Generalization of the Derivative Analysis Method to Non-Stationary Sinusoidal Modeling

Sylvain Marchand¹ and Philippe Depalle²

¹ SCRIME / LaBRI – CNRS, University of Bordeaux 1, France ² SPCL, Music Technology, McGill University, Montreal, Canada

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Outlin	е				

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Introd	uction				

sound signal represented as a sum of sinusoids controlled in amplitude and frequency (or phase)

(short-term) stationarity hypothesis

amplitude and frequency parameters considered as constant within one (short-time) analysis frame

- \rightarrow numerous (STFT-based) analysis methods. . .
 - parabolic interpolation [Smith & Serra (ICMC 1987)]
 - spectral reassignment [Auger & Flandrin (IEEE Trans. SP 1995)]
 - derivative algorithm [Desainte-Catherine & Marchand (JAES 2000)] [Marchand (DAFx 1998)] presented at the first DAFx edition

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Introd	uction				

sound signal represented as a sum of sinusoids controlled in amplitude and frequency (or phase)

(short-term) stationarity hypothesis

amplitude and frequency parameters considered as constant within one (short-time) analysis frame

- \rightarrow numerous (STFT-based) analysis methods. . .
 - parabolic interpolation [Smith & Serra (ICMC 1987)]
 - spectral reassignment [Auger & Flandrin (IEEE Trans. SP 1995)]
 - derivative algorithm [Desainte-Catherine & Marchand (JAES 2000)] [Marchand (DAFx 1998)] presented at the first DAFx edition

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Introd	uction				

sound signal represented as a sum of sinusoids controlled in amplitude and frequency (or phase)

(short-term) stationarity hypothesis

amplitude and frequency parameters considered as constant within one (short-time) analysis frame

- \rightarrow numerous (STFT-based) analysis methods. . .
 - parabolic interpolation [Smith & Serra (ICMC 1987)]
 - spectral reassignment [Auger & Flandrin (IEEE Trans. SP 1995)]
 - derivative algorithm [Desainte-Catherine & Marchand (JAES 2000)]
 [Marchand (DAFx 1998)] presented at the first DAFx edition

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Introd	uction				

sound signal represented as a sum of sinusoids controlled in amplitude and frequency (or phase)

(short-term) stationarity hypothesis

amplitude and frequency parameters considered as constant within one (short-time) analysis frame

- \rightarrow numerous (STFT-based) analysis methods. . .
 - parabolic interpolation [Smith & Serra (ICMC 1987)]
 - spectral reassignment [Auger & Flandrin (IEEE Trans. SP 1995)]
 - derivative algorithm [Desainte-Catherine & Marchand (JAES 2000)]
 [Marchand (DAFx 1998)] presented at the first DAFx edition

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Introd	uction				

sound signal represented as a sum of sinusoids controlled in amplitude and frequency (or phase)

non-stationary case

linear variation of the (log-)amplitude and frequency (one step further in the Taylor expansion of these parameters)

- \rightarrow fewer analysis methods, generalizations of the preceding
 - quadratic interpolation
 - spectral reassignment [Röbel (ICMC 2002), Hainsworth (2003)
 - derivative algorithm

[Marchand & Depalle (DAFx 2008)] currently presented. .

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Introd	uction				

sound signal represented as a sum of sinusoids controlled in amplitude and frequency (or phase)

non-stationary case

linear variation of the (log-)amplitude and frequency (one step further in the Taylor expansion of these parameters)

- \rightarrow fewer analysis methods, generalizations of the preceding
 - quadratic interpolation [Abe & Smith (ICASSP 2005)]
 - spectral reassignment [Röbel (ICMC 2002), Hainsworth (2003)
 - derivative algorithm

[Marchand & Depalle (DAFx 2008)] currently presented. .

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Introd	uction				

sound signal represented as a sum of sinusoids controlled in amplitude and frequency (or phase)

non-stationary case

linear variation of the (log-)amplitude and frequency (one step further in the Taylor expansion of these parameters)

- \rightarrow fewer analysis methods, generalizations of the preceding
 - quadratic interpolation
 - spectral reassignment [Röbel (
 - derivative algorithm

[Marchand & Depalle (DAFx 2008)] currently presented. .

