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Webster’s Equation
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 Usual starting point for wind instrument models (and speech): an acoustic
tube, surface area S(x) :
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 Ψ(x,t) related to pressure p(x,t) and volume velocity u(x,t) by:

 Under various assumptions, velocity potential Ψ(x,t) satisfies:



Single Reed Model
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 A standard
one-mass
reed model:
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Linear oscillator terms Collision term Driving term

Mouthpiece pressure drop

Flow nonlinearity

Flow conservation

Flow induced by reed
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Bore coupling

 A driven oscillator:



Radiation Boundary Condition

 At the radiating end (x=L), an approximate boundary condition is
often given in impedance form:

 Models inertial mass and loss.
 BUT: not positive real  not passive.
 A better approximation (p.r., passive):

 When converted to the time domain:
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Finite Difference Scheme
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 Sample bore profile
at locations
x = lh, l = 0,…,N

 h = grid spacing

 Introduce grid
function Ψ, at
locations
x = lh, l = 0,…,N
t = nk, n = 0,…

 k = time step

 Here is one particular finite difference scheme (explicit, 2nd order accurate)

 Courant number λ defined as λ=ck/h

0 1 2 NN-1



Stability and Special Forms
 Can show (energy methods) that scheme is stable, over interior, when
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 When λ = 1, scheme simplifies to:

…equivalent to Kelly-Lochbaum scattering method

 When λ = 1, and S = const., scheme simplifies further:

…equivalent to digital waveguide (exact integrator)



Stability Condition and Tuning
 Stability condition requires ckh !"#1$

 For simplicity, would like to choose an h which divides L evenly, i.e.,

NNhL integerfor/ =

 Not possible for waveguide/Kelly-Lochbaum methods --- h=ck. Result:
detuning, remedied using fractional delays.

 In an FD scheme, can choose h as one wishes. Result: very minor
dispersion/loss of audio bandwidth. Numerical cutoff:
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 Worst case near  fs = 44.1
kHz, typical wind
instrument dimensions:

kHz20!cf

Hz44037!sf

Hz44036!sf



Accuracy—Modal Frequencies
 Numerical dispersion---normally a problem for FD schemes!
 This is a 2nd order scheme---might expect severe mode detunings…
 Not so…

- 0.773142.633144.0412
0.00705.55705.553
0.65413.95413.792
0.86141.96141.891

cent diff.Freq. (exact, Hz)Freq. (FD, Hz)Mode
#

E.g., for a lossless
clarinet bore…

…calculated modal
frequencies are nearly
exact, over the entire
spectrum



Accuracy—Transfer Impedance
 Even under more realistic conditions (i.e., with radiation loss), behaviour is

extremely good:
 Transfer impedance (mouth  radiating end):

Red: exact (calculated at 400 kHz)              Green: calculated at 44.1 kHz

 Upshot: FD approximation converges very rapidly…
 …“perceptually” exact, even at audio sample rate.
 No compelling reason to look for better schemes…



Explicit Updating
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Mouthpiece pressure drop

Flow nonlinearity

Flow conservation

Flow induced by reed
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Bore coupling

 Discretization of oscillator:
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Parameterized implicit
discretization

Implicit
discretization

Exact integrator
possible for linear part
of oscillator…

Explicit update…

 Implicit discretization  excellent stability properties
 Unknowns always appear linearly…



Explicit Updating

m
p y

BoreReed stateExcitation

!p in
u !

1+n

1!n

n

1!" N
!

Virtual grid
point

Radiating
end point

 Can find a flow path in order to update all the state variables (sequentially)

 Similar to setting of “reflection-free port resistances” in linear WDF networks…
 …but more general.



Note on Stability
 The scheme for the bore + bell termination, in isolation, is guaranteed stable.
 Situation more complicated when reed mechanism is connected.
 Consider system under transient conditions (input pm = 0):
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Total
energy

Stored
energy
in bore

Stored
energy
at bell

Stored
energy
of reed

Initial
stored
energy

 System is dissipative  state bounded for any initial conditions.

Total
energy

Initial
stored
energy

Energy
supplied

externally

 Under forced conditions, would like:

Unfortunately
this is false…

 Upshot: impossible to bound solutions of model system under forced
conditions

 Best one can do: ensure energy balance is respected in FD scheme…

True…



Computational Cost

   For a given sample rate fs, bore length L, and wave speed
c, the computational requirements are:

 2Lfs/c units memory
 4Lfs 

2
 /c  6Lfs 

2
 /c    flops/sec.

   …independent of bore profile. Reed/tonehole/bell
calculations are O(1) extra ops/memory per time step

Example: clarinet  15 Mflops/sec., at  fs = 44.1 kHz

Not a lot by today’s standards…far faster than real time.



Toneholes
 Not difficult to add in tonehole models:
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 Can add terms pointwise to Webster’s equation: State of tonehole q

Physical parameters
defining tonehole q

 In FD implementation, can be added anywhere along bore (Lagrange interpolation):



GUI: Matlab



Sound Examples

 Clarinet:
 Saxophone:
 Multiphonics/squeaks:



Conclusion

 Disadvantages:
 Costs more to compute than a typical

waveguide model (but still not much!)
 Advantages:

 Bore modeling becomes trivial…
 More general extensions possible (NL wave

propagation)
 Far more design freedom that, e.g., WG/WD

methods


