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In this thesis a method for unsupervised segmentation of continuous speech is introduced.

The method is based on Vector AutoRegressive (VAR) modeling. The VAR model is used in

the auditory time-frequency domain to predict spectral changes. The forward and backward

prediction error increases at the phone boundaries. These error signals are then used to study

and detect the boundaries of largest changes allowing the most reliable automatic segmentation.

The fully unsupervised method leads to segments consisting of a variable number of phones.

The robustness and quality of performance of the method was tested by using a set of 201

Finnish sentences pronounced by one female and two male speakers. The boundaries between

stops and vowels, in particular, are detected with high probability and accuracy.

Keywords: Speech analysis, speech segmentation, vector autoregressive modeling

i



TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Petri Korhonen

Työn nimi: Jatkuvan puheen automaattinen segmentoiminen

käyttäen vektoriautoregressiomallinnusta

Päivämäärä: 13.12.2004 Sivuja: 57

Osasto: Sähkö- ja tietoliikennetekniikka

Professuuri: S-89

Työn valvoja: Prof. Unto K. Laine

Työn ohjaaja: Prof. Unto K. Laine

Tässä diplomityössä esitellään menetelmä jatkuvan puheen segmentoimiseen. Menetelmä pe-

rustuu vektoriautoregressiiviseen (VAR) mallinnukseen. VAR mallia käytetään aika-taajuus

alueen muutoksien ennustamiseen. Ennustus tehdään sekä mallia edeltävälle datalle, että mallin

jälkeen tulevalle osalle. Mallin antama ennustusvirhe kasvaa äännerajoilla. Näitä virhesig-

naaleja käytetään segmenttirajojen havaitsemiseen. Suurimmat muutokset antavat luotettavim-

man segmentoinnin. Itseohjaava menetelmä tuottaa segmenttejä, jotka koostuvat vaihtelevasta

määrästä äänteitä. Menetelmän häiriönsietokykyä ja laatua testattiin käyttäen 201 suomen kie-

len lausetta. Puhjujina oli kaksi miestä ja yksi nainen. Erityisesti klusiilien ja vokaalien väliset

rajat havaittiin luotettavasti ja tarkasti.

Avainsanat: Puheenanalyysi, vektoriautoregressio, puheen segmentointi
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Chapter 1

Introduction

1.1 Motivation of this Thesis

Many subfields of speech technology need robust methods for automatic speech segmen-

tation. Segmentations are indispensable for the initial training of acoustic ASR models,

the development of TTS systems and speech research in general. Preferably, segmentation

methods should be fully speaker- and language-independent. They should perform segmen-

tation without any prior information about the speaker of the utterance in question. These

methods should not rely on any type of prior learning, and should be able to process un-

known utterances in a fully unsupervised manner.

In this thesis a novel method for automatic speech segmentation, which fulfills, to a certain

degree, the hard demands mentioned, is introduced. The method is based on detecting un-

predicted changes in auditory time-frequency representation of continuous speech at phone

boundaries using Vector AutoRegressive modeling. The development of the segmentation

system introduced here started from the aim of analyzing and capturing the temporal as-

pects of speech signal in more detail for speech recognition. The novel method presented in

this thesis produces segments consisting of phone clusters of different lengths. The method

does not find all the segment boundaries, since the some segment boundaries do not pro-

duce a rapid change in the spectra. When facing speaker independent unlimited vocabulary

(e.g. inflectional languages) continuous speech recognition, the words have to be split into

to smaller units such as morphemes; hence, not every phone boundary needs to be detected.

Segments similar to syllables or morphemes consisting one to many phones do apply as well

- as long as the total number of different segments is not too high for modeling purposes.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Block diagram of a speech recognition system

1.1.1 Segmentation for Speech Recognition Systems

Automatic recognition of unlimited vocabulary speaker independent continuous speech has

been described as one of the most difficult engineering tasks at the moment. The main idea

is simple: to transform spoken audio stream into a string of tokens i.e. text. Applications

can vary from limited vocabulary speaker dependent word recognition to speaker indepen-

dent unlimited vocabulary continuous speech recognition systems. The ultimate goal for

speech recognition is to develop a system whose performance meets the speech recognition

accuracy of humans. This task is by no means easy, and as the sophistication of the speech

recognition systems grows, it becomes more obvious that we need methods specializing in

subtasks. This thesis will decribe a solution for one of these subtasks in speech analysis.