- [Abe & Smith (ICASSP 2005)]
- [Röbel (ICMC 2002), Hainsworth (2003)]

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Introd	uction				

sound signal represented as a sum of sinusoids controlled in amplitude and frequency (or phase)

non-stationary case

linear variation of the (log-)amplitude and frequency (one step further in the Taylor expansion of these parameters)

- \rightarrow fewer analysis methods, generalizations of the preceding
 - quadratic interpolation [Abe & Smith (ICASSP 2005)]
 - spectral reassignment [Röbel (ICMC 2002), Hainsworth (2003)]
 - derivative algorithm

[Marchand & Depalle (DAFx 2008)] currently presented...

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Outlin	e				

2 Sinusoidal Analysis

3 Derivative Method

4 Experimental Results

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣ぬ⊙

[McAulay & Quatieri (IEEE Trans. ASSP 1986)] [Serra & Smith (Computer Music Journal 1990)]

The (analytic) audio signal *s* is given by:

$$s(t) = \sum_{p=1}^{P} a_p(t) \exp(\phi_p(t))$$
 with $\frac{d\phi_p}{dt}(t) = \omega_p(t)$

where *P* is the number of **partials**.

The functions a_p , ω_p , and ϕ_p are the instantaneous amplitude, frequency, and phase of the p^{th} partial, respectively.

Introduction

Sinusoidal Modeling ○●○ Sinusoidal Analysis

Derivative Method

Experimental Results Conclusion

Trajectories of the Partials

Frequencies and amplitudes, as functions of time, of the partials of an alto saxophone sound, during \approx 1.5s

Introduction Sinusoidal Modeling Sinusoidal Analysis Derivative Method Experimental Results Conclusion

Non-Stationary Case

For one partial (P = 1), for one frame (centered on time t = 0):

$$s(t) = \exp\left(\underbrace{(\lambda_0 + \mu_0 t)}_{\lambda(t) = \log(a(t))} + j\underbrace{\left(\phi_0 + \omega_0 t + \frac{\psi_0}{2}t^2\right)}_{\phi(t)}\right)$$

- \rightarrow How to estimate the instantaneous parameters (at t = 0)?
 - amplitude $\exp(\lambda_0) = a_0$
 - amplitude modulation μ_0 • phase ϕ_0
 - frequency ω_0 • frequency modulation ψ_0

・ロト・日本・日本・日本・日本

(**NB:** the stationary case is when $\mu_0 = \psi_0 = 0$)

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Outlin	e				

Introduction	Sinusoidal Modeling	Sinusoidal Analysis ●○○	Derivative Method	Experimental Results	Conclusion
Pick P	icking				

Short-Term Fourier Transform

$$S_{w}(t,\omega) = \int_{-\infty}^{+\infty} s(\tau)w(\tau-t)\exp\left(-j\omega(\tau-t)\right) d\tau$$

using local maxima m of short-term magnitude spectrum

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction Sinusoidal Modeling Sinusoidal Analysis Oetivative Method Sinusoidal Analysis Oetivative Method

Analysis Window w (e.g. Hann window)

w with finite time support and **band-limited in frequency**: for one peak corresponding to one specific partial, the influence of the other partials can be neglected (in the general case when P > 1)

$$S_{w}(0,\omega) = \underbrace{a_{0}e^{j\phi_{0}}}_{s_{0}} \cdot \Gamma_{w}(\omega_{0} - \omega, \mu_{0}, \psi_{0}) \quad \text{where}$$

$$\Gamma_{w}(\omega,\mu_{0},\psi_{0}) = \int_{-\infty} w(t) \exp\left(\mu_{0}t + j\left(\omega t + \frac{\varphi_{0}}{2}t^{2}\right)\right) dt$$

(**NB:** in the stationary case where $\Gamma_w(\omega_0 - \omega, 0, 0) = W(\omega - \omega_0)$, the peak corresponds to the spectrum *W* of the analysis window centered on frequency ω_0 and scaled by the complex amplitude s_0)

