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Webster’s equation
Finite difference schemes
Efficiency, accuracy and stability
Sound examples: Single reed wind instruments
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Webster’s Equation
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 Usual starting point for wind instrument models (and speech): an acoustic
tube, surface area S(x) :
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 Ψ(x,t) related to pressure p(x,t) and volume velocity u(x,t) by:

 Under various assumptions, velocity potential Ψ(x,t) satisfies:



Single Reed Model
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 A standard
one-mass
reed model:
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Linear oscillator terms Collision term Driving term

Mouthpiece pressure drop

Flow nonlinearity

Flow conservation

Flow induced by reed
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Bore coupling

 A driven oscillator:



Radiation Boundary Condition

 At the radiating end (x=L), an approximate boundary condition is
often given in impedance form:

 Models inertial mass and loss.
 BUT: not positive real  not passive.
 A better approximation (p.r., passive):

 When converted to the time domain:
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Finite Difference Scheme
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 Sample bore profile
at locations
x = lh, l = 0,…,N

 h = grid spacing

 Introduce grid
function Ψ, at
locations
x = lh, l = 0,…,N
t = nk, n = 0,…

 k = time step

 Here is one particular finite difference scheme (explicit, 2nd order accurate)

 Courant number λ defined as λ=ck/h

0 1 2 NN-1



Stability and Special Forms
 Can show (energy methods) that scheme is stable, over interior, when
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 When λ = 1, scheme simplifies to:

…equivalent to Kelly-Lochbaum scattering method

 When λ = 1, and S = const., scheme simplifies further:

…equivalent to digital waveguide (exact integrator)



Stability Condition and Tuning
 Stability condition requires ckh !"#1$

 For simplicity, would like to choose an h which divides L evenly, i.e.,

NNhL integerfor/ =

 Not possible for waveguide/Kelly-Lochbaum methods --- h=ck. Result:
detuning, remedied using fractional delays.

 In an FD scheme, can choose h as one wishes. Result: very minor
dispersion/loss of audio bandwidth. Numerical cutoff:
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 Worst case near  fs = 44.1
kHz, typical wind
instrument dimensions:

kHz20!cf

Hz44037!sf

Hz44036!sf



Accuracy—Modal Frequencies
 Numerical dispersion---normally a problem for FD schemes!
 This is a 2nd order scheme---might expect severe mode detunings…
 Not so…

- 0.773142.633144.0412
0.00705.55705.553
0.65413.95413.792
0.86141.96141.891

cent diff.Freq. (exact, Hz)Freq. (FD, Hz)Mode
#

E.g., for a lossless
clarinet bore…

…calculated modal
frequencies are nearly
exact, over the entire
spectrum



Accuracy—Transfer Impedance
 Even under more realistic conditions (i.e., with radiation loss), behaviour is

extremely good:
 Transfer impedance (mouth  radiating end):

Red: exact (calculated at 400 kHz)              Green: calculated at 44.1 kHz

 Upshot: FD approximation converges very rapidly…
 …“perceptually” exact, even at audio sample rate.
 No compelling reason to look for better schemes…



Explicit Updating
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Mouthpiece pressure drop

Flow nonlinearity

Flow conservation

Flow induced by reed
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Bore coupling

 Discretization of oscillator:
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Parameterized implicit
discretization

Implicit
discretization

Exact integrator
possible for linear part
of oscillator…

Explicit update…

 Implicit discretization  excellent stability properties
 Unknowns always appear linearly…



Explicit Updating
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 Can find a flow path in order to update all the state variables (sequentially)

 Similar to setting of “reflection-free port resistances” in linear WDF networks…
 …but more general.



Note on Stability
 The scheme for the bore + bell termination, in isolation, is guaranteed stable.
 Situation more complicated when reed mechanism is connected.
 Consider system under transient conditions (input pm = 0):
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Total
energy

Stored
energy
in bore

Stored
energy
at bell

Stored
energy
of reed

Initial
stored
energy

 System is dissipative  state bounded for any initial conditions.

Total
energy

Initial
stored
energy

Energy
supplied

externally

 Under forced conditions, would like:

Unfortunately
this is false…

 Upshot: impossible to bound solutions of model system under forced
conditions

 Best one can do: ensure energy balance is respected in FD scheme…

True…



Computational Cost

   For a given sample rate fs, bore length L, and wave speed
c, the computational requirements are:

 2Lfs/c units memory
 4Lfs 

2
 /c  6Lfs 

2
 /c    flops/sec.

   …independent of bore profile. Reed/tonehole/bell
calculations are O(1) extra ops/memory per time step

Example: clarinet  15 Mflops/sec., at  fs = 44.1 kHz

Not a lot by today’s standards…far faster than real time.



Toneholes
 Not difficult to add in tonehole models:
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 Can add terms pointwise to Webster’s equation: State of tonehole q

Physical parameters
defining tonehole q

 In FD implementation, can be added anywhere along bore (Lagrange interpolation):



GUI: Matlab



Sound Examples

 Clarinet:
 Saxophone:
 Multiphonics/squeaks:



Conclusion

 Disadvantages:
 Costs more to compute than a typical

waveguide model (but still not much!)
 Advantages:

 Bore modeling becomes trivial…
 More general extensions possible (NL wave

propagation)
 Far more design freedom that, e.g., WG/WD

methods


