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ABSTRACT 

This paper presents a new approach to the visualization of mo-
nophonic audio files that simultaneously illustrates general audio 
properties and the component sounds that comprise a given input 
file. This approach represents sound clip sequences using arche-
typal images which are subjected to image processing filters 
driven by audio characteristics such as power, pitch and signal-
to-noise ratio. Where the audio is comprised of a single sound it 
is represented by a single image that has been subjected to filter-
ing. Heterogeneous audio files are represented as a seamless 
image mosaic along a time axis where each component image in 
the mosaic maps directly to a discovered component sound. To 
support this, in a given audio file, the system separates individual 
sounds and reveals the overlapping period between sound clips. 
    Compared with existing visualization methods such as oscil-
loscopes and spectrograms, this approach yields more accessible 
illustrations of audio files, which are suitable for casual and non-
expert users. We propose that this method could be used as an 
efficient means of scanning audio database queries and navigat-
ing audio databases through browsing, since the user can visually 
scan the file contents and audio properties simultaneously. 

1. INTRODUCTION 

Digital audio files are used widely in a variety of fields, such as 
film, television, computer gaming, radio, website design and 
audio book production. However, the query and navigation of 
audio files presents unique difficulties because of the linear na-
ture of audio. There is considerable interest in making sound 
signals visible because the human visual system can rapidly scan 
a structured page of visual information, while sound files must 
be examined one by one, with each requiring a much longer pe-
riod of the user’s attention.  For example, scanning a set of 10 
image mosaics representing audio files would require at most a 
few seconds, independent of the durations of the audio files they 
represent, while listening to each audio file sequentially would 
require the sum of the durations.  

Simply put, the objective of this work is to “view” what hap-
pens in the sound sequence. This project is a new approach to the 
visual representation of audio files as filtered mosaic time-line 
images. The resultant visualization is a composite image built 
from simple graphical elements driven by the audio data. The 
component images in the mosaics are individually retrieved for 
the sounds found in the given audio file, where the sounds are 
matched to audio in a pre-built audio-image database. The rela-
tive positions of image tiles in the resulting mosaic show the 
time sequences of their corresponding audio clips. In addition to 
identifying the component sounds, the visualization conveys 
more subtle audio features such as loudness, pitch, noise ratio, 

etc, on a sound-by-sound basis. This is achieved by mapping 
audio properties to image filtering operations.   

Figure 1 shows a simple example that characteristically depicts 
the results that can be generated by this system. When given a 
heterogeneous audio file, each single sound is extracted and 
searched for in a pre-built audio-image database to determine 
what kind of sound it is. Then an image is generated based on its 
audio features and the template image that represents this kind of 
sound in the database. When all the images for the audio clips 
are generated, these images are combined together seamlessly 
according to the audio clips’ time sequences using a gradient-
domain image compositing method. Using the resulting mosaics, 
the viewer is able to navigate amongst audio files. In addition, 
the viewer is able to ascertain certain audio features within the 
image results (e.g. noise ratio and power) at a glance, by the 
filtered component images.  

2. RELATED WORK 

Sounds maybe visualized using existing methods such as oscil-
loscopes in time domain analysis and spectrograms in frequency 
domain analysis. The oscilloscope, as shown in Figure 2 (left), is 

 
Figure 1. Visualization of a heterogeneous audio file. 

   
Figure 2. Oscilloscope (left) and spectrogram (right) for 
a sound of cat meow. 
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a very common representation that expresses the audio signal by 
amplitude along a time axis. This might be considered the most 
direct visualization as it simply depicts the wave shape along the 
time axis. Conversely, a spectrogram represents the audio signal 
in the frequency domain, as shown in Figure 2 (right). The mag-
nitudes of the windowed discrete-time Fourier transform are 
shown against the two orthogonal axes of time and frequency. 
For comparison, both Figure 2 (left) and (right) represent the 
same input sound of a cat’s meow. 

These visualizations are primarily targeted for scientific or 
quantitative analysis, and may not offer much insight for non-
expert and casual users. For example, it would be difficult if not 
impossible for most users to determine that the graphs (in Figure 
2) represent a cat’s meow although they may be able to deter-
mine for example the average amplitude of the sound. Going 
beyond simple identification would be even more challenging.  

