Vocal melody extraction in the presence of pitched accompaniment using harmonic matching methods

Vishweshwara Rao, Preeti Rao

Department of Electrical Engineering Indian Institute of Technology Bombay

SITUATION INDIAN CLASSICAL VOCAL PERFORMANCE

Drone (Tanpura)

Typical north Indian classical vocal music performance

SIGNAL CHARACTERISTICS VOICE

SIGNAL CHARACTERISTICS PERCUSSION (TABLA)

Signal to Interference Ratio (SIR) -10 dB

SIGNAL CHARACTERISTICS DRONE (TANPURA)

- Based on explicit frequency domain matching of measured spectrum with an ideal harmonic spectrum
- **I**nput
 - Magnitudes and frequencies of detected sinusoids (window mainlobe matching [Griffin & Lim 1988])
- Differ on the basis of spectral fitness measure or error function

PDAs Pattern Recognition (PR) [Brown 1992]

- Based on maximizing the cross correlation between an *n*-pulse template and the measured spectrum, where *n* is the number of included harmonics
- **D** Operation

$$C(\psi) = \sum_{i=1}^{M} I(f_i) X(f_i + \psi)$$

- Cross correlation (C) between ideal spectrum (I) and measured spectrum (X) for different trial FO (ψ).
- Frequency axis is logarithmically spaced
- Ideal spectrum consists of impulses at expected harmonic locations

PDAs

Two-Way Mismatch (TWM) [Maher & Beauchamp 1994]

- Minimizes ERROR between measured spectral peaks and predicted harmonic spectral pattern for different trial F0
- Based on
 - (1) normalized frequency error
 - (2) normalized amplitude
- Maximum when
 - (1) is large
 - (1) is small and (2) is small
- Minimum when
 - (1) is small and (2) is large

$$Err_{total} = \frac{Err_{p \to m}}{N} + \rho \frac{Err_{m \to p}}{K}$$

$$Err_{p \to m} = \sum_{n=1}^{N} \Delta f_n \cdot (f_n)^{-p} + (\frac{a_n}{A_{\max}}) \times [q \Delta f_n \cdot (f_n)^{-p} - r]$$

Nearest Neighbour Matching From [Maher & Beauchamp 1994]

SIMULATION DATA

Target (Voice)

- Formant synthesis
- F0 smoothly varying
 - Max rate : 3 ST/sec
- Base FOs
 - □ 150 Hz
 - **3**30 Hz
- Range ±1 octave

□ Interference (*Tabla*)

- Complex tones
- Same F0 as voice base F0
- Amplitude envelope decays over 2 sec
- □ SIR
 - -10 dB

Time (sec)

SIMULATION RESULTS

	Base F0 = 150 Hz				Base F0 = 330 Hz			
Interference	PR	PR-DP	TWM	TWM-DP	PR	PR-DP	TWM	TWM-DP
None	100.0	100.0	99.6	100.0	100.0	100.0	98.5	100.0
1 harmonic	70.8	68.1	92.5	100.0	69.9	74.2	92.3	100.0
3 harmonics	64.7	63.1	88.7	94.3	66.3	69.1	90.8	97.4
5 harmonics	62.8	61.4	86.9	93.4	65.1	70.2	86.6	93.7

- Pitch accuracy [Poliner et.al. 2007]
 - Tolerance 50 cents
- Relative Strength

$$RS = 1 - \frac{MC_{tr} - MC_{mf}}{MC_{tr}}$$

- *MC_{tr}* Measurement cost of Top Ranked candidate
- *MC_{mf}* Measurement cost of Melodic F0 candidate

SIMULATION ROBUSTNESS OF TWM ERROR FUNCTION

$$Err_{p \to m} = terml + term2 \quad terml = \sum_{n=1}^{N} \frac{\Delta f_n}{(f_n)^p} \quad term2 = \sum_{n=1}^{N} \left(\frac{a_n}{A_{\max}}\right) \left(q\frac{\Delta f_n}{(f_n)^p} - r\right)$$

REAL SIGNALS DATA & RESULTS

- Multi-track time-synch. data of voice, *tabla*, *tanpura*
 - One min. excerpts (low and high tempo regions) of 2 artists
 - Acoustic isolation by distancing artists
- Ground truth from vocal tracks
 - Majority vote between YIN [deCheveigne & Kawahara 2002], SHS [Hermes 1988] and TWM, with DP
 - Concurrence threshold : 50 cents (~3%)
- Mixtures
 - V Voice only
 - VT Voice + tabla (5 dB SIR)
 - VTT Voice + tabla (5 dB SIR) + tanpura (20 dB SIR)

Contont	Р	R	TWM		
Content	Raw	DP	Raw	DP	
V	90.81	98.24	98.34	99.66	
VT	78.01	80.45	97.41	99.51	
VTT	76.74	79.71	92.90	98.20	

VOCAL DETECTION METHOD & POST-PROCESSING

Frame-level decisions

Input feature : Normalized Harmonic Energy (NHE)

$$NHE = \sum_{i=1}^{N} \left| X \left[k_i \right] \right|^2$$

- |X()| magnitude spectrum
- k_i bin number of local maxima closest to *I*th expected harmonic for given F0

GMM classifier

Post-processing

Grouping of frame-level labels over automatically segments [Foote 2000] by majority vote [Li & Wang07]

