Introduction 1. Robustness 2. Independence Conclusions

Robustness and independence of voice timbre features under live performance acoustic degradations

Dan Stowell and Mark Plumbley dan.stowell@elec.qmul.ac.uk

Centre for Digital Music Queen Mary, University of London

September 2008

Introduction: Motivation

Analysing timbre of performing voice

- Create a timbre space
- Input to classifier
- Control effects
- Many acoustic features available
 - Cannot use all at once
- Desire those which
 - 1. Are most robust against noise/echo/etc
 - 2. Give us the most "information"
- Two experiments on continuous-valued features

Introduction

 Robustness
 Independence Conclusions

Introduction: Two experiments

2. Independence Conclusions

Features investigated

- 23 acoustic timbre features:
 - MFCCs
 - Spectral centroid
 - Spectral spread
 - Spectral crest factors (overall and subband)
 - Spectral percentiles: 25%, 50%, 90%, 95%
 - High-frequency content (HFC)
 - Zero-crossing rate (ZCR)
 - Spectral flatness
 - Spectral flux

Robustness: method

- 7 types of degradation:
 - White noise
 - Crowd noise
 - Music noise
 - Clipping distortion
 - Delay
 - Delay with feedback
 - Reverb

(Each at 4 effect levels)

Measure absolute % deviation within each frame.

Two ways of comparing:

- Ranking (+ Kendall's W test)
- Pairwise comparison
 (+ Wilcoxon Signed-Rank test)

Robustness: results

Dataset	Singing	Speech	Beatboxing
BEST	crst1	crst1	crst1
	25%ile	mfcc1	mfcc5
	crst2	crst2	mfcc7
	ZCR	25%ile	mfcc1
	mfcc1	spread	mfcc3
	95%ile	crest	crest
	spread	50%ile	mfcc8
	crest	mfcc5	spread
	50%ile	crst3	mfcc6
	crst3	ZCR	mfcc4
	90%ile	mfcc7	25%ile
	centroid	mfcc3	crst2

Robustness: results

Dataset	Singing	Speech	Beatboxing
		6 0	. 0
	centroid	mfcc3	crst2
	mfcc3	95%ile	crst3
	crst4	centroid	50%ile
	mfcc5	crst4	95%ile
	mfcc8	90%ile	crst4
	mfcc7	mfcc4	centroid
	flatness	mfcc8	90%ile
	mfcc4	mfcc2	ZCR
	mfcc2	mfccб	mfcc2
	flux	flatness	flatness
	mfcc6	flux	flux
WORST	HFC	HFC	HFC

centre for digital music/ W Queen Mary

25% 50% 90% 95% centr spreaflatneZCR HFC flux crest mfcc mfcc mfcc mfcc mfcc mfcc mfcc crst1 crst2 crst3 crst4 ile ile ile oid d ss 1 2 3 4 5 6 7 8

Robustness: results

Some good:

- Spectral crest factors
- Odd-numbered MFCCs
- Some poor:
 - HFC
 - Spectral flatness
 - Spectral flux
 - Some even-numbered MFCCs
- Some interact with signal type:
 - ZCR
 - Some spectral percentiles

2. Independence

- Second experiment: Which features "give us the most information"?
- There may be redundancy between acoustic features
 - Correlation is one way to probe this but limited (monotonic)
- Information theory: analyse dependencies more generally
- Again, two comparisons:
 - Pairwise
 - Ranking (feature selection)

Independence: method (a)

Mutual information:

- ► Given feature X and feature Y:
 - ► If I know the value of X, how far does that decrease my uncertainty about the value of Y?
- Defined from the probability distributions:

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p(x) p(y)}\right)$$

- We can estimate this value from our data
- Tell us which features have informational overlap

4	0.27																							power
0.27	4	1.28	0.56																					25%ile
0.29	1.28	4	0.85		1.19	0.53		0.76	0.96			0.79												50%ile
0.22		0.85	4	1.75	1.9	1.24		0.46	0.81			1.4	0.42											90%ile
0.21			1.75	4	1.45	1.68	1.46	0.39				1.47	0.27											95%ile
0.26		1.19	1.9	1.45	4	1.07		0.54	0.98	0.32		1.39	0.39											centroid
0.2			1.24	1.68	1.07	4	1.92	0.32				1.38	0.17											spread
0.27				1.46	1.22	1.92	4	0.35					0.18											flatness
0.13		0.76			0.54	0.32	0.35	4	0.46															ZCR
0.56		0.96	0.81		0.98				4	0.58		0.68												HFC
0.75									0.58	4	0.25													flux
0.23					0.48					0.25	4	0.4												crest
0.21		0.79	1.4	1.47	1.39	1.38		0.43	0.68			4	0.15											mfcc1
0.1		0.49										0.15	4	0.07										mfcc2
0.1													0.07	4	0.11									mfcc3
0.07															4	0.14								mfcc4
0.06																4	0.07							mfcc5
80.0																	4	0.07						mfcc6
0.04																	0.07	4	0.11					mfcc7
0.07																		0.11	4	0.02				mfcc8
0.03																				4	0.02			crst1
0.05																				0.02	4	0.05		crst2
0.06																					0.05	4	80.0	crst3
80.0	0.15	0.18	0.18	0.17	0.18	0.17	0.19	0.11	0.17	0.09	0.14	0.17	0.03	0.04	0.04	0.02	0.07	0.04	0.09	0.02	0.05	80.0	4	crst4

Introduction 1. Robustness 2. Independence Conclusions

Independence: method (b)

Conditional entropy:

Entropy of W conditional on X, Y, Z

$$H(W|X, Y, Z) = H(X, Y, Z, W) - H(X, Y, Z)$$
$$\neq H(W)$$

Feature selection by greedy rejection: reject one feature at a time, according to lowest conditional entropy

Independence: results

	Singing	Speech	Beatboxing	
BEST	crst2	crst2	crst1	-
	crst3	95%ile	mfcc1	
	crest	crst1	crst2	
	mfcc6	crst3	mfcc5	
	mfcc8	mfcc8	mfcc7	
	mfcc3	mfcc3	mfcc3	
	crst1	mfcc7	mfcc8	
	mfcc7	mfcc6	mfcc4	
	95%ile	mfcc4	mfcc6	
	mfcc4	mfcc5	crest	
	mfcc5	crest	spread	
	mfcc1	mfcc1	crst3	
	spread	spread	95%ile	
	90%ile	90%ile	crst4	
	crst4	crst4	90%ile	
	centroid	centroid	centroid	
	ZCR	ZCR	ZCR	
	50%ile	50%ile	50%ile	
WORST	25%ile	25%ile	25%ile 👝	ntre for digital music

Introduction 1. Robustness 2. Independence Conclusions

Summary

- 1. Robustness
 - Ranking (median deviation)
 - Pairwise comparison (Wilcoxon Signed Rank test)
- 2. Independence
 - Pairwise comparison (mutual information)
 - Feature selection (conditional entropy)

Conclusions

- Suggested feature-set for performing voice:
 - ► Spectral crest factors + MFCCs + 95-percentile ("rolloff")
- Spectral crest factors perform well
- Spectral centroid less useful than expected
- Some features' performance interacts with signal type
- Information-theoretic measures useful for probing dependencies