There are other visualizations that are derived from note-based 
or score-like representations of music, typically from MIDI note 
events [1]. Malinowski [2] introduced “The Music Animation 
Machine" (MAM), that displays the music's structure with bars 
of color representing the notes of the music. Smith and Williams 
[3] used standard music notation to visualize music by examin-
ing a note-based or score-like representation of a song. A trained 
musician may achieve an understanding of how a musical com-
position will sound but unfortunately, most people cannot read 
music in this way. More recently, Bergstrom, Karahalios and 
Hart [4] provided a new method for visualizing the structure of 
music. Viewers can grasp the music structure by a salient image 
of harmony as the music structure changes over time. All these 
methods are intended for knowledgeable users and are strictly 
designed to visualize musical sound. 

Audio segmentation is also related to the present work and is 
itself a widely researched topic. Commonly, a segmentation 
technique applies only to a specific application and cannot there-
fore be generalized. Some techniques are designed for audio 
samples that contain only one type of sound while others can be 
used for audio samples containing heterogeneous sound types. 
Existing methods can also be categorized into time-domain algo-
rithms, frequency-domain algorithms or a hybrid of the two. 
These methods can also be further separated into supervised and 
unsupervised approaches depending on whether the system re-
quires a training set to learn from, prior to audio segmentation. 
Segmentation approaches are also defined as model-based or 
non-model methods.  

The work of Panagiotakis and Tziritas [5] is a time-domain 
approach as it uses the root-mean-square (RMS) and Zero Cross-
ing Rate (ZCR) to discriminate speech from music. Tzanetakis 
and Cook [6] present a general methodology for temporal seg-
mentation based on multiple features. In model-based approach-
es, Gaussian mixture models (GMM) [7], [8], Hidden Markov 
Models (HMM) [9], Bayesian methods [10], and Artificial Neur-
al Networks (ANN) [11] have all been applied to the task of 
segmentation. Unsupervised segmentation [12] and [10] does not 
require training sets but instead test the likelihood ratio between 
two hypotheses of change and no change for a given observation 
sequence. On the other hand, some  systems  must be trained 
before segmentation [9],[7]. 

Automatic audio classification offers ways to efficiently navi-
gate audio databases and provide the necessary control for search 
and retrieval within those same databases. Sounds have been 
classified by genre [13], [14], [15], by mood or emotion [16], 

[17], [18], [19], by instrumentation [20], or by segmentation and 
classification of an audio stream into speech, music, environmen-
tal sound and silence [21], [22]. 

There are many algorithms that have been applied to audio 
classification such as Nearest Feature Line [23], Rectified Near-
est Feature Line Segment (RNFLS), Nearest Neighbour (NN), k-
Nearest neighbor (k-NN), GMM, probabilistic neural network 
(PNN), Nearest Center (NC) and Support vector machines 
(SVMs) [24], [18]. A number of studies have been undertaken 
that compare the accuracy between these classification methods 
[24], [23], [25]. SVMs, together with a binary tree recognition 
strategy, a distance-from-boundary metric, and suitable feature 
combination selection, can obtain an error rate of 10% [24]. The 
Nearest Feature Line method has also been reported to achieve 
satisfactory accuracy (9.78% error) if a suitable feature combina-
tion is employed [23].  

The present work defines a general method for audio visuali-
zation, which is more accessible than the existing methods be-
cause the filtered images used in the application are directly 
representative of sounds in the real world. 

3. VISUALIZATION FRAMEWORK OVERVIEW 

Figure 3 shows the framework of our audio visualization system, 
which contains a pre-built audio-image database and three mod-
ules: Segmentation, Classification and Image Generation.  

The input to the system is a single audio file, which may con-
tain a single sound or multiple sounds. The Segmentation module 
separates the input audio into audio clips, where each contains a 
single sound. Then each audio clip is classified by the Classifica-
tion module, which retrieves the template images for the class 
that each audio clip belongs to. The Image Generation module 
then generates a distinctive image based on the computed audio 
features found in the sound clip and its class template image.   

The output of the system is an image mosaic, which is com-
posed of all images produced by the Image Generation module, 
according to the sequence order and duration of audio clips. 
From the mosaic viewers can determine what sounds exist within 
a given audio file and can scan visual cues which help the user to 
determine each clip’s audio features. 

 
 

 
Figure 3.  Framework of the audio visualization system. 

 



Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008 

 DAFX-3 

3.1. The Audio-Image Database 

The audio-image database is a key component of the system. 
Sets of audio-image pairs are stored in the database, together 
with their classification and training information. This comprises 
a library that associates sounds with archetypal images. 

