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SITUATION

INDIAN CLASSICAL VOCAL PERFORMANCE
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SIGNAL CHARACTERISTICS

VOICE

• Frequent, large, rapid 
pitch modulations
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SIGNAL CHARACTERISTICS

DRONE (TANPURA)

• Constant background

• Rich in overtones

• Tuned to the tonic and 
fourth or fifth

•SIR around 20 – 30 dB
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PDAs

Harmonic Matching PDAs

Based on explicit frequency domain matching of measured 
spectrum with an ideal harmonic spectrum

Input
Magnitudes and frequencies of detected sinusoids (window main-
lobe matching [Griffin & Lim 1988])

Differ on the basis of spectral fitness measure or error 
function



Department of Electrical Engineering , IIT Bombay 7 of 19

PDAs

Pattern Recognition (PR) [Brown 1992]

Based on maximizing the cross correlation between an n-
pulse template and the measured spectrum, where n is the 
number of included harmonics 

Operation

Cross correlation (C) between ideal spectrum (I) and 
measured spectrum (X) for different trial F0 (ψ). 
Frequency axis is logarithmically spaced
Ideal spectrum consists of impulses at expected harmonic 
locations
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PDAs

Two-Way Mismatch (TWM) [Maher & Beauchamp 1994]

Minimizes ERROR between 
measured spectral peaks and 
predicted harmonic spectral 
pattern for different trial F0

Based on
(1) normalized frequency error 
(2) normalized amplitude
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(1) is small and (2) is small
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SIMULATION

DATA

Target (Voice)
Formant synthesis
F0 smoothly varying

Max rate : 3 ST/sec

Base F0s
150 Hz
330 Hz

Range ±1 octave

Interference (Tabla)
Complex tones
Same F0 as voice 
base F0
Amplitude envelope 
decays over 2 sec

SIR
-10 dB



Department of Electrical Engineering , IIT Bombay 10 of 19

SIMULATION

RESULTS
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SIMULATION

ROBUSTNESS OF TWM ERROR FUNCTION
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REAL SIGNALS

DATA & RESULTS
Multi-track time-synch. data of voice, tabla, tanpura

One min. excerpts (low and high tempo regions) of 2 artists
Acoustic isolation by distancing artists

Ground truth from vocal tracks
Majority vote between YIN [deCheveigne & Kawahara 2002], SHS 
[Hermes 1988] and TWM, with DP 
Concurrence threshold : 50 cents (~3%)

Mixtures
V – Voice only
VT – Voice + tabla (5 dB SIR)
VTT – Voice + tabla (5 dB SIR) + tanpura (20 dB SIR)

98.2092.9079.7176.74VTT

99.5197.4180.4578.01VT

99.6698.3498.2490.81V

DPRawDPRaw

TWMPR
Content
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VOCAL DETECTION

METHOD & POST-PROCESSING

Frame-level decisions
Input feature : Normalized Harmonic Energy (NHE)

|X()| - magnitude spectrum
ki – bin number of local maxima 
closest to ith expected harmonic for given F0

GMM classifier

Post-processing
Grouping of frame-level labels over automatically segments [Foote 2000]
by majority vote [Li & Wang07]
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VOCAL DETECTION

PRE-PROCESSING

Before After

Tanpura suppression by spectral subtraction (SS) [Boll 1979]
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VOCAL DETECTION

RESULTS

V – Vocal accuracy
% of actually vocal frames detected as vocal

I – Instrumental accuracy
% of actually Instrumental frames detected as Instrumental

93.46.693.96.1I
96.2

3.496.6
91.9

8.491.6V
After SS

93.86.294.55.6I
92.4

7.792.3
87.8

13.186.9V
Before 

SS

OverallIVOverallIV

After GroupingBefore Grouping
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FINAL SYSTEM BLOCK DIAGRAM
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CONCLUSIONS & FUTURE WORK

Conclusion

TWM is more robust to sparse, harmonic interference even at low 
SIRs

This is attributed to the specific form of its error function

NHE serves as a reliable indicator of voicing

Future work

Secondary melodic instrument problem
Investigating methods of instrument suppression based on sinusoidal 
modeling
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MELODY EXTRACTION

COMPARISON OF TWM-DP TO MIREX’06 SUBMISSIONS

MIREX 05

ISMIR 04

Dataset

81.578.579.774.582.380.2TWM-DP

85.878.080.969.988.983.1TWM-DP

68.757.473.858.563.556.3Brossier

65.462.662.957.768.067.5Sutton

76.473.283.981.069.065.4Poliner

82.380.685.382.879.378.3Ryynanen

84.082.990.188.778.077.1Dressler

RCARPARCARPARCARPA

OverallInstrumentalVocal
Algorithm

RPA – Raw pitch accuracy (Tolerance : 50 cents) [Poliner 2007]

RCA – Raw chroma accuracy (All pitches folded down to one octave)



Department of Electrical Engineering , IIT Bombay 19 of 19

VOCAL DETECTION

COMPARISON OF NHE TO MIREX’06 SUBMISSIONS

26.185.541.193.117.482.3NHE

MIREX 2005 Training dataset

19.782.218.685.920.279.9NHE

88.499.782.999.793.999.8brossier

24.973.28.154.632.090.8sutton

36.389.940.491.434.588.4poliner

12.684.415.282.911.585.9ryynanen

10.590.99.592.010.989.8dressler

ISMIR 2004 Testing dataset

False Alm
(%)

Recall
(%)

False Alm
(%)

Recall
(%)

False Alm
(%)

Recall
(%)

All dataNon-Vocal onlyVocal only
Algorithm

Recall = % of actually voiced frames labeled as voice
False alarms = % of actually instrumental frames labeled as voice
NHE threshold = -15 dB
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