VOCAL DETECTION PRE-PROCESSING

VOCAL DETECTION RESULTS

- □ V Vocal accuracy
 - % of actually vocal frames detected as vocal
- □ I Instrumental accuracy
 - % of actually Instrumental frames detected as Instrumental

		Before Grouping			After Grouping		
_		V	Ι	Overall	V	Ι	Overall
Before SS	V	86.9	13.1	87.8	92.3	7.7	92.4
	I	5.6	94.5		6.2	93.8	
After SS	V	91.6	8.4	91.9	96.6	3.4	96.2
	I	6.1	93.9		6.6	93.4	

FINAL SYSTEM BLOCK DIAGRAM

CONCLUSIONS & FUTURE WORK

Conclusion

- TWM is more robust to sparse, harmonic interference even at low SIRs
 - This is attributed to the specific form of its error function
- NHE serves as a reliable indicator of voicing
- **D** Future work
 - Secondary melodic instrument problem
 - Investigating methods of instrument suppression based on sinusoidal modeling

MELODY EXTRACTION COMPARISON OF TWM-DP TO MIREX'06 SUBMISSIONS

- RPA Raw pitch accuracy (Tolerance : 50 cents) [Poliner 2007]
- RCA Raw chroma accuracy (All pitches folded down to one octave)

Datacat	Algorithm	Vocal		Instrumental		Overall	
Dataset	Algorithm	RPA	RCA	RPA	RCA	RPA	RCA
ISMIR 04	Dressler	77.1	78.0	88.7	90.1	82.9	84.0
	Ryynanen	78.3	79.3	82.8	85.3	80.6	82.3
	Poliner	65.4	69.0	81.0	83.9	73.2	76.4
	Sutton	67.5	68.0	57.7	62.9	62.6	65.4
	Brossier	56.3	63.5	58.5	73.8	57.4	68.7
	TWM-DP	83.1	88.9	69.9	80.9	78.0	85.8
MIREX 05	TWM-DP	80.2	82.3	74.5	79.7	78.5	81.5

VOCAL DETECTION COMPARISON OF NHE TO MIREX'06 SUBMISSIONS

Recall = % of actually voiced frames labeled as voice

- False alarms = % of actually instrumental frames labeled as voice
- **D** NHE threshold = -15 dB

	Vo	Vocal only		ocal only	All data				
Algorithm	Recall (%)	False Alm (%)	Recall (%)	False Alm (%)	Recall (%)	False Alm (%)			
	ISMIR 2004 Testing dataset								
dressler	89.8	10.9	92.0	9.5	90.9	10.5			
ryynanen	85.9	11.5	82.9	15.2	84.4	12.6			
poliner	88.4	34.5	91.4	40.4	89.9	36.3			
sutton	90.8	32.0	54.6	8.1	73.2	24.9			
brossier	99.8	93.9	99.7	82.9	99.7	88.4			
NHE	79.9	20.2	85. 9	18.6	82.2	19.7			
MIREX 2005 Training dataset									
NHE	82.3	17.4	93.1	41.1	85.5	26.1			

REFERENCES

- [Bol79] S. Boll, "Suppression of acoustic noise in speech using spectral subtraction," *IEEE Trans. on Audio, Speech and Signal Processing*, vol. 27, no. 2, pp. 113-120, 1979.
- [Bro92] J. Brown "Musical fundamental frequency tracking using a pattern recognition method," J. Acoust. Soc. Am., vol. 92, no. 3, pp. 1394-1402, 1992.
- [Chev02] A. de Cheveigné and H. Kawahara, "YIN, a fundamental frequency estimator for speech and music," *J. Acoust. Soc. Am.*, vol. 111, no. 4, pp. 1917-1930, 2002.
- [Foot00] J. Foote, "Automatic audio segmentation using a measure of audio novelty," in *Proc. of IEEE International Conference on Multimedia and Expo (ICME)*, New York City, 2000.
- [Herm88] D. J. Hermes, "Measurement of pitch by Sub-Harmonic Summation," *J. Acoust. Soc. Am.*, vol. 83, no.1, pp. 257-264, 1988.
- [Grif88] D. Griffin and J. Lim, "Multiband Excitation Vocoder," *IEEE Trans. On Acoustics, Speech and Signal processing*, vol. 36, no. 8, pp. 1223-1235, 1988.
- [LiWang07] Y. Li and D. Wang, "Separation of singing voice from music accompaniment for monoaural recordings," *IEEE Trans .on Audio, Speech and Language Processing*, vol. 15, no. 4, pp. 1475-1487, 2007.
- [Mah94] R. Maher and J. Beauchamp, "Fundamental frequency estimation of musical signals using a Two-Way Mismatch procedure," *J. Acoust. Soc. Am.*, vol. 95, no. 4, pp. 2254-2263, 1992.
- [Ney83] H. Ney, "Dynamic Programming Algorithm for Optimal Estimation of Speech Parameter Contours," *IEEE Trans. on Systems, Man and Cybernetics,* vol. SMC-13, no. 3, pp. 208-214, 1983.
- [Pol07] G. Poliner et. al., "Melody transcription from music audio: Approaches and evaluation," *IEEE Trans. on Audio, Speech and Language Processing*, vol. 15, no. 4, pp. 1247-1256, 2007.