The ways of performing speech recognition by machine can, broadly speaking, be divided

into three classes: the acousic-phonetic approach, the pattern recognition approach, and the

artificial intelligence approach [1]. Regardless of the methods used, most of the speech

recognition systems share the same basic building blocks. The structure of state-of-the-art

speech recognition is presented in Figure 1.1. The first block of a speech recognition system

is a signal processing part (feature extraction). In frame-based speech recognition systems
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the feature extraction part converts the time domain signal into a set of equally spaced dis-

crete features usually computed at 10ms. In segment-based systems such as SUMMIT [2]

the signal is broken into variable length segments corresponding the hypothesized phones.

Each segment has a feature vector representing the phone. Using the segmental framework

for recognition, the richer set of acoustic-phonetic features can be used. In both frame-

based and segment-based systems these features are supposed to carry compact yet suffi-

cient information about speech for classification into units. These units can be, for example,

phonemes, diphones, triphones, words, or even longer units. The choice of the recognition

unit depends on the application, and even on the language, which is the case in the Finnish

language, where the number of possible words poses limitations for practical purposes. The

feature extraction part is followed by the recognizer. The actual recognizer part uses acous-

tic models, lexicon, and language modeling to produce a recognition hypothesis from these

features [3].

1.1.2 ASR and HSR

Despite the significant advances made in the field of speech research, especially since the

advent of HMM based ASR systems, this goal is nowhere near completion. The compari-

son of speech recognition made by machines and humans was conducted 1997 by Lippmann

[4]. Since there have only been incremental improvements to HMM based ASR systems,

this comparison can still be considered valid [5]. Lippmann’s conclusion is that to reduce

the gap between ASR and HSR, the most effort should go into to improvement of the low

level acoustic-phonetic modeling. His studies showed that the performance of the ASR sys-

tem on a continuous speech corpus drops from 3.6% WER to 17% WER when grammar

information is not used. The corresponding reduction of WER with HSR was from 0.1%

to 2%. ASR performance on a connected alphabet task was reported to be about 4% while

the same error rate with HSR was 1.6%. This 1.6% WER can be considered as an upper

bound of human performance on an isolated alphabet. This shows that the ASR is much

more dependent on high level language information than HSR. Most improvements in ASR

systems in recent years have notably been in the field of language modeling.

Perceptual experiments carried out by Fletcher [5][6] give more evidence that humans carry

out highly accurate phoneme level recognition. The recognition error of phones in nonsense

consonant-vowel-consonant (CVC) syllables in best conditions was reported to be 1.5%. It

was also reported that the probability of correct recognition of the syllable is a product

of the recognition of the constituent phones. In review of Fletcher’s work, Allen [7] in-

ferred that individual phones must be correctly recognized for a syllable to be recognized

correctly. His conclusion was that it is unlikely that context is used in the early stages of
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speech recognition. This suggests that the focus in ASR research must be on phone recog-

nition. Fletcher also suggests that the recognition is done in separate frequency bands, with

recognition error rate being the minimum of error rates across all the frequency bands. In

HMM-based systems, the recognition is always carried out using all the frequency bands

at the same time. This makes the HMM based systems very different from human speech

recognition. Furthermore, state-of-the-art HMM based ASR systems use triphones as the

basic recognition unit, because of the poor performance of HMMs on the phoneme level.

Also, HMM based systems do not take into account the temporal information, which is a

distinctive feature in Finnish.

