
1. Background

Compressive sensing principles are used to build the hash signature of the audio stream:

Compressive sensing allows to capture and represent signals at rates below the Nyquist frequency 

[7].

It is possible to reconstruct a signal using a limited number of non-adaptive linear random 

projections that preserve the original structure of the signal.

The signal has to be sparse or compressible (it can be represented in some basis expansion using 

only a few large magnitude coefficients).

Distributed source coding technique, widely applied to video coding [8], is used to reconstruct the 

hash signature of the audio stream at the content user side:

It is possible to perform lossy encoding with side information at the decoder. The side information 

represents a distorted version of the source, which is made available at the decoder side only.

In our approach, the original information is the hash computed from the content provider, and the 

side information consists of the hash signature computed from the audio stream received at the 

user side (which may be modified with respect to the original).

By requesting syndrome bits from the encoder, the decoder is able to correct the possibly distorted 

side information. The more the side information is distorted, the more syndrome bits are needed to 

reconstruct the original hash; if the number of requested bits exceeds some pre-specified 

threshold, we may consider the received stream too distorted and completely unauthentic.

In normal conditions, the hash reconstruction approach based on distributed source coding 

technique allows to save bits with respect to the direct transmission of the original hash from the 

content provider to the user.
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3. Experimental Results

We carried out some experiments on the first 32 seconds of Etta James’ song “At last” (sampled at 

44100 Hz, 16-bit per sample).

We set the lenght of each frame F = 11025 samples (0.25 seconds), and the number of Mel 

frequency bands U = 32;

We have a total of 128 audio frames and n = 4096 log-energy coefficients.

3 kinds of tampering applied to the original audio stream:

Time localized tampering (T): a time-limited audio fragment is mixed with the original audio stream;

Frequency localized tampering (F): a low-pass phone-band filter is applied to the entire audio 

stream;

Time-frequency localized tampering (TF): a low-pass and a band-stop filters are applied to two 

different portions of the original audio stream (see Figure b)

We evaluate the goodness of the tampering estimation by calculating the normalized MSE between 

the log-energy spectrum of the original tamper and the log-energy spectrum of the estimated one:

Results obtained using fixed bit rates for the hash (200 and 400 bps) are shown in Tables 1 and 2:

2. Description of the system

Original Content Producer side

Frame based subband log-energy extraction

The power spectrum of each non-overlapping audio frame of length F is subdivided into U Mel 

frequency subbands;

For each subband the related spectral log-energy is extracted, producing a global vector x of n log-

energy values. 

Random projections

A number of linear random projections from the vector of log-energy values is produced as           . 

( ,              );

The entries of the matrix A are sampled from a Gaussian distribution            , using some random 

seed S, which will be sent as part of the hash to the user.

Wyner-Ziv encoding

The random projections    are quantized with a uniform scalar quantizer;

Bitplane extraction is performed on the quantization bin indexes. Syndrome bits are generated by 

means of a Low-Density Parity-Check Code (LDPC);

The rate allocated to the hash depends on the expected distortion between the original and the 

tampered audio stream.

Content User side

Frame-based subband log-energy extraction

Computed on signal     using the same algorithm described above for the content producer side. At 

this step, the vector     is produced.

Random projections:

Wyner-Ziv decoding

A quantized version      of    is obtained using the hash syndrome bits and     as side information;

If the actual distortion between the original and the tampered audio stream is higher than the 

maximum distortion expected by the original content producer, the audio stream is declared to be 

completely unauthentic and no tampering localization can be provided.

Distortion estimation (perceptual SNR of the received audio stream):

Tampering estimation

An estimate of the tampering              can be obtained by solving the following undetermined 

system of linear equations (z is the quantization noise):

The optimal way for recovering e is to seek the sparsest solution of the system (l0 norm). 

Unfortunately, the problem is NP hard. However, if e is sufficiently sparse, an approximation of e

can be recovered by solving the following problem [9]:

If the error e is not sufficiently sparse, we can try to find the solution in other domains (DCT, DCT 

2D and Haar wavelet) by defining the following modified linear system:

In our scheme, we assume that the tamper is sparse in some orthonormal basis Φ, which is 

unknown. When an estimate of α is computed, we can transform back the result to the original log-

energy domain.
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Looking for a sparse tamper in other bases 

besides the canonical one (log-energy), better 

results can be achieved using the same hash 

length, as highlighted by the bold numbers in 

the tables.