Figure 4 illustrates a class in the database where each class, 
based upon a fixed and pre-determined ontology, contains a sin-
gle manually chosen template image, shown top-left. The re-
maining images that are associated with each audio file in the 
class are automatically generated by the system based on the 
template and each file’s audio properties. The differences in 
audio features between the audio files in a class determine the 
different visual features of their corresponding images. As new 
audio files are added to the database, the audio is analyzed and a 
new representative image is produced.  

A set of audio files known as the “Muscle Fish” database is 
widely used as a standard non-musical sound database for the 
development of audio matching and classification algorithms 
[26], [23]. There are 16 classes and 410 audio files in the Muscle 
Fish database, as described in Table 1, with Nc being the number 
of sounds in each class. 

The performance of the Segmentation and Classification mod-
ules were initially evaluated using the Muscle Fish  database as a  

Table 1 & 2: MuscleFish and VisualData Ontological Structures 
 

Muscle Fish Classes  Nc VisualData Class Nc 
Alto trombone 13 Bee 36 
Animals 9 Bell 14 
Bells 7 Bird 15 
Cello (bowed) 47 Cat 45 
Crowds 4 Cow 79 
Female Voice 35 Duck 15 
Laughter 7 Dog  13 
Machines 11 Frog 99 
Male Voice 17 Rooster 23 
Oboe 32 Alto trombone 13 
Percussion 99 Cello (bowed) 47 
Telephone 17 Oboe 32 
Tubular Bells 20 Tubular Bells 20 
Volin (bowed) 45 Volin (bowed) 45 
Volin (pizz) 40 Volin (pizz) 40 
Water 7 Telephone 66 

Total 410 Total 602 

benchmark. However, Muscle Fish is not entirely suitable for our 
application because some of the audio files are too broadly clas-
sified. In the “animals” class, for example, there are 9 sounds 
that belong to 6 different kinds of animal namely: cats (kittens), 
chickens, dogs, ducks (and geese), horses and pigs. Such a set 
cannot be meaningfully represented by single archetypical tem-
plate image. Therefore in order to fully test our time mosaic 
generation we built a new database named VisualData (in Table 
2) that is based on the Muscle Fish database. The VisualData 
training set has 602 audio files classified at a more suitable gra-
nularity. A discussion of our experiments based on these data-
bases is discussed in the following section. 
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Figure 5.  Segmentation module framework. 

 
Figure 6.  Segmentation result for long and short signals. 

4. AUDIO SEGMENTATION AND CLASSIFICATION 

The first module in our system pre-processes the input audio and 
performs any required segmentation. The goal of the audio seg-
mentation process is to determine the beginning and ending posi-
tions (end-points) for each sound if there is no overlap between 
the connected audio clips. Where overlapping regions exist, the 
goal becomes the identification of the overlapping areas between 
the connected audio clips.   

General audio files may have a short period of silence between 
sounds in the cases where sound clips do not overlap. Therefore 
silence detection can often be used to separate sounds in the 
same file. Alternatively, when we cannot rely on the presence of 
silence, we require a more sophisticated approach to separation 
of the sound clips. Because a sound tends to be homogeneous, in 
terms of its audio features, any abrupt changes in audio features 
may indicate the start of a new sound clip. We can therefore 
exploit time-domain features to detect silences, and then use 
frequency domain features to separate any remaining sound 
clips. Figure 5 shows the stages of this segmentation process.    

Our segmentation method is designed for both long and short 
duration clips. Figure 6 shows results obtained by our segmenta-
tion module. In this example, there are 5 audio clips. The 1st and 

Figure 4.  A class in the database. 
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Figure 7.  Legend of visualized audio features. 

5th have a relatively long duration and the rest are relatively 
short. The resulting segmentation is demarked with red lines over 
the original waveform. After segmentation a series of sound clips 
has been generated where each sound clip is a segment of audio, 
containing a homogeneous set of features for each frame.   

Once segmentation has been achieved and the set of audio 
clips has been determined, each clip is then classified and subse-
quently stored in the database using the classification module 
(Figure 3). This module is concerned with determining the clips 
classification based on a comparison of existing sound files in 
the database using extracted audio features. It is important to 
obtain an accurate classification in order for the visualization to 
be meaningful. For each audio clip output from the segmentation 
module, a Nearest Feature Line (NFL) based classification is 
performed which has been reported to give the best classification 
results  to date for audio file classification [6].  

