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Introduction

y

e Evaluate three acoustic features and two distance
measures for music structure analysis.
— Features focused on several time scales.
—Distance measures defined between structural
parts.
e Structure analysis

— Recover sectional form of the piece.

— Audio input.

— Divide into segments (occurrences of parts, such
as chorus, verse, etc.).

—Group segments with similar content (occur-
rences of same part).
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Acoustic features

e Important cues in music structure perception:
—repetitions (especially melodic),
—change in rhythm, and

—change in timbre.

e [imbre modelled with mel-frequency cepstral co-
efficients (MFCCs) — rough shape of spectrum.

e Tonal content modelled with chroma (pitch-class
profile).
e Rhythmic content modelled with rhythmogram.

—Onset accent signal — react to sound events.

— Autocorrelation in windows of several seconds.

Example features from “Moottoritie on kuuma” by

Pelle Miljoona Oy.
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Feature processing

e Features resampled to beat-synchronised frames.

e Temporal filtering with varying cut-off frequencies

to focus on different time scales.

e Self-distance matrices (SDMs) for all features.

— Distance between all frames with cos-distance.

—Depending on filter cut-off, dark stripes and

time

blocks are formed (examples from MFCCs

above).
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Segment distances

y

e Two segments s,, and s,, of piece define a sub-
matrix Dy, ,, in SDMs.

e Block distance for segments: average distance

value in the submatrix.

— General feature value (in)consistency during
segments.

e Stripe distance: lowest cumulative distance across
the submatrix.

—Sequential (dis)similarity of the segments.
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e Analyse distances between segments from same
group and from different group, varying the time-
Scale parameter.

—Manually annotated set of 557 popular music
pieces, T U TstructureQ7.
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Use for structure analysis

y

e Map distance to probability that the segments be-
long to same group, p (S, Sn) (blocks, stripes).
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e Find explanation of structure maximising
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— A (S, Sp): area of Dm,n
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Results

e Segmentation given, only group segments:
— Chroma and MFCC stripes perform very well
alone.

e System attempts to determine segmentation:
— Stripe distance measure performance de-
creases. Feature/distance measure combinations
improve result.
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Conclusions

o [f segmentation points are accurate, one-
feature stripe distance is enough.

o [f segmentation points are inaccurate,
adding features and utilising different dis-

tance measure improve result.

e Different features provide complementary in-

formation.