Reassignment Method

$$\hat{\omega}_{0} = \hat{\omega}(0, \omega_{m}) \quad \text{where} \quad \hat{\omega}(t, \omega) = \omega - \Im \left(\frac{S_{w'}(t, \omega)}{S_{w}(t, \omega)} \right)$$

$$\hat{\mu}_{0} = \hat{\mu}(0, \omega_{m}) \quad \text{where} \quad \hat{\mu}(t, \omega) = -\Re \left(\frac{S_{w'}(t, \omega)}{S_{w}(t, \omega)} \right)$$

$$\hat{\psi}_{0} = \hat{\psi}(0, \omega_{m}) \quad \text{where} \quad \hat{\psi} = \frac{\Im \left(\frac{S_{w'}}{S_{w}} \right) - \Im \left(\left(\frac{S_{w'}}{S_{w}} \right)^{2} \right)}{\Re \left(\frac{S_{w}S_{w'}}{S_{w}^{2}} \right) - \Re \left(\frac{S_{w'}}{S_{w}} \right)}$$
nally
$$\hat{a}_{0} = \left| \frac{S_{w}(\omega_{m})}{\Gamma_{w}(\Delta_{\omega}, \hat{\mu}_{0}, \hat{\psi}_{0})} \right| \quad \text{and} \quad \hat{\phi}_{0} = \angle \left(\frac{S_{w}(\omega_{m})}{\Gamma_{w}(\Delta_{\omega}, \hat{\mu}_{0}, \hat{\psi}_{0})} \right)$$

Introduction Sinusoidal Modeling Sinusoidal Analysis Derivative Method Experimental Results Conclusion

Reassignment Method

$$\hat{\omega}_{0} = \hat{\omega}(0, \omega_{m}) \quad \text{where} \quad \hat{\omega}(t, \omega) = \omega - \Im\left(\frac{S_{W'}(t, \omega)}{S_{W}(t, \omega)}\right)$$

$$\hat{\mu}_{0} = \hat{\mu}(0, \omega_{m}) \quad \text{where} \quad \hat{\mu}(t, \omega) = -\Re\left(\frac{S_{W'}(t, \omega)}{S_{W}(t, \omega)}\right)$$

$$\hat{\psi}_{0} = \hat{\psi}(0, \omega_{m}) \quad \text{where} \quad \hat{\psi} = \frac{\Im\left(\frac{S_{W'}}{S_{W}}\right) - \Im\left(\left(\frac{S_{W'}}{S_{W}}\right)^{2}\right)}{\Re\left(\frac{S_{W'}S_{W'}}{S_{W}^{2}}\right) - \Re\left(\frac{S_{W'}}{S_{W}}\right)}$$

$$\hat{\mu}_{0} = \left|\frac{S_{W}(\omega_{m})}{\Gamma_{W}(\Delta_{\omega}, \hat{\mu}_{0}, \hat{\psi}_{0})}\right| \quad \text{and} \quad \hat{\phi}_{0} = 2\left(\frac{S_{W}(\omega_{m})}{\Gamma_{W}(\Delta_{\omega}, \hat{\mu}_{0}, \hat{\psi}_{0})}\right)$$

Introduction Sinusoidal Modeling OOO Sinusoidal Analysis OPerivative Method Experimental Results Conclusion

Reassignment Method

$$\hat{\omega}_{0} = \hat{\omega}(0, \omega_{m}) \quad \text{where} \quad \hat{\omega}(t, \omega) = \omega - \mathfrak{I}\left(\frac{S_{w'}(t, \omega)}{S_{w}(t, \omega)}\right)$$

$$\hat{\mu}_{0} = \hat{\mu}(0, \omega_{m}) \quad \text{where} \quad \hat{\mu}(t, \omega) = -\mathfrak{R}\left(\frac{S_{w'}(t, \omega)}{S_{w}(t, \omega)}\right)$$