In this classification method an audio feature set is extracted 
which is composed of the means and standard deviations of the 
Total Spectrum Power, Subband Power, Brightness, Bandwidth 
and Pitch, as well as 8 order Mel Frequency Cepstral Coeffi-
cients (MFCCs).   Details on the computation of these features 
can be found in [6]. This feature set is then used to determine 
which class an audio file is closest to and should belong to. 

Our experiments using both the MuscleFish and the VisualDa-
ta databases, achieved a similar accuracy for classification and 
segmentation. Using the Muscle Fish data we achieved a 90% 
accuracy of classification and using the VisualData set we 
achieved a similar result of 91%. All matching results in this 
paper were obtained using leave-one-out cross-validation. 

The classification system we have developed is currently be-
ing extended so that it is capable of identifying new classes of 
audio files. However, a full discussion of our adapted NFL algo-
rithm and evolving classification system for audio files is outside 
the scope of this paper and is to be published elsewhere. 

5. IMAGE TILE GENERATION 

Following audio segmentation and classification, the template 
images in the database are used to visualize the characteristics of 
the input audio. The function of this module is to generate im-
ages that clearly represent the embedded audio clips, while in-
corporating as many useful audio features as possible in the form 
of image filters. 

Our system computes 36 audio features in order to perform 
analysis, segmentation and classification. Some of these features 
such as pitch and power are easily perceived by humans while 
others which have no metaphorical analogues in human audio 
perception are strictly used for audio analysis such as bandwidth 
and MFCCs. We therefore map only a subset of these audio fea-
tures to image filtering operations. The image processing opera-
tions are sufficient to produce distinctive images for individual 
audio files within the same class.   

5.1.  Interpretable Audio Features 

There are many audio features that relate to the way humans 
perceive sound, such as pitch, power and signal-to-noise ratio. 
Here we are visualizing such features so that viewers can grasp 
the character of the audio. We now discuss each of the audio 
features that we have incorporated: 

1) Power is perhaps the simplest feature of an audio clip. It is 
related to the perceived loudness of a sound. The higher the 
volume (amplitude), the higher the power of the audio, and the 
louder a human will understand it to be. 

2) Pitch is another feature that listeners can readily comprehend. 
In the field of music analysis, pitch perception is often thought 
of in two dimensions, pitch height and pitch chroma [27]. But 
for casual users, it may be sufficient to know that an audio clip 
with a high pitch sounds high and shrill, while low pitched 
sound is deep and soft [28]. Acoustics research indicates that 
pure sinusoids sound sharp and very low frequencies sound 
flat, compared to a purely logarithmic relationship [29]. As 
our aim is to let viewers grasp the difference between pitches 
by a glance, we need only visualize differences within classes. 
The precise values of the pitches are not required. 

3) The Signal-to-Noise Ratio (SNR) can also be understood by 
the human ear.  We understand it as the clarity of the signal. 
For example, poorly recorded audio, or audio with significant 
background noise will have a low signal-to-noise ratio. 

Correspondingly, there are visual features that may be mapped 
to the described audio features, such as image brightness and 
contrast, the color-depth and signal-to-noise ratio in an image. 

5.2.  Mapping Audio Features to Visual Features 

We map the audio features to a set of image processing opera-
tions as shown in the legend in Figure 7.  These are the systems 
default audio-to-visual feature mapping, though it would be tri-
vial to allow the user to explicitly over-ride the default mapping 
with his or her preferences. We first describe the mappings in 
general terms before defining them explicitly.  

The top row illustrates how the audio SNR affects the visual 
noise ratio. The blue signal under the row of images denotes the 
pure audio signal for each sound clip. The red wrapping around 
the signal denotes noise added to the clear audio signals with 
varying degrees of white Gaussian noise added. The audio files 
generated become increasingly “noisy” from left to the right with 
the far left image representing the pure starting audio file and, 
accordingly, the images become noisier to represent this change 
in the signal to noise ratio of the input audio file.  

Brightness values for the template image are also linearly 
scaled to fit the pitch of an input audio as is shown in the second 
row of Figure 7. The template image represents an audio clip 
with the  average  pitch of the class.   The audio sounds high and  
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Figure 8.  Algorithm to represent the audio noise ratio.   

shrill when the pitch is high, so the image is set to be brighter for 
such sounds and darker for lower pitched ones. The pitch com-
parison is strictly within classes. For example, the pitch of a 
bees’ buzz is always higher than an oboe’s sound, but it would 
not convey additional information to set the brightness of bees to 
always be very high and the brightness of oboes to be always 
very dark. Therefore, the visual representation of pitch is made 
to be relative within the same class, meaning that the viewer can 
interpret a bright picture of a dog as being a relatively high 
pitched dog bark.   