1.1.3 Shortcomings of Frame Based HMM Systems

HMMs have been the most widely used paradigm for speech recognition. They are higly

effective themselves, but some properties of HMMs can be questioned in use for speech

processing; especially for phonetic speech recognition [8]. Firstly, in most HMM-based

ASR systems, the acoustic modeling is restricted to an observation space defined by a tem-

poral sequence of feature vectors computed at a fixed frame rate. Within the same phonetic

segment, the adjacent frames often exhibit smooth dynamics and frames that are highly cor-

related. This violates the conditional independence assumption by the HMM. However, the

relationship between frames computed in different phonetic segments is weaker. This could

motivate a framework that makes fewer conditional independence assumptions between ob-

servation frames within a phonetic segment. This implies that we need a way to extract the

phonetic segments from a speech signal. Another property of the HMM-based ASR systems

is that they use homogenous, frame-based feature vectors such as Mel-frequency cepstral

coefficients (MFCCs) to represent speech. This might not be enough to capture certain

acoustic measurements known to be important for phonetic distinctions. Acoustic cues that

best characterize the phonetic distictions are tied to temporal landmarks in a speech sig-

nal. These are, for example, the point of oral closure or release, or other points of closure

or opening in the vocal tract produced during speech production. Laine and Hirvonen [9]

showed that temporal information is important with recognition of stop consonants. They

state that the stop consonants, which are clearly the most difficult sounds for a speech rec-

ognizer, can be recognized with close to 100% accuracy with proper design of classifier.

This requires knowledge of the timing information of the sounds. These temporal land-

marks often correspond to phonetic boundaries, which has made many speech reseachers

consider segment- and landmark-based approaches for automatic speech recognition.
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1.2 Outline of the thesis

This thesis is divided into six chapters. Chapter 1 is laying the foundation for the thesis. In

chapter 2, the human speech production and perception chain are shortly reviewed. Also in

chapter 2 we take a look at the nature of the speech signal itself. In chapter three the signal

processing methods for speech analysis that are used in this work are introduced. Also

in chapter three, we shortly take a look at the methods others have proposed for automatic

speech segmentation. In chapter four the proposed segmentation algorithm is introduced. In

chapter five we evaluate the performance of the proposed segmentation method, comparing

it to segmentation conducted by human transcribers. Chapter six is devoted to conclusions

and perspectives, and it also lays down path to the future improvements of the proposed

method.



Chapter 2

Speech as a Tool for Communication

2.1 Introduction

In order to adequately model natural speech, we need to utilize knowledge about spoken

language structure. Essentially, the chain of a spoken language system can be divided into

production and perception, which are equally important components in this chain. The

chain can be further divided into distinct elements, as depicted in Figure 2.1.

Spoken language is fundamentally used to communicate information from a speaker to

a listener. It begins with a thought and intent to communicate in the brain. This semantic

Message Formulation

Language System

Neuromuscular Mapping

Vocal Tract System

Message Comprehension

Language System

Neural Transduction

Cochlea Motion

& %@
�

Speech Generation Speech Understanding

Semantics, actions

Phonemes, words, prosody

Feature extraction

Articulatory parameter

Speech generation Speech analysis

Figure 2.1: Chain of speech communication from production to perception
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message in a person’s mind should be transmitted to the listener via speech. The next step

is to convert this message into a sequence of words. Each word is considered to consist of a

sequence of phonemes that corresponds to the pronunciation of words. The term phonemes

is used to denote any of the minimal units of speech sound in a language that can serve to

distinguish one word from another.

Speech is not merely a sequence of phonemes; each sentence also contains a prosodic pat-

tern that denotes the duration of each phoneme, intonation of the sentence, and the loudness

of sounds. After the language system has carried out this mapping, the talker executes a se-

ries of neuromuscular signals. These neuromuscular commands perform articulatory map-

ping to control the vocal cords, lips, jaw, tongue, and velum. These vocal organs together

produce the sound sequence as the final output. [10]

In the perception part of the spoken language system, the speech understanding works in

reverse order. First the sound is passed through the outer- and middle-ear to the cochlea in

the inner ear. Inner ear performs frequency analysis as a filter bank. This spectral signal is

converted into activity signals on the auditory nerve by neural transduction process. From

that point on it is currently unclear how neural activity is mapped into the language system

and how message comprehension is achieved in the brain. [10]

2.2 Speech Production and Acoustic-Phonetics

2.2.1 Anatomy and Physiology of Speech Organs

Speech sounds are produced using speech organs. Here their structure and function are

shortly reviewed.