$$\hat{\psi}_{0} = \hat{\psi}(0, \omega_{m}) \quad \text{where} \quad \hat{\psi} = \frac{\mathfrak{I}\left(\frac{S_{w'}}{S_{w}}\right) - \mathfrak{I}\left(\left(\frac{S_{w'}}{S_{w}}\right)^{2}\right)}{\mathfrak{R}\left(\frac{S_{w}S_{w'}}{S_{w}^{2}}\right) - \mathfrak{R}\left(\frac{S_{w'}}{S_{w}}\right)}$$
ally
$$\hat{a}_{0} = \left|\frac{S_{w}(\omega_{m})}{\Gamma_{w}(\Delta_{\omega}, \hat{\mu}_{0}, \hat{\psi}_{0})}\right| \quad \text{and} \quad \hat{\phi}_{0} = \mathcal{L}\left(\frac{S_{w}(\omega_{m})}{\Gamma_{w}(\Delta_{\omega}, \hat{\mu}_{0}, \hat{\psi}_{0})}\right)$$

Introduction Sinusoidal Modeling OOO Sinusoidal Analysis OPerivative Method Experimental Results Conclusion

Reassignment Method

$$\hat{\omega}_{0} = \hat{\omega}(0, \omega_{m}) \quad \text{where} \quad \hat{\omega}(t, \omega) = \omega - \mathfrak{I}\left(\frac{\mathbf{S}_{W'}(t, \omega)}{\mathbf{S}_{W}(t, \omega)}\right)$$

$$\hat{\mu}_{0} = \hat{\mu}(0, \omega_{m}) \quad \text{where} \quad \hat{\mu}(t, \omega) = -\mathfrak{R}\left(\frac{\mathbf{S}_{W'}(t, \omega)}{\mathbf{S}_{W}(t, \omega)}\right)$$

$$\hat{\psi}_{0} = \hat{\psi}(0, \omega_{m}) \quad \text{where} \quad \hat{\psi} = \frac{\mathfrak{I}\left(\frac{\mathbf{S}_{W'}}{\mathbf{S}_{W}}\right) - \mathfrak{I}\left(\left(\frac{\mathbf{S}_{W'}}{\mathbf{S}_{W}}\right)^{2}\right)}{\mathfrak{R}\left(\frac{\mathbf{S}_{W}}{\mathbf{S}_{W}^{2}}\right) - \mathfrak{R}\left(\frac{\mathbf{S}_{W'}}{\mathbf{S}_{W}}\right)}$$
finally
$$\hat{a}_{0} = \left|\frac{\mathbf{S}_{W}(\omega_{m})}{\Gamma_{W}(\Delta_{\omega}, \hat{\mu}_{0}, \hat{\psi}_{0})}\right| \quad \text{and} \quad \hat{\phi}_{0} = \mathcal{L}\left(\frac{\mathbf{S}_{W}(\omega_{m})}{\Gamma_{W}(\Delta_{\omega}, \hat{\mu}_{0}, \hat{\psi}_{0})}\right)$$

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion	
Outline						

2 Sinusoidal Analysis

◆□ > ◆□ > ◆ □ > ◆ □ > → □ = − の < @

uses the derivatives of the signal (the derivative of an exponential is an exponential...)

$$\boldsymbol{s}'(t) = \left(\mu_0 + \boldsymbol{j}(\omega_0 + \psi_0 t)\right) \cdot \boldsymbol{s}(t)$$

 $j\psi_0 t$ is an odd function \implies its spectrum is real...

$$\hat{\omega}_0 = \Im\left(\frac{S'_w}{S_w}(\omega_m)\right)$$

moreover, its spectrum is null at frequency zero...

$$\hat{\mu}_0 = \Re\left(\frac{S'_w}{S_w}(\hat{\omega}_0)\right)$$

(NB: in theory, equivalent to spectral reassignment estimators)

uses the derivatives of the signal

(the derivative of an exponential is an exponential...)

$$\boldsymbol{s}'(t) = (\mu_0 + \boldsymbol{j}(\omega_0 + \psi_0 t)) \cdot \boldsymbol{s}(t)$$

