..., Nt = nk, n = 0, ...
 - k = time step
- S_{N-1} S_N N-1 N Ψ *n*+1 k п n-l 2 N-1 Ν
- Here is one particular finite difference scheme (explicit, 2nd order accurate)

$$\Psi_{l}^{n+1} = 2\lambda^{2} \frac{S_{l} + S_{l+1}}{S_{l+1} + 2S_{l} + S_{l-1}} \Psi_{l+1}^{n} + 2\lambda^{2} \frac{S_{l} + S_{l-1}}{S_{l+1} + 2S_{l} + S_{l-1}} \Psi_{l-1}^{n} + 2\left(1 - \lambda^{2}\right) \Psi_{l}^{n} - \Psi_{l}^{n-1} \Psi_{l-1}^{n} + 2\left(1 - \lambda^{2}\right) \Psi_{l}^{n} - \Psi_{l}^{n-1} \Psi_{l-1}^{n} + 2\left(1 - \lambda^{2}\right) \Psi_{l}^{n} - \Psi_{l-1}^{n-1} \Psi_{l-1}^{n} + 2\left(1 - \lambda^{2}\right) \Psi_{l-1}^{n} - \Psi_{l-1}^{n} + 2\left(1 - \lambda^{2}\right) \Psi_{l-1}^{n}$$

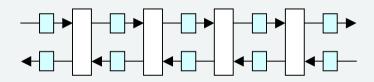
Courant number λ defined as $\lambda = ck/h$

Stability and Special Forms

- Can show (energy methods) that scheme is stable, over interior, when $\lambda \leq 1$
- When $\lambda = 1$, scheme simplifies to:

$$\Psi_{l}^{n+1} = 2 \frac{S_{l} + S_{l+1}}{S_{l+1} + 2S_{l} + S_{l-1}} \Psi_{l+1}^{n} + 2 \frac{S_{l} + S_{l-1}}{S_{l+1} + 2S_{l} + S_{l-1}} \Psi_{l-1}^{n} - \Psi_{l}^{n-1}$$

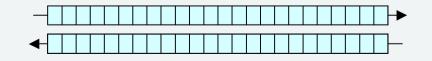
...equivalent to Kelly-Lochbaum scattering method



When $\lambda = 1$, and S = const., scheme simplifies further:

$$\Psi_{l}^{n+1} = \Psi_{l+1}^{n} + \Psi_{l-1}^{n} - \Psi_{l}^{n-1}$$

...equivalent to digital waveguide (exact integrator)



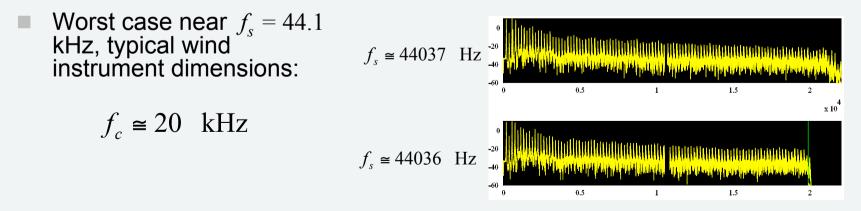
Stability Condition and Tuning

- Stability condition requires $\lambda \le 1 \longrightarrow h \ge ck$
- For simplicity, would like to choose an h which divides L evenly, i.e.,

L/h = N for integer N

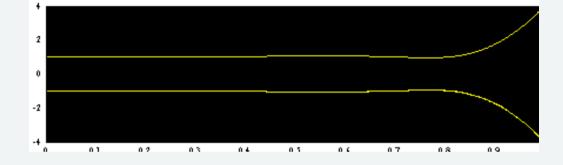
- Not possible for waveguide/Kelly-Lochbaum methods --- h=ck. Result: detuning, remedied using fractional delays.
- In an FD scheme, can choose h as one wishes. Result: very minor dispersion/loss of audio bandwidth. Numerical cutoff:

$$f_c = \frac{f_s}{\pi} \sin^{-1}(\lambda) \le \frac{f_s}{2}$$



Accuracy—Modal Frequencies

- Numerical dispersion---normally a problem for FD schemes!
- This is a 2nd order scheme---might expect severe mode detunings...
- Not so...
- E.g., for a lossless clarinet bore...

