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ABSTRACT

Computational Fluid Dynamics (CFD) software simulates fluid,
air flow and heat transfer by solving the Navier-Stokes (N-S) equa-
tions numerically. Realistic 3-D engineering simulations typically
yield the values of 7 or more variables (e.g. fluid component ve-
locities and temperatures) at hundreds of thousands of points in
space, all as a function of time. It has been noted that solutions
of the N-S equations sometimes yield highly complex, non-linear
flow fields which can be aesthetically interesting from a purely vi-
sual standpoint.

The analysis of CFD results may benefit substantially from
sonification, to depict convergence behavior, scan large amounts
of data with low activity, or codify global events in the flow field.
As a corollary to this interest in developing CFD sonification tech-
niques, we can explore its unusual potential as a tool for algorith-
mic musical composition.

This paper will report the results of an initial implementation
of the author’s port of the two-dimensional, steady, laminar CFD
code TEACH-L on a JAVA platform, in which the numerical out-
put is linked in real time to the JSyn digital audio synthesis pack-
age. The sonification of steady, laminar, developing flow in a two
dimensional duct will be described in detail.

1. INTRODUCTION

1.1. History

The non-linear partial differential equations governing the conser-
vation of mass, momentum and energy in fluids were derived from
first principles in the first half of the 19th century by J. Navier
[1] and G. Stokes [2]. Except for a few very restricted cases (e.g.
fully-developed laminar flow in a duct), these equations could not
be solved by analytical methods, and thus remained a mathemati-
cal curiosity until numerical methods on high speed computers be-
came available in the second half of the 20th century [3]. During
the past twenty years, general-purpose CFD software has emerged
as a practical tool for applying the Navier-Stokes equations to
the solution of realistic fluid flow problems in engineering and
physics. Today, several commercial CFD packages are routinely
used by engineers and scientists in such diverse fields as hyrdrody-
namics, aerodynamics, biomedical engineering, process industry,
heating, ventilating and air conditioning and environmental engi-
neering to name a few.

1.2. The CFD Process

A typical CFD analysis is carried out in six stages:

1. The complex, real-world situation to be analyzed is reduced
to a practical CFD project based on:

� The limitations of the CFD model being used.

� The available time and computational resources.

� Engineering judgment as to what details of the flow
field are essential to the anlysis.

2. The geometry of the region of interest is either imported
from a CAD package or constructed from scratch in the
CFD package. Imported geometries often contain details
which are extraneous to the CFD analysis and must either
be modified or removed.

3. A computational grid is generated which must generally
satisfy the following constraints:

� The total number of grid points must not be so large
as to overwhelm the limitations of CPU storage and
speed.

� The grid must be fine enough to resolve the details of
the flow field which are of interest to the user.

� The characteristics of the grid must be compatible
with the solver: there can be no sudden changes in
cell size and cells may not have too high an aspect
ratio or be extremely skewed.

4. Boundary conditions must be applied to all regions of the
computational domain and the physical properties of the
fluid(s) must be specified.

5. Various solution control parameters and solver options must
be set. The solver is then started and must be monitored
until a converged solution is achieved.

6. The results are then post-processed, sometimes within the
CFD package itself, or else exported to a data visualization
package.

This cycle is often repeated several times before a final, satis-
factory result is obtained.
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1.3. CFD and Sonification

To the author’s knowledge the above-described process is currently
carried out entirely in the visual domain. There are no commercial
CFD packages which make use of sound to enhance the interaction
between the engineer and the data.

Furthermore, very little research into sonification and CFD has
been published. McCabe and Rangwalla [4] presented two ex-
amples of auditory display: the simulation of an artificial heart
pump and rotor-stator interaction in turbomachinery. In the first,
MIDI sound was used to enhance the post-processing of the ar-
tificial heart simulation, in particular to signal global changes in
the system such as the opening and closing of a heart valve. In
the second, the time-varying pressure field predicted by the model
was rendered directly into sound. The simulated sound was then
compared with known characteristics of the actual sound, and con-
clusions then drawn about the validity and accuracy of the CFD
model.

