Acoustic Features for Music Piece Structure Analysis
Jouni Paulus, Anssi Klapuri
Department of Signal Processing, Tampere University of Technology, Tampere, Finland

Introduction

- Evaluate three acoustic features and two distance measures for music structure analysis.
-Features focused on several time scales.
- Distance measures defined between structural parts.
- Structure analysis
-Recover sectional form of the piece.
- Audio input.
- Divide into segments (occurrences of parts, such as chorus, verse, etc.).
-Group segments with similar content (occurrences of same part).

Acoustic features

- Important cues in music structure perception: -repetitions (especially melodic),
- change in rhythm, and
- change in timbre.
- Timbre modelled with mel-frequency cepstral coefficients (MFCCs) \rightarrow rough shape of spectrum.
- Tonal content modelled with chroma (pitch-class profile).
- Rhythmic content modelled with rhythmogram.
- Onset accent signal \rightarrow react to sound events.
-Autocorrelation in windows of several seconds.

Example features from "Moottoritie on kuuma" by Pelle Miljoona Oy.

Feature processing

- Features resampled to beat-synchronised frames.
- Temporal filtering with varying cut-off frequencies to focus on different time scales.
- Self-distance matrices (SDMs) for all features.
-Distance between all frames with cos-distance.
-Depending on filter cut-off, dark stripes and blocks are formed (examples from MFCCs above).

Segment distances

- Two segments s_{m} and s_{n} of piece define a submatrix $\tilde{D}_{m, n}$ in SDMs.
- Block distance for segments: average distance value in the submatrix.
-General feature value (in)consistency during segments.
- Stripe distance: lowest cumulative distance across the submatrix.
-Sequential (dis)similarity of the segments.

- Analyse distances between segments from same group and from different group, varying the timescale parameter.
- Manually annotated set of 557 popular music pieces, TUTstructure07.

$\begin{array}{ll}0.6 \\ 0.4 \\ 0.2 & :\end{array}$
$0.0 \begin{array}{llllllll}1 & 2 & 4 & 8 & 16 & 32 & 64 \\ & & & 1 / \text { cut-off }\end{array}$
 autocorrelation length

0.2
$\begin{array}{llllll}0.0 \\ \text { autocorrelation } & 4 & 8 & 16 & 32 & 64128\end{array}$

Use for structure analysis

- Map distance to probability that the segments belong to same group, $p\left(s_{m}, s_{n}\right)$ (blocks, stripes).

- Find explanation of structure maximising

$$
P(E)=\sum_{m=1}^{M} \sum_{n=1}^{M} A\left(s_{m}, s_{n}\right) L\left(s_{m}, s_{n}\right)
$$

$$
L\left(s_{m}, s_{n}\right)= \begin{cases}\log \left(p\left(s_{m}, s_{n}\right)\right) & \text { if } g_{m}=g_{n} \\ \log \left(1-p\left(s_{m}, s_{n}\right)\right) & \text { if } g_{m} \neq g_{n}\end{cases}
$$

- $A\left(s_{m}, s_{n}\right)$: area of $\tilde{D}_{m, n}$
$-g_{m}$: group of segment s_{m}

Results

- Segmentation given, only group segments:
\rightarrow Chroma and MFCC stripes perform very well alone.
- System attempts to determine segmentation:
\rightarrow Stripe distance measure performance decreases. Feature/distance measure combinations improve result.

Conclusions

- If segmentation points are accurate, onefeature stripe distance is enough.
- If segmentation points are inaccurate, adding features and utilising different distance measure improve result.
- Different features provide complementary information.