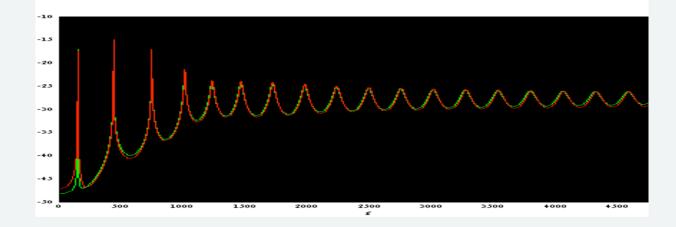


...calculated modal frequencies are nearly exact, over the entire spectrum

Mode	Freq. (FD, Hz)	Freq. (exact, Hz)	cent diff.
[#] 1	141.89	141.96	0.86
2	413.79	413.95	0.65
3	705.55	705.55	0.00
12	3144.04	3142.63	- 0.77

Accuracy—Transfer Impedance

- Even under more realistic conditions (i.e., with radiation loss), behaviour is extremely good:
- Transfer impedance (mouth \rightarrow radiating end):

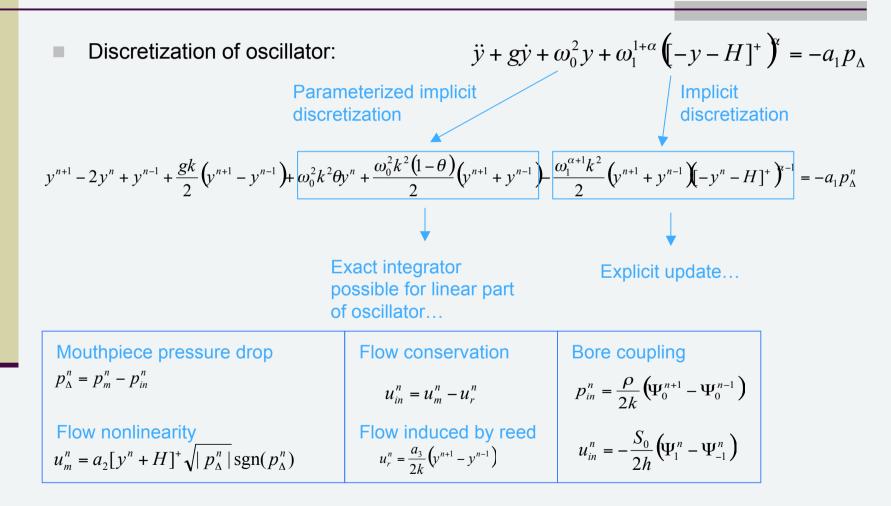


Red: exact (calculated at 400 kHz)

Green: calculated at 44.1 kHz

- Upshot: FD approximation converges very rapidly...
- …"perceptually" exact, even at audio sample rate.
- No compelling reason to look for better schemes...

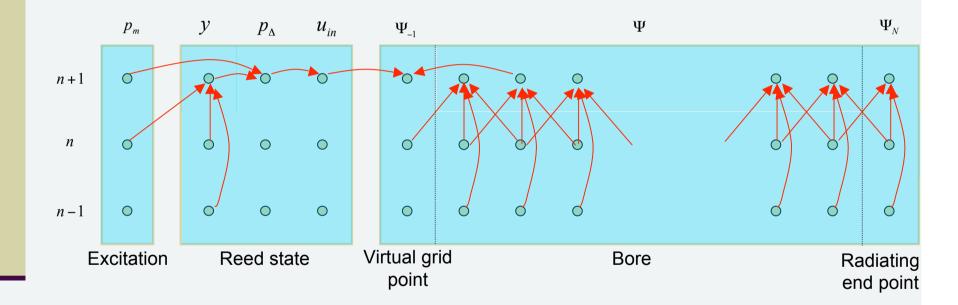
Explicit Updating



- Implicit discretization \rightarrow excellent stability properties
- Unknowns always appear linearly...

Explicit Updating

Can find a flow path in order to update all the state variables (sequentially)



Similar to setting of "reflection-free port resistances" in linear WDF networks...

...but more general.

