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Webster’s Equation

Usual starting point for wind instrument models (and speech): an acoustic
tube, surface area S(x) : S&)

Under various assumptions, velocity potential W(x,7) satisfies:

1Ptt =’ (SIPX )x

W(x,?) related to pressure p(x,f) and volume velocity u(x,?) by:

p=plpt u=—SlI[
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Single Reed Model

A standard
one-mass
reed model:
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Radiation Boundary Condition

At the radiating end (x=L), an approximate boundary condition is
often given in impedance form:

P(s)=Z(s)U(s) Z(s) = As - Bs”

Models inertial mass and loss.
BUT: not positive real - not passive.
A better approximation (p.r., passive):
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When converted to the time domain:
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Finite Difference Scheme

Sample bore profile ¢ h
at locations Mg L]
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Here is one particular finite difference scheme (explicit, 2"d order accurate)
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Courant number A defined as A=ck/h



Stability and Special Forms

Can show (energy methods) that scheme is stable, over interior, when

A<l
When A = 1, scheme simplifies to:
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...equivalent to Kelly-Lochbaum scattering method
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When A = 1, and S = const., scheme simplifies further:
Ipln+1 _ 1},’1’1 + Ipln_l _ lpln—l

[+1
...equivalent to digital waveguide (exact integrator)
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Stability Condition and Tuning

Stability condition requires A <1 — h=ck
For simplicity, would like to choose an 4 which divides L evenly, i.e.,

L/h=N for integer N

Not possible for waveguide/Kelly-Lochbaum methods --- A=ck. Result:
detuning, remedied using fractional delays.

In an FD scheme, can choose / as one wishes. Result: very minor
dispersion/loss of audio bandwidth. Numerical cutoff:

f=Lisint()s L
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Worst case near f. =44.1 :
kHZ, typ|Ca| wind f =44037 Hz =0 JHETTE
instrument dimensions: ’ *

-60

f. =20 kHz
f. =44036 Hz _ Wi

-40

-60



Accuracy—Modal Frequencies

Numerical dispersion---normally a problem for FD schemes!
This is a 2" order scheme---might expect severe mode detunings...

Not so...

E.g., for a lossless
clarinet bore...

..calculated modal
frequencies are nearly
exact, over the entire
spectrum

Mode Freq. (FD, Hz) | Freq. (exact, Hz) | cent diff.
# 4 141.89 141.96 0.86
2 413.79 413.95 0.65
3 705.55 705.55 0.00
12 3144.04 3142.63 -0.77




Accuracy—Transfer Impedance

Even under more realistic conditions (i.e., with radiation loss), behaviour is
extremely good:

Transfer impedance (mouth - radiating end):

Red: exact (calculated at 400 kHz) : calculated at 44.1 kHz

Upshot: FD approximation converges very rapidly...
...“perceptually” exact, even at audio sample rate.
No compelling reason to look for better schemes...



Explicit Updating

Discretization of oscill

ator:

Parameterized implicit

discretization

Y2y 4 ] +g7k6/n+l _yrl )+

Implicit
discretization
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Exact integrator
possible for linear part
of oscillator...

!

Explicit update...

Mouthpiece pressure drop
Pr=Pun = Diy

Flow nonlinearity

uy =a,[y" + H]"y| ps |sgn(py)

Flow conservation
n n n
uin = um _ur
Flow induced by reed
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Bore coupling
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Uy = _5_101(11’1" _lp_"l)

Implicit discretization - excellent stability properties

Unknowns always ap

pear linearly...

P+grraly+o(-y-HT') = -ap,

== Py



Explicit Updating

Can find a flow path in order to update all the state variables (sequentially)

o A Ak

n-1 o o @ o o)
Excitation Reed state Virtual grid Bore Radiating
point end point

Similar to setting of “reflection-free port resistances” in linear WDF networks...
...but more general.



Note on Stability

The scheme for the bore + bell termination, in isolation, is guaranteed stable.
Situation more complicated when reed mechanism is connected.
Consider system under transient conditions (input p = 0):

H(t)=H,,, )+ H,, () + H,,.,(t) < H(0)

Total Stored Stored Stored Initial True...
energy energy energy energy stored
in bore at bell of reed energy
System is dissipative = state bounded for any initial conditions.
Under forced conditions, would like:
Unfortunately

this is false...

energy external

Upshot: impossible to bound solutions of model system under forced
conditions

Best one can do: ensure energy balance is respected in FD scheme...



Computational Cost

For a given sample rate f,, bore length L, and wave speed
¢, the computational requirements are:

2Lf/c units memory
4Lf.?/c =2 6Lf.?/c flops/sec.

...iIndependent of bore profile. Reed/tonehole/bell
calculations are O(1) extra ops/memory per time step

Example: clarinet > 15 Mflops/sec., at f, = 44.1 kHz

Not a lot by today’s standards...far faster than real time.



Toneholes

Not difficult to add in tonehole models:
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Can add terms pointwise to Webster’s equation:
M
W, =c2(SW,), + 36— x? J
q=1
m P = AW, (x'P,t) + B¥(x'",r) g=1,....M

In FD implementation, can be added anywhere along bore (Lagrange interpolation):



GUI: Matlab
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Sound Examples

Clarinet: ¢
Saxophone:@
Multiphonics/squeaks: C@ C@



Conclusion

Disadvantages:

Costs more to compute than a typical
waveguide model (but still not much!)

Advantages:
Bore modeling becomes trivial...
More general extensions possible (NL wave
propagation)
Far more design freedom that, e.g., WG/WD
methods