Power represents the degree of “loudness” or the volume of a 
sound. The higher the power value, the more clearly it can be 
sensed. We have chosen to map the power of an audio clip to the 
color depth of the image. The metaphor employed to illustrate 
this is that as a sound’s power fades, so does the color in an im-
age. The 3rd row of Figure 7 shows this relationship. 

In addition to the above relationships, the size of an image is 
used to represent the duration of the audio as shown in the lowest 
row of Figure 7.  Suppose the template image I represents class 
A, which audio clip a belongs to. The database contains all audio 
clips Ai belonging to the same class A and their audio features we 
denote as ivAr . The audio features for the given audio clip 
are var . The steps of generate an image Ioutput for given audio a 
are detailed in the following subsections. 

5.2.1. The Audio-Image Database 

The audio features we used are avpitch, avpower, avNSR and its dura-
tion. Signal-to-noise ratio is a concept defined as the ratio of a 
signals power to the noise power corrupting the signal. It com-
pares the level of a desired signal (such as music) to the level of 
background noise. The higher the ratio, the less obtrusive the 
background noise is. Here we use its inverse (Noise-signal-ratio) 
avNSR to represent the noise level of the background to audio. 

5.2.2. Calculating the brightness scale parameter 

The brightness of the template image is used as the standard to 
represent the median pitch of a class. When the pitch of the given 
audio is higher than the median pitch of the class, the resulting 
image is brighter than the template image. For the audio with 
pitch lower than the median pitch of the class, the resulting im-
age is darker than the template. The brightness is calculated as 
follows: 

⎪
⎩

⎪
⎨

⎧

−

×

≥
−

−×

=
−

otherwise
vAvmedianA

vavmedianA

vmedianAvaif
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pitchpitch
pitchpitch

pitchpitch

rr

rr

rr
rr

rr
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)(75.0

max

)(75.0

(1) 

Where avpitch, is the pitch value of audio clip a; medianAvpitch, 
maxAvpitch, and minAvpitch, are the median, maximum and mini-
mum values of the pitch values in class A. The adjusted image is 

then calculated as Ioutput=I×Brightness, with the adjustment made 
within HSV color space. 

5.2.3. Calculating the color depth parameter 

The ColorDepth scale is calculated in 3 stages: 

1)   The audio clip is normalized to set the maximum of ampli-
tude value equal to 1, producing Normal(a). Then the power 
value is calculated as max avpower.  

2)  Normal(a) is scaled to 0.01×Normal(a) calculate the power 
value as min avpower. This value is chosen empirically given 
that small amplitude is not easily heard by the human ear.   

3)  The color depth ranges from a maximum of 28 to a mini-
mum of 22. The color depth scale is calculated as: 

  
powervaminpowervamax

powervaminpowerva
62

2ColorDepth
rr

rr

−

−
×+

=
                 (2) 

A new index image, Ioutput, is generated by using minimum vari-
ance quantization on ColorDepth as calculated in sect. 5.2.2. The 
number of colours in the new index image is at most ColorDepth. 

5.2.4. Representing the audio noise-to-signal ratio 

We designed three algorithms for representing different levels of 
Noise-to-Signal Ratios (NSR) from very clean to very noisy, as 
shown in Figure 8. Note that aNSR is the NSR for audio clip a. To 
represent the NSR of a given audio, not only is independent 
Gaussian noise added to the template image, but also white point 
noise for very noisy audio files. Furthermore, a degree of blur-
ring is introduced for extremely noisy audio files. Each of the 
three filtering processes is calculated as follows: 

1)  Independent white Gaussian noise is added to Ioutput. If aNSR 
is less than the maximum NSR maxANSR in the class it be-
longs to, it is the only form of visual noise that is added. 
The white Gaussian noise is zero-mean, with a variance of:  

                         
NSRva

NSRva
NoiseScale r

r

max15.0 ×=
                  (3) 

2)  After adding independent white Gaussian noise, white 
points are added when aNSR is between 1 to 1.5 times max-
ANSR. The number of white points is defined by:  

                       
NSRvA

NSRvASNRva
rPointNumbe r

rr

max5.0

max
1.0 ×

−
×=              (4) 

3)  The image is blurred with 7 * 7 Gaussian low-pass filter if 
aNSR is larger than 1.5 * maxANSR.    