Note on Stability

- The scheme for the bore + bell termination, in isolation, is guaranteed stable.
- Situation more complicated when reed mechanism is connected.
- Consider system under transient conditions (input $p_m = 0$):

H(t) =	$H_{bore}(t)$ +	$-H_{bell}(t)$ -	$+H_{reed}(t)$	$\leq H(0)$
Total	Stored	Stored	Stored	Initial
energy	energy	energy	energy	stored
	in bore	at bell	of reed	energy

True...

- System is dissipative \rightarrow state bounded for any initial conditions.
- Under forced conditions, would like:

- Upshot: impossible to bound solutions of model system under forced conditions
- Best one can do: ensure energy balance is respected in FD scheme...

Computational Cost

For a given sample rate f_s , bore length *L*, and wave speed *c*, the computational requirements are:

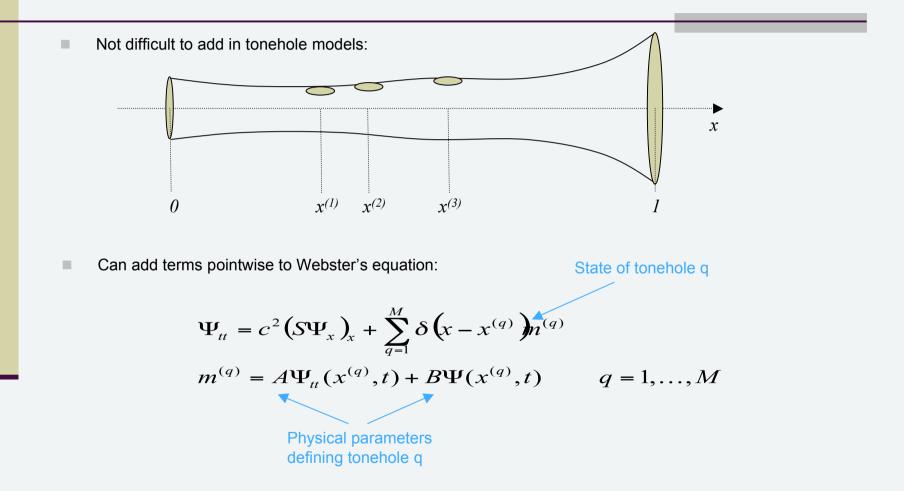
■ $2Lf_s/c$ units memory = $4Lf_s^2/c \rightarrow 6Lf_s^2/c$ flops/sec.

...independent of bore profile. Reed/tonehole/bell calculations are O(1) extra ops/memory per time step

Example: clarinet \rightarrow 15 Mflops/sec., at $f_s = 44.1$ kHz

Not a lot by today's standards...far faster than real time.

Toneholes



In FD implementation, can be added anywhere along bore (Lagrange interpolation):

GUI: Matlab

A windfdgui Global Simulation Parameters	—, — Tutorial Examples	Pressure Excitation
Sample Rate Duration (s)	1 2 3 4 5 6 7 8 9 10 11	ref. pres. (Pa) ramp factor 2600 2 rise time (s) decay time (s)
Reed parameters Surf. Area (m^2) Freq. (rad./s) 0.000146 23250 Mass (kg) Damping (1/s) 3.372e-006 3000	Eq. disp. (m) 0.0004 Chan. width (m) 0.01 300	n 1 0.01 0.1
Tube Parameters wave speed (m/s) 340 0.664	Bore profile type	freq.(Hz) depth 3 0.02
	right/left area bell fraction 16.6 0.328	Output Compute and Play Sound Play again
		Timer on
☐	∩ 6	S. Bilbao, University of Edinburgh
Pos (0-1) rad. (m) Hole 1 0.6 0.005	depth (m) Time (s) 0.003 Image: Event 1 1	Hole # final sta duration
	0.003 Verent 2 1.5	2 0 0.01

Sound Examples

- Clarinet:
- Saxophone:
- Multiphonics/squeaks:

GE

Conclusion

Disadvantages:

Costs more to compute than a typical waveguide model (but still not much!)

Advantages:

- Bore modeling becomes trivial...
- More general extensions possible (NL wave propagation)
- Far more design freedom that, e.g., WG/WD methods