 $j\psi_0 t$ is an odd function \implies its spectrum is real...

$$\hat{\omega}_0 = \Im\left(\frac{S'_w}{S_w}(\omega_m)\right)$$

moreover, its spectrum is null at frequency zero...

$$\hat{\mu}_0 = \Re\left(\frac{S'_w}{S_w}(\hat{\omega}_0)\right)$$

(NB: in theory, equivalent to spectral reassignment estimators)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

uses the derivatives of the signal

(the derivative of an exponential is an exponential...)

$$\mathbf{s}'(t) = (\mu_0 + j(\omega_0 + \psi_0 t)) \cdot \mathbf{s}(t)$$

 $j\psi_0 t$ is an odd function \implies its spectrum is real...

$$\hat{\omega}_0 = \Im\left(\frac{S'_w}{S_w}(\omega_m)\right)$$

moreover, its spectrum is null at frequency zero...

$$\hat{\mu}_0 = \Re\left(\frac{S'_w}{S_w}(\hat{\omega}_0)\right)$$

(**NB:** in theory, equivalent to spectral reassignment estimators)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

uses the derivatives of the signal

(the derivative of an exponential is an exponential...)

$$\mathbf{s}'(t) = (\mu_0 + j(\omega_0 + \psi_0 t)) \cdot \mathbf{s}(t)$$

 $j\psi_0 t$ is an odd function \implies its spectrum is real...

$$\hat{\omega}_0 = \Im\left(\frac{S'_w}{S_w}(\omega_m)\right)$$

moreover, its spectrum is null at frequency zero...

$$\hat{\mu}_0 = \Re\left(\frac{\mathbf{S}'_{w}}{\mathbf{S}_{w}}(\hat{\omega}_0)\right)$$

(NB: in theory, equivalent to spectral reassignment estimators)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Introduction Sinusoidal Modeling

ng Sinusoidal Analysis

Derivative Method

Experimental Results

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion

Frequency Modulation $\hat{\psi}_0$

with the second derivative...

$$s''(t) = (\mu_0^2 - \omega_0^2 - 2\omega_0\psi_0t - \psi_0^2t^2) + j(\psi_0 + 2\mu_0\omega_0 + 2\mu_0\psi_0t) \cdot s(t)$$

using the same kind of properties...

$$\hat{\psi}_0 = \Im\left(\frac{S_w''}{S_w}(\hat{\omega}_0)\right) - 2\hat{\mu}_0\hat{\omega}_0.$$

Introduction Sinusoidal Modeling

ling Sinusoidal Analysis

Derivative Method

Experimental Results

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Conclusion

Amplitude \hat{a}_0 and Phase $\hat{\phi}_0$

finally

$$\hat{a}_{0} = \left| \frac{S_{w}(\hat{\omega}_{0})}{\Gamma_{w}(0, \hat{\mu}_{0}, \hat{\psi}_{0})} \right|$$
$$\hat{\phi}_{0} = \angle \left(\frac{S_{w}(\hat{\omega}_{0})}{\Gamma_{w}(0, \hat{\mu}_{0}, \hat{\psi}_{0})} \right)$$

Introduction Sinusoidal Modeling Sinusoidal Analysis Derivative Method Experimental Results Conclusion

practical problem:

How to get the derivatives s' from the (discrete-time) signal s?

$$s'(t) = \lim_{\epsilon \to 0} \frac{s(t+\epsilon) - s(t)}{\epsilon}$$

a bad idea: approximate it by the difference (\$\varepsilon = 1/F_s\$)
a good idea: use the ideal differentiator filter...

$$h[n] = F_s \frac{(-1)^n}{n}$$
 for $n \neq 0$, and $h[0] = 0$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

... windowed by the Hann window (of length 1023)

practical problem:

How to get the derivatives s' from the (discrete-time) signal s?

$$s'(t) = \lim_{\epsilon \to 0} \frac{s(t+\epsilon) - s(t)}{\epsilon}$$

• a bad idea: approximate it by the difference ($\epsilon = 1/F_s$)

a good idea: use the ideal differentiator filter...