Together, the three filters introduce a wide range of noise distor-
tion in the final image. 

 
Figure 9.  Background texture generation. 
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5.2.5. Resizing the output image by audio duration 

Image size is used to represent the duration of the audio clip. The 
longer the audio lasts, the larger its image size. In order to be 
able to display multiple timeline mosaics simultaneously, we set 
maximum width of component images to 512 and the smallest to 
128 pixels. If the duration of a given audio is less than all the 
audio files in its class                                  , the width of its im-
age tile is set to 128 to make sure the image is sufficiently clear. 
When the duration of a given audio clip is longer than all audio 
files, then the image is set to 512. Otherwise, the image size is 
scaled linearly between the smallest and largest size based on the 
audio’s duration. After these five stages, an image tile is generat-
ed to represent the given audio clip. All the image tiles are gen-
erated independently. 

5.3. Mosaic Time-Line Generation 

It is not practical to assume that all audio clips have the same 
length in a general audio file. Constructing a blended image mo-
saic is therefore appropriate since the image sizes will vary, giv-
en that embedded audio clips are of varying lengths. Blended 
image mosaics solve this problem since we can embed smaller 
images into a larger image background. 

Poisson image editing [30] is an effective approach for seam-
less image composition in the gradient domain. The new image 
is created by pasting a region from a source image onto a target 
image. To construct a time-line mosaic from the component im-
ages Poisson image editing [30] is employed to fuse the separate 
images together without significantly altering the content of each 
region.  

The optimization process seamlessly inserts new content into a 
subset, Ω, of an existing image, h. It computes a new image, f, 
whose gradient,   f, within Ω is closest to the gradient   g, taken 
from a second image, g. The original boundary, ∂Ω, of region Ω 
from h is also used as a constraint to ensure that the region Ω 
blends with the surrounding image, h. The final image constrains 
an interpolation of the boundary conditions, ∂Ω, inwards while 
conforming to the spatial changes of the guidance field from g as 
closely as possible within Ω. The minimization problem is writ-
ten as: 

                          ∫∫
Ω

∇−∇
2

f
gfmin with Ω∂Ω∂

= hf                (5) 

The reader is directed to [30] for the discretization of the prob-
lem and for suggested iterative solvers. 

For our application, the output image is generated based on 
rectangular images of different sizes. The challenge is to merge 
different-size images without significant information loss in any 
of the component images that form the final mosaic. 

When the image tiles within the same mosaic are not the same 
size, this creates gaps in the mosaic at the top and bottom of the 
smaller tiles, which must be padded in an unobtrusive way. To 
achieve this we follow the stages depicted in Figure 9 to generate 
the final image. In this mosaic there are three tiles (A, B and C).  

Tile A does not require padding and is placed directly into the 
output mosaic. Tiles B and C are smaller and require varying 
degrees of padding. For this, the largest tile (A) is selected to 
generate a seamless background texture to pad the smaller tiles. 
As most of the important information within our archetypal im-
ages is in the center, we conservatively scale padding image A to 
90% of its original size and integrate the result into the original 

tile A with Poisson blending to generate additional, low-content 
padding. This process repeats 10 times until the final image A* 
has the same size as the original image A, but with its content 
comprised of edges from the original image.   

The width of the background texture image A* is then scaled 
to fit the width of each image tile (see note (2) in Figure 9). The 
A1* is used for the background texture for image B and the A2* 
is used for C. Tile B is then merged into the middle of A1* with 
Poisson blending to generate image tile B’. When all the image 
tiles are padded, they are merged seamlessly by Poisson image 
editing in order of their time sequences. 

6. EXPERIMENTAL RESULTS 

We now discuss a set of experimental results. The input audio of 
the first example includes a long bird’s sound, 3 short dog barks 
and a relatively long cat’s meow, as shown in different colors in 
the bottom of Figure 10. Note that the power or amplitude of the 
sounds cannot be read directly from the signal at the bottom of 
Figure 10 because the audio clips are normalized to show their 
shapes. This is necessary for audio clips with small amplitudes. 