Organs of speech production can be divided into three parts: subglottal system, larynx

and its surroundings and supraglottal system. These are presented in Figure 2.2. In this

chain, airflow from the lungs passes through the larynx and vocal tract. This airflow exits

the mouth as pressure variations constituting the speech signal. [11]

The Subglottal System

The subglottal system consists of the lungs and the thorax. The lungs are situated in the

chest or thorax cavity. They are the source of an airflow that flows through the larynx and

vocal tract. In all speech sounds, the basic source of power is the respiratory system, which

pushes air out of the lungs.
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Figure 2.2: Vocal organs

The Larynx and Vocal Folds

The larynx constitutes of four cartilages: thyroid, cricoid, arytenoid and epiglottis. These

cartilages are joined by ligaments and membranes. The larynx connects the lungs to the

vocal tract through a passage called the trachea. Within the larynx there are a pair of elastic

structures of tendon, muscles, and mucous membrane called vocal folds. The length, thick-

ness and position of vocal folds can be controlled by means of various muscle contractions.

During normal breathing, the vocal folds remain sufficiently parted to allow free air passage

with little audible sound. The source of voiced speech sounds occurs in the larynx where

vocal folds obstruct airflow from lungs partially or completely to create either turbulent

noise or pulses of air. [12]

The Supraglottal System

The vocal tract is the most important component in the speech production system, since it

provides the means to produce the many different sounds that characterize spoken language.

It has two speech functions. Firstly it can shape the spectral distribution of energy in the

glottal sound wave. Secondly, it can contribute to the generation of obstruent sounds. [12]

The vocal tract can be modeled as an acoustics tube with resonances, called formants, which

can be altered by moving articulators.
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2.2.2 Articulatory phonetics

Articulatory phonetics relates linguistic features of sounds to positions and movements of

the speech organs. Though humans can produce an infinite number of sounds1 , each lan-

guage has a set of abstract linguistic units, called phonemes, to describe its sounds. A

phoneme is defined as the smallest contrastive unit in the phonology of a language [12](p.

55). The sounds within each phoneme class usually have some articulatory gesture(s) or

configuration(s) in common. Each language typically has 20-40 phonemes. In the Finnish

phoneme set there are eight vowels and thirteen consonants. Also three additional conso-

nants appear in loanwords.[3]

Consonants can be grouped a in such way that the same pattern or feature forms a de-

scription class for the group. Each class consists of consonants which are produced the

same way. These classes are called articulatory features. There are three types of articu-

latory features of consonants: (1) features of manner of articulation (2) the voicing feature

and (3) features of place of articulation.

Manner of Articulation

Manner of articulation is concerned with the way air flows through the vocal tract, which

path(s) it takes, and the degree it is impeded by vocal tract constrictions.

Vowels are produced when air flows through, the oral cavity meeting no constriction in

the middle of the vocal tract narrow enough to cause turbulent flow. In finnish there are 8

vowels (/a, e, i, o, u, y, ae, oe/). All the phonemes that do not match the criteria of vowels

are consonants. Compared to consonants, the production mechanism of different vowels is

quite similar. There are large differences between consonant classes, and thus conconants

are here divided into six subclasses: stops, fricatives, nasals, tremulants, laterals, and semi-

vowels.

Stops are produced with a complete or almost complete closure of a vocal tract and sub-

sequent release of obstruction. After a vocal tract closure, the pressure builds up behind

the occlusion. At this point there is little or no sound present. The sudden release of this

pressure creates a brief (e.g., 10 ms) acoustic burst or explosion. Stops can be either voiced

or unvoiced. Voicing is maintained during the closure of voiced stops. The voicing requires

air to enter the vocal tract behind the occlusion, expanding the tract until the occlusion is

1within the constraints of the vocal tract
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released. During this expansion sound is weakly radiated through the walls of the vocal

tract. Voiced and unvoiced pairs of stop consonants include /b,p/, /d,t/, and /g,k/.