$$h[n] = F_s \frac{(-1)^n}{n}$$
 for $n \neq 0$, and $h[0] = 0$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

... windowed by the Hann window (of length 1023)

Introduction Sinusoidal Modeling Sinusoidal Analysis Derivative Method Experimental Results Conclusion

practical problem:

How to get the derivatives s' from the (discrete-time) signal s?

$$s'(t) = \lim_{\epsilon \to 0} \frac{s(t+\epsilon) - s(t)}{\epsilon}$$

- a bad idea: approximate it by the difference ($\epsilon = 1/F_s$)
- a good idea: use the ideal differentiator filter...

$$h[n] = F_s \frac{(-1)^n}{n}$$
 for $n \neq 0$, and $h[0] = 0$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

... windowed by the Hann window (of length 1023)

Introduction Sinusoidal Modeling Sinusoidal Analysis Coo

Derivative Method

Experimental Results Conclusion

Discrete Derivative

(high frequencies – above 3/4 Nyquist – are problematic)

・ロト・日本・山田・ 山田・ 山口・

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Outline					

2 Sinusoidal Analysis

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results ●○○○○○	Conclusion
Exper	iments				

3 methods tested:

- reassignment (R)
- 2 flavors of the derivative (D)

(the champion) (the challenger)

- TD: theoretic derivative (derivative known analytically)
- ED: estimated derivative (with the differentiator filter *h*)

(frame size N = 511, sampling frequency $F_s = 44100$ Hz)

 \rightarrow estimation precision for each parameter, compared to the Cramér-Rao Bound (CRB) (the best performance achievable by an unbiased estimator), in presence of Gaussian white noise with various SNRs;

with 5 parameters to test...

- ω_0 : 99 frequencies linearly distributed in (0, 3 $F_s/8$)Hz,
- ϕ_0 : 9 phases linearly distributed in the $(-\pi, +\pi)$ interval,
- μ₀: either 0 (stationary case) or in [-100, +100] (AM),
- ψ_0 : either 0 (stationary case) or in [-10000, +10000] (FM),
- amplitude *a*₀ set to 1.

(conditions similar to [Betser *et al.* (IEEE Trans. SP 2008)], where the reassignment performs best, at least regarding frequency estimation)

Introduction Sinusoidal Modeling Sinusoidal Analysis Derivative Method Experimental Results Conclusion

Results: Amplitude \hat{a}_0

D performs better in the non-stationary case

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction Sinusoidal Modeling Sinusoidal Modeling Sinusoidal Modeling

Sinusoidal Analysis

Derivative Method

Experimental Results

Conclusion

Results: Amplitude Modulation $\hat{\mu}_0$

D performs better in the non-stationary case

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Introduction Sinusoidal Modeling Sinusoidal Analysis Derivative Method correct corre

D performs better in the non-stationary case

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Introduction Sinusoidal Modeling Sinusoidal Analysis Derivative Method Experimental Results Conclusion

Results: Frequency $\hat{\omega}_0$

although R and ED perform equally, TD indicates that ED can beat R in the stationary case, with a better derivative

◆□▶ ◆□▶ ◆□▶ ◆□▶ →□ − のへで

Introduction Sinusoidal Modeling S

Sinusoidal Analysis

Derivative Method

Experimental Results

Conclusion

Results: Frequency Modulation $\hat{\psi}_0$

R performs better in the non-stationary case

▲ロト ▲圖 ▶ ▲目 ▶ ▲目 ▶ ▲目 ● のへで

Introduction	Sinusoidal Modeling	Sinusoidal Analysis	Derivative Method	Experimental Results	Conclusion
Conclusion					

Summary:

- the derivative method is generalized to the non-stationary case,
- computing the discrete derivative is not a problem anymore,
- the derivative method outperforms the reassignment method in all cases except for the estimation of the frequency modulation.

Future Work:

- understand why the reassignment method is better in this case,
- study the behavior of the methods in more complex AM/FM conditions (such as sinusoidal tremolo/vibrato),
- propose a very fast algorithm for the new method...