The potential, however, for the use of sound in almost every
aspect of the CFD process, seems considerable, and could be con-
sidered at many of the stages:

1. The model geometry could be sonified so that glitches and
discontinuities in curves and surfaces, which often occur
upon transfer from a CAD package to a CFD package, could
be quickly identified. In this mode, a smooth geometry
would have a pleasing, harmonious sound, and discontinu-
ities could be represented by bursts of noise or discordant
pitches.

2. The grid could be sonified in an analogous manner, through
the use of unpleasant sounds to highlight badly skewed or
high aspect ratio cells.

3. Real-time sonification of the solver would be analogous to
the frequently cited example of the auto mechanic listening
to the car engine. CFD solvers work iteratively on non-
linear mathematical systems. They frequently diverge or
“hunt” without reaching a converged solution. The CFD
analyst is required to adjust many solution control parame-
ters, and even choose between alternative solution stragies,
in the hope that the solver engine will “behave” and provide
a converged solution. Monitoring the solution process via
the display alone is monotonous and unproductive; adding
sound would allow the analyst to:

� Listen to the solution in the background while pursu-
ing other tasks.

� Recognize favorable sound patterns which indicate
good choices of solution control parameters and re-
flect a smoothly running computational “engine.”

4. There are many aspects of adding sound to the post-proces-
sing of CFD data:

� The recognition of significant patterns in the (soni-
fied) data which are not apparent from visual dis-
plays.

� Increased productivity in examining large amounts of
data by concurrent visual and aural displays.

� The sonic codification of global events in the flow
field which are difficult to perceive from the visual
diplay of local details [4].

� The comparison of sound rendered from simulations
of the pressure field with recorded sounds from the
corresponding experiment [4].

1.4. CFD and Music

As a corollary to sonification work, there are various ways to con-
sider CFD as a source of new musics. First, CFD provides a nu-
merical mirror into the natural world, which has long been an in-
spiration to composers. For example, a classic CFD result is to pre-
dict von Karman vortex streets [5] in the wake of a circular cylin-
der in a cross wind. This periodic vortex shedding phenomenon
sometimes gives rise to audible frequencies, as when the telephone
wires “sing” in a breeze. The scope of CFD also includes the mod-
eling of the compression waves which produce sounds, even in
brass or wind instruments. So CFD could be thought of as a tool
to enhance the relationship of the composer with sound phenom-
ena in the natural world.

Second, the graphical representations of the results of CFD
models are often aesthetically interesting. A common method of
visual rendering is to trace the paths taken by fluid particles, see
for example Fig. 1. In flowfields with obstructions and/or complex

Figure 1: Particle Paths

geometry, especially if natural convection is present, the particles
often get caught up in a complex structure of vortices, such as the
horseshoe vortex shown in Fig. 1. Under the appropriate condi-
tions, smaller and smaller vortices are spawned from their parents,
until a turbulent or chaotic flow structure results. Other graphical
renderings include the representation of local fluid velocities by
vectors whose size, direction, and color depend on velocity mag-
nitudes and other parameters, see Fig. 2. Both styles of visual
renderings (and others not mentioned here) could be taken as a
point of departure for sound exploration.

Thirdly, CFD could be used as a tool for algorithmic compo-
sition, following a tradition started by Iannis Xenakis [6] [7] who
drew extensively on mathematical formulations from science and
engineering. CFD is particularly attractive since the algorithms
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Figure 2: Vectors

it uses are iterative by nature, and generate numbers that evolve
over time. There is therefore a potential for CFD to generate live
musical compositions.

1.5. Scope of Present Work

This paper will focus on the real-time sonification of Stage 5 (so-
lution) of the CFD process.

An academic CFD research code TEACH-L [8], originally
written in FORTRAN, was ported by the author to Java in or-
der to make use of JSyn [9], a digital audio synthesis package.
JSyn (Java Synthesis) is a Java API (application programming
interface), which provides several classes of objects that can cre-
ate and modify sound. A fast DSP synthesis package written in
C lies beneath JSyn’s hood. All Java synthesis calls are passed
transparently to the C engine.

TEACH-L solves the steady, laminar equations of the conser-
vation of mass, momentum (Navier-Stokes) and energy on a two-
dimensional, cartesian grid, using a hybrid differencing sheme and
the SIMPLE (Semi-Implicit Method for Pressure-Linked Equa-
tions) algorithm [10] to correct the pressure field. The algebraic
equations are solved line-by-line (LBL), using the tri-diagonal ma-
trix algorithm (TDMA). The TEACH-L code is extremely com-
pact. There is no user-interface. To set up the geometry, grid,
boundary conditions, and physical properties, the user must write
her own subroutines using the templates provided. This structure
was retained in the Java port, so that TEACH-L consists of a CFD
API.