After segmentation, the input audio file is separated into 5 au-
dio clips each containing only one sound. The three dog’s barks 
are separated into 3 clips each containing only one sound. After 
classification, we know which classes the audio clips belong to, 
and have the template images for each audio clip. A result gener-
ated based on these template images is shown in Figure 10. This 
result indicates what sounds are included in the given audio file, 
their duration, but have not been subjected to image filtering. 

Figure 11 is a result generated based on both the template im-
age and the audio features of each audio clip. Comparing Figure 
10 (without filtering) and Figure 11 (with filtering) we can see 
that the cat meow in the given audio is very noisy because the 
tile is quite noisy and blurry. The noise ratio of dog’s sound is 
lower compared with the cat’s sound and the sound of the bird 
has the lowest noise ratio of the three.  

According to the legend in Figure 7, from the ColorDepth and 
brightness in the Figure 11, we can read that the power of the 
bird’s sound is relatively low and its pitch is relatively high 
compared with most audio files in the same class. Comparing 
Figures 11 and 12, one can easily determine information such as 
which audio clip is noisier, which has a higher pitch and which 
has more power value. Figures 13 and 14 show two further ex-
amples of randomly generated audio files, and Figure 15 shows 
an example with 5 detected sound clips. Figure 17 gives an ex-
ample for random generated audio for music, which contains 3 
music clips: oboe, trombone and violin. 

 

 
Figure 10.  Bird-dog-cat example without  filtering. 

durationduration vAva rr min≤  
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Figure 11.  Bird-dog-cat example with filtering. 

 

 
Figure 12.  Filtered bird-dog-cat example with different features. 

 
Figure 13.  Frog-telephone-rooster example. 

 
Figure 14.  Bee-Cow-Rooster example. 

 
Figure 15. Results with 5 images. 

 

 
Figure 16. Bird-dog-cat example with alternate template images. 

 
Figure 17. Oboe-trombone-violin. 

7. LIMITATIONS 

There remain some limitations of our system, which may lead to 
spurious results under certain conditions. The template images of 
the database partly determine the quality of the final result. The 
requisites for a good template image include: the color and con-
trast of the image, the position of important information and 
whether the image can completely describe the class it 
represents. Figure 16 is an image result for the same sound but 
with different template images for the classes in VisualData. In 
this result, because the most important information (the dog) of 
the template image of class “dog bark” is very close to the left 
edge, part of the audio clip is not clearly represented.  

The accuracy of visualizing a given sound with time mosaics 
also depends on the quality of the pre-built database, the accura-
cy of audio segmentation and classification. If given a sound 
which contains any audio clip doesn’t belong to any class of the 
database, the system cannot recognize it and does not yet have 
the ability to notify the user about the accuracy of audio segmen-
tation and classification.  However, as noted previously, we are 
currently augmenting our system to handle this issue.  

Figure 18 illustrates a limitation in our audio processing me-
thod. The sound file contains a cat-bird-dog sequence of sounds. 
The bird sound in this file has amplitude that is too low for our 
segmentation method to detect and results in a time mosaic with 
only 2 component images. If the amplitude of the bird sound in 
this file is increased by a factor of 2 then our segmentation me-
thod detects the bird sound and accurately produces a time mo-
saic with 3 component images (Figure 19) 

Another possible source of error can occur in situations where 
sounds overlap. Figure 20 shows an audio signal that consists of 
a cat’s meow and a bird sound in which there is a period of over-
lap between them. The segmentation failed to separate the 2 
sounds, resulting in the sound file being treated as a single sound 
and classified as a rooster for which a single image was pro-
duced.  
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Figure 18.  Three sounds misrepresented as two images. 

 
Figure 19. Three sounds correctly represented as three images. 

 
Figure 20. Overlapping audio signals producing an incorrect 

result. 

8. CONCLUSIONS AND FUTURE WORK 

This paper presents a novel approach to visualizing a given audio 
file with time mosaics, constructed from a pre-built audio data-
base. The mosaics provides produce a sequence of images seam-
lessly joined together using the Poisson image editing method. 
Each filtered image tile in the mosaic represents a single mono-
phonic sound and its features, in the given input audio. We argue 
that the system would provide a useful means to quickly scan 
audio query results and navigate an audio database.  There are a 
number of opportunities to further develop the ideas introduced 
in this paper. For example, the concept of time mosaics could be 
extended and used as a basis for generating video to represent 
sound files.   Other mapping from audio features to image 
processing filters could also be explored, including NPR filters.   
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