Nasals are always voiced consonants which are produced by letting the air flow through

the nasal cavity by lowering the velum, and closing the vocal tract.

Fricatives are produced through constriction somewhere in the vocal tract, in the pharynx

(rarely) or at the glottis narrow enough to produce noisy turbulent air flow. In the Finnish

language the fricatives are voiceless, except /h/ which can be voiced between two vowels.

There are two fricatives in the Finnish language [h,s] and phoneme [f] can be found in loan

words.

Laterals. The vocal tract is blocked by pressing the tip of a tongue against the alveolar

ridge. However, there is a passage on both sides of the tip of a tongue to let sound waves

and air flow freely. The finnish language has one lateral /l/.

Semi-vowels are much like vowels, but the constriction of the vocal tract is more power-

ful, less stable, and more context dependent. This are /j,v/

Trill. In the Finnish language /r/ is produced by letting the tip of the tongue vibrate against

the alveolar ridge. The rate at which the tongue vibrates is typically 20 to 25 Hz. The

vibration produces an effect similar to amplitude modulation.

Place of Articulation

In order to produce consonants, the airstream from the lungs must be obstructed. Conso-

nants can be classified according to the place and manner of these obstructions. Place of

articulation is concerned with the point of narrowest vocal tract constriction that enables

finer discrimination of phonemes. Phonemes according to their places of articulation are

called bilabials, labiodentals, dentals, alveolars, retroflex, palato-alveolars, palatals, and

velars [13]. Places of articulation are shown in Figure 2.3

2.2.3 Grapheme to Phoneme Conversion

Graphemes are the set of written symbols that are used to represent speech. Graphemes

include for example letters, Chinese ideograms, numerals, punctuation marks, and other

symbols. In writing systems that use letters as unit, the graphemes are grouped together in a

string to represent words. They are not completely arbitrary, but have some correspondance
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Figure 2.3: Places of articulation. 1. Bilabial; 2. Labiodental; 3. Dental; 4. Alveolar; 5.

Retroflex; 6. Palato-Alveolar; 7. Palatal; 8. Velar.

to the phonemes in words. Unlike most languages of the world, the Finnish language’s

grapheme to phoneme conversion is quite straightforward. There is one to one mapping

between graphemes and phonemes, with only a few exceptions.

2.3 Hearing

Hearing function is performed by the organ we call the ear, but recent research has empha-

sized that much of our hearing also depends on the data processing that occurs in the central

nervous system as well [14]. This knowledge of nonlinearities of human hearing is more

and more taken into account in speech processing.

2.3.1 Anatomy and Physiology of the Ear

The anatomy of ear is often divided into three sections: the outer ear, the middle ear and the

inner ear. Here anatomy and functions of these three parts are shortly reviewed.

Outer ear. The parts of the outer ear are the pinna and auditory canal (meatus) which

is terminated by the eardrum (tympanum). The function of the outer ear is to contribute

to determination the direction of origin of sounds. Also, the auditory canal is a 1/4-wave

pipe resonator, which boosts frequencies from 2000Hz to 5000Hz. The pinna funnels sound

waves into the ear canal, and then sounds are conducted to middle ear via eardrum.
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Middle ear. The middle ear consists of three small bones called ossicles (hammer, anvil,

stirrup), which are connected to outer ear via the eardrum. The ossicles act as a lever, which

changes pressure exerted by a sound wave on the eardrum into greater pressure on the oval

window of the inner ear. Also the difference in the areas of eardrum and oval window boosts

the signal.

Inner ear. The inner ear is composed of semicircular canals and the cochlea. The semi-

circular canals are the body’s horizontal-vertical detectors, but contribute little or nothing

to hearing. The cochlea contains all the mechanisms for transforming pressure variations

into properly coded neural impulses. It is connected to the middle ear through the oval and

round windows.