The compactness of TEACH-L, together with the flexibility of
the JSyn API, afforded a reasonable implementation on a Macin-
tosh G3 Powerbook, providing a tool for the in-depth exploration
of various sonification strategies for a CFD solver.

In the following sections, the physical and mathematical basis
of TEACH-L will be presented. One sonification strategy will be
explored, followed by results and conclusions.

2. PHYSICAL AND MATHEMATICAL BASIS OF THE
CFD SOLVER

2.1. The Governing Equations

In the case of steady, two-dimensional flow, the continuity (con-
servation of mass) equation is:
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where g is the acceleration due to gravity (m/s2), p is the fluid
static pressure (Pa) and � is the fluid dynamic viscosity (kg/ms).

The energy conservation equation for the fluid, neglecting vis-
cous dissipation and compression heating, is:
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where cp is the fluid specific heat at constant pressure (J/kg K), k
is the fluid thermal conductivity (W/m K), and t is the fluid static
pressure (K).

2.2. Discretization

To solve the non-linear partial differential equations from the pre-
vious section, it is necessary to impose a grid on the flow domain
of interest, see Fig. 3. In TEACH-L, discrete values of fluid veloc-
ities, properties, pressure and temperature, are stored at each grid
point (the intersection of two grid lines). To obtain a matrix of al-
gebraic equations, a control volume is constructed (shaded area in
the figure) whose boundaries (shown by dashed lines) lie midway
between grid points P and its neighbors N , S, E, W . A complex
process of formal integration of the differential equations over the
control volume, followed by interpolation schemes to determine
flow quantities at the control volume boundaries (n, s, e, w) in
Fig. 3, finally yield a set of algebraic equations for each grid point
P [11]:

(AP �B)�P �
X

c

Ac�c = C; (5)

where the subscript c on
P

, A and � refers to a summation over
neighbor nodes N , S, E and W , � is a general symbol for the
quantity being solved for (u, v or t), AP , etc. are the combined
convection-diffusion coefficients (obtained from integration and
interpolation), and B and C are, respectively, the implicit and
explicit source terms (and generally represent the force(s) which
drive the flow, e.g. a pressure difference).
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Figure 3: Control Volume

2.3. Solution

Equation (5) must be written at each node where the value of �P is
required; doing so will generate an N �N matrix of simultaneous
equations, where N is the number of nodes in the solution domain.
It is usually impractical to invert this matrix directly, so instead a
line-by-line (LBL) scheme is used, see Fig. 4. In the LBL scheme,

Figure 4: Line-By-Line Scheme

only one line at a time is solved, quantities on other lines are con-
sidered to be “known”. Thus, a smaller n� n tri-diagonal matrix
results, where n is the number of nodes in the j direction. The
solver starts at the first i-index line in the solution domain, and
“sweeps” from left to right.

Because the partial differential equations are non-linear, the
resulting algebraic matrix equations will be also, that is, the con-

vection-diffusion coefficients AP , etc. will themselves be func-
tions of the �’s. An iterative solution is thus required, as follows:

1. The coefficients for Eq.(5) in which � = u are formed, and
the current global “error” or “residual” is calculated. The
matrix of coefficients is solved by LBL and new values of
� = u are obtained.

2. The same is done for � = v and � = t.

3. A “pressure correction” equation, derived from the mass
conservation equation is solved in a similar manner, the val-
ues of pressure at each note are updated [10].

4. The global errors calculated in each of the above steps are
then all compared to a set of target values. If these errors
fall below the target, the solution has converged and the cal-
culation stops. Otherwise, the calculation resumes at step 1.

2.4. Solution Control Parameters

There are two sets of parameters which are set by the user to con-
trol the progress of the solution, the underrelaxation factors and
the sweep controls. In an iterative, numerical solution, underre-
laxation slows the rate of change of a variable from one iteration
to the next. Underrelaxation is necessary for numerical stability
and to avoid divergence of the solution. Sweep controls for each
variable are set to control the number of times, per iteration, the
LBL procedure is applied to the coefficient matrix. The greater the
number of sweeps, the better the matrix inversion at a particular
iteration (but the greater the amount of CPU time required.)

3. DUCT FLOW EXAMPLE

As an example of a solver sonification, the simple problem of
steady, laminar, two-dimensional developing flow in a planar duct
will be considered (see Fig. 5). In this flow situation, fluid en-
ters at the left with a uniform velocity profile, which develops, as
the fluid reaches the end of the duct on the right, into a parabolic
profile which is characteristic of “fully-developed” flow, Eq. 6:

1.0 m

0.5 m
µ = 1.0 kg/ms
ρ = 1.0 kg/m^3
Uin = 1.0 m/s

Figure 5: Developing Flow in a 2D Duct

u =
3

2
um(1�

4y2

c2
); (6)

where um is the average velocity (in this case, 1 m/s), c is the
height (in this case 0.5 m) and y = 0 at the centerline of the duct.
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When the flow is fully developed, the transverse velocity compo-
nent v vanishes, and the pressure p changes only linearly with x:

�p =
12um��x

c2
(7)

which gives the pressure drop �p over some x-direction length
�x, and where the viscosity � is in this case 1 kg/ms.

A coarse 7�7 evenly spaced grid was used, yielding a total of
5� 5 = 25 internal or “live” cells at which the values of u, v and
p are updated at each iteration by the solver. With this very simple
configuration, the solver converges in about 20 iterations.

3.1. Sonification Strategy

The purpose of this sonification was to gain insight into the solver
by listening to its progress in real time. To accomplish this, 5 sine
oscillators were set up to correspond to each column of “live” grid
points. As the solver (for u, v then p) sweeps through the domain
from left to right, first the column at i = 1 sounds, from j = 1; 5,
with slight arpeggiation, and so on, with a slight pause for each
column, through i = 5. Thus, each iteration produces 25 notes per
variable, for 75 total.

In most CFD simulations, general trends and flow behavior
are known to the engineer in advance of the calculation. In this
sonification, the pitch strategy for each variable was selected so
that the anticipated behavior in the flow direction could be “heard”:

1. Development of u from a flat to a parabolic profile.

2. Vanishing of v.

3. Linear decrease of p in the flow direction.

3.1.1. Pitch Mapping

The values of u range from uniformly 1.0 at the inlet (near i =
1) to values in the range 0:0 � u � 1:5 at the flow exit (near
i = 5). The initial guess for u throughout the domain is 0.0. As
the solution iterates, values of u well in excess of 1.5 may result.
The values of u were mapped to pitch and scaled so that a value of
u = 1 would yield 440 Hz, with 55 Hz set as the minimum value
for values of u < 0:125.

The values of v range from approximately 0.1 near the inlet
to very small numbers near the exit (the initial guess throughout
the flow field, as for u, is v = 0:0). The values of v were also
mapped to pitch, but scaled up so that a value of v = 1 would
yield 8400 Hz. All nodes with values of v < about 0:05 were
mapped to a major triad with pitches (150, 300, 375, 450) Hz, for
nodes j = 2; : : : 5.

The values of p in incompressible fluid flow are generally cal-
culated relative to some numerically convenient reference value,
in this case pref = 1:0 Pa at node (i; j) = (1; 1). Values of p are
calculated relative to p(1; 1), where the significant pressure infor-
mation is the �p between nodes which drives the flow. Using this
scheme, the values of p range from �40: � p � 1:0. The local
value of p was added to a different major triad (100, 200, 300, 400,
500) Hz for j = 1; : : : 5. Because the values of the pressure are
fairly uniform at each i location, one hears, for this scheme, a suc-
cession of major triads whose pitch either increases, decreases or
stays the same.

3.1.2. Envelope

The envelope (attack, sustain, decay) characteristics were derived
from the matrix coefficients for each variable at each node:

t1 = AN ;

a1 = AN=AP ;

t2 = AS;

a2 = AS=AP ;

t3 = AE; (8)

a3 = AE=AP ;

t4 = AW ;

a4 = AW =AP ;

t5 = 1:0;

a5 = 0:0:

Equations 8 represent a 5 frame envelope where a1 is the ampli-
tude of the first frame, t1 is its rise time, etc. The values for the
fifth frame are set to constant values of 1.0 and 0.0 respectively to
ensure that the oscillator will turn off. The values of t1 were con-
strained to be at least 0.05 secs, to avoid clicks due to zero-length
frames. Division of all neighbor coefficients AN , etc. by the cen-
ter coefficient AP ensures that 0:0 � an � 1:0, since the center
coefficient is always greater in magnitude than its corresponding
neighbors.

3.1.3. Duration

In general, as the solver proceeds and makes available the latest
values of variable and coefficient at each node, the mapped pitches
and envelopes were queued to the oscillators. However, to make
the sonic result more intelligible, some delays were added. Firstly,
very slight delays were added between nodes in each column, to
produce something like an arpeggiated chord. Secondly, a longer
delay was added at the conclusion of each column, before proceed-
ing to the next column. Thirdly, at the conclusion of the sonifica-
tion of a variable at all 25 nodes, a longer delay was added propor-
tional to the global error calculated for that variable. Thus, as the
calculation proceeds, this delay decreases as the error is reduced.
Finally, at the conclusion of a single iteration, a longer delay was
added. It is thus possible for the listener to distinguish, based on
the delay between notes, the different stages of the calculation.

3.1.4. Timbre

No specific timbral mapping was attempted, since a sine oscilla-
tor was used for all notes. However, because each note was given a
unique envelope, some striking timbral differences resulted, mainly
from different attack times.

4. RESULTS

The parameter/variable mapping choices described in the previous
section had the following effects:

� The u velocity sonification captured the oscillations of the
solver well. The solver initial guess of u = 0 was followed,
at the second iteration, by values considerably overshoot-
ing the final result. This behavior sounded like a sequence
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of low, followed by high frequency chord progressions, fi-
nally settling out to a noticeably repeating sequence during
the final iteration. Owing to large values of the neighbor
coefficients AN , etc. and the large values of center coeffi-
cient AP at most nodes relative to the neighbors, the attack
times were long, and the amplitudes low. Thus the u veloc-
ity sonification sounded ethereal and slowly evolving and
was easily distinguished from the v velocity and p data.

� From the v velocity sonification, it was easy to hear an ini-
tial guess of v = 0, via the major chord, followed, after
oscillations, by non-zero (higher frequency) sounds at the
inlet, and vanishing values near the flow exit. The attack
times for this variable were shorter than those for the u ve-
locity, and the amplitudes higher. It was thus easy to hear
the transition from the u to v sonification.

� The p sonification was very different in timbre to those for
u and v, owing to much shorter attack times and higher am-
plitudes. It was thus easy to perceive the onset of p data,
and to hear, at each iteration, whether the pressure was in-
creasing, staying the same, or finally, as in the converged
solution, decreasing in the direction of flow.

5. CONCLUSIONS

The sonification of this simple duct example afforded enhanced
interaction with the data in two important ways:

1. The ability to monitor the progress of convergence of the
data throughout the flow field. In most CFD packages, vi-
sual monitoring of solution progress is only practical at one
or two locations. The addition of sound allows the engi-
neer to hear that, on a global basis, the solution is or isn’t
evolving as expected, and roughly where in the domain a
problem might exist if there is one.

2. The ability to notice differences in data (the neighbor and
center coefficients), via the envelope characteristics. The
different timbres in the three variables aroused curiosity,
and triggered further investigation of these coefficients, in
order to determine if their values were correct, and to ques-
tion why they were different for each variable.

In general, it is clear that the addition of sound has enormous
potential for the critical examination of CFD simulations and mer-
its further investigation.

6. FURTHER WORK

The current sonification was extended to add spatialization of the
sound, so as to hear a sweeping progression from left to right.
More complex “instruments” were constructed, to enhance the ef-
fect of local coefficients, and to add the effect of additional co-
efficients not currently mapped, such as source terms, and local
conservation errors.

The ultimate goal should be to map every available parame-
ter in the numerical world to some recognizable characteristic in
the sound domain, in such a way that it can be distinguished and
singled out for inspection and further investigation if warranted.

7. MUSICAL COMPOSITIONS

The duct flow example was used as an algorithmic composition
tool by recording several solver runs with different parameter set-
tings so as to change the tempi or pitch centers. Various soundfiles
were created, processed, and mixed using ProTools software.
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