2.3.2 Sound Perception

Hearing works in a non-linear fashion. The physiological behavior of the ear in response

to simple tones is relatively straightfoward. However, most sounds are time varying and

have many spectral components. The cochlear processes of basilar membrane vibration

and neural firings are highly nonlinear. As a result the perception of sound energy at one

frequency is dependent on the distribution of sound at other frequencies and on the time

course of energy before and after the sound. What a person hears in response to a given

sound is an often complicated question.

Nonlinear Frequency Scales

Psychoacoustic experimental work has been undertaken to derive frequency scales that at-

tempt to model the natural response of the human perceptual system. This is due to the fact

that the cochlea of the inner ear acts as a spectrum analyzer. Perceptual attributes of sounds

at different frequencies may not be entirely simple and linear in nature. Pitch is a term used

to describe the position of sound on a scale from high to low. It is a subjective sensation.

The pitch of a sound is mainly determined by the frequency for pure tones, but pitch may

also change with sound level. For complex sounds, it also depends on the spectrum of the

sound and duration.

The Mel-scale is a perceptually motivated frequency scale based on experiments with si-

nusoids. In these experiments subjects were required to divide given frequency ranges into

four perceptually equal intervals or, alternatively, to adjust the frequency of a stimullus tone

to be half as high as that of a comparison tone. The Mel-scale is linear below 1 kHz, and

logarithmic above that. The Mel-scale is hoped to model sensitivity of human ear more
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closely than a purely linear scale and to provide for greater discriminatory capability be-

tween speech segments. Mel-scale frequency analysis has been widely used in automatic

speech recognition systems. Equation 2.1 can be used to approximate the Mel-scale.

B(f) = 1125 ln(1 + f/700) (2.1)

Another perceptually motivated scale is the Bark frequency scale. The Bark-scale is based

on critical bands. The auditory system performs frequency analysis of sounds into compo-

nent frequencies. The cochlea in the inner ear acts as overlapping filters having bandwidths

equal to the critical bandwidth. As with the Mel-scale, it is also hoped that treating spec-

tral energy over the Bark scale, a more natural fit with spectral processing in the ear can be

achieved. Bark frequency can be calculated from linear frequency (in Hz) with equation 2.2

[15].

b(f) = 13 arctan(0.00076f) + 3.5 ∗ arctan((f/7500)2) (2.2)

From these two scales Mel scale has gained popularity in the ASR community.

2.4 Speech Perception

2.4.1 Introduction

Much is known about how audition converts speech signals into patterns of auditory nerve

firings, but the mechanisms by which the brain translates these nerve firings into a linguistic

message are much less understood. Underneath the apparent ease to understand speech eas-

ily under most conditions lurk complex processes. One way to appreciate this complexity

is to consider attempts to develop computer systems for automatic speech recognition. As

impressive as the developments these systems have undergone are, they pale in comparison

to the ability of humans to understand the speech in different settings.

2.4.2 Problems Posed By The Speech Stimulus

The researchers who are trying to understand the mechanisms of speech perception face

the problem that the relationships between the acoustic signal and the sounds we hear are

extremely complex. There are two main reasons for this complexity: namely, the segmen-

tation problem and the variability of the acoustic signal. These problems are the reasons

why it has been so difficult to design machines that can recognize spontaneous continuous

speech.
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The Segmentation Problem

If we listen to someone speak, we can segment the stream of speech we hear into individual

words quite easily. If we take the same acoustic signal, we can see that the signal is not

neatly separated into individual words or phonemes. The acoustic signal is continuous and

there are not necessarily any clear physical breaks in the signal, or there might be breaks

that do not correspond to the breaks we perceive between words or phonemes.

Sometimes the context is needed to achieve the correct segmentation, because two different

words can have the same phonetic structure. For example ”I scream”, and ”ice cream” are

identical, and the different word segmentation must be achieved by the meaning of the sen-

tence in which the words appear.

Phonetic segmentation of speech signal is essentially a task of determining a time instance

where one phoneme changes to another. This task is relatively easy if in the speech produc-

tion there is some discrete even that marks the begining of a pronunciation of a phoneme.

For example the time instance of a release burst is clearly defined event in the temporal do-

main. On the other hand if we consider for example a transition from one vowel to another,

there is no discrete physical event that happens in speech production, but instead the vocal

organs move rather slowly from one target position to another. To determine where one

phoneme ended and another started is in this case is rather difficult.

The Variability Problem

The phoneme can have different forms that are determined by variety of sources. This

phenomenon has been called “acoustic-phonetic non-invariance problem” by Klatt [16]. If

we consider phonemes to have a perceptual reality, they might be expected to possess some

acoustic characteristics that serve to differentiate one phoneme from another. Convincing

evidence of existence of such phonetic invariance has not been found for all phonemes

despite careful research.

Variability from a Phoneme’s Context Depending on its context, properties of the acous-

tic signal associated with a phoneme changes. The effect of context is a result of the way

speech is produced. As we speak the articulators are constantly moving, so the shape of

the vocal tract for a particular phoneme is influenced by the shapes for the preceding and

following phonemes. This phenomenon (overlap between the articulation of neighboring

phonemes) is called coarticulation.
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Variability from Different Speakers For different speakers a particular phoneme can

have very different acoustic signals. People say the same phonemes and words with dif-

ferent pitch, different accents, and different speed. Also the fine structure of vocal organs

change from one person to another. Speakers also introduce variability to acoustic signal

with sloppy pronunciation.

The variability in the acoustic signal caused by reasons explained in the previous paragraphs

creates problems for the listener. Highly variable speech signals should be transformed into

familiar words. Because of the segmentation problem and the variability problem, it has

been difficult to design machines that can recognize speech. On the other hand humans

somehow have the ability recognize speech despite the effects which seem to cause ex-

treme difficulties for machines. It is to some extent unclear how human do it, but research

conducted over the past 50 years has begun to unravel the mystery surrounding the human

speech perception. It is not to say we need to build a machine that performs the exact same

functions as human perception, but it might help us in the creation of an machine capable

to understand spoken language.

2.4.3 Vowel Perception

The production of steady-state vowels can be described in terms of static vocal tract shapes.

These shapes provide prototype targets for vowels, when they are articulated in words. The

perception of vowels in the isolated case (i.e no coarticulation effects from neighboring

phones) is based on their steady-state spectra. The locations of first three formants (F1-F3)

are considered to be most important factors2 .

In case of diphthongs, the shape of the spectra in the endpoint steady states is important.

The formant frequency locations for each vowel depends on three factors: the length of the

pharyngeal-oral tract, the location of constrictions in the tracts, and the degree of narrow-

ness of the constrictions.

In reality, the process of vowel perception is a much more complex process. We perceive

different vowel patterns of men, women, and children as the same vowel, and constant

vowels are perceived despite changes in its formant pattern due to coarticulation in differ-

ent phonetic contexts. The changing formants, over their trajectories between consonants,

2Formant is a resonance of the vocal tract. It is common to use the word formant to describe the spectrum

peaks, but strictly speaking the formants are acoustical properties of vocal tract that produced the spectrum

and only the effects of the formants are seen in the spectrum pattern of a speech, because spectrum is strongly

affected by the resonances of the vocal tract.
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are the key information that is processed into a constant vowel perception. Acoustic signal

associated with diphthongs could have steady-state formant pattern, if the speaker would

sustain vowels by maintaining the articulatory target in a "steady-state" for a longer period

of time. However, in fluent speech, the vocal tract is typically in constant motion, and thus

formant patterns also change throughout the course of syllables. This suggest that natural

the unit for automatic recognition of continuous speech could consist of a sequence of sev-

eral phonemes (e.g. syllable). The segmentation in syllabic level would obviously be easier

than in the phonetic level.

Perception of Steady-State Vowels

Acoustical analysis of natural vowels have shown that center frequencies for formants F1-

F3 vary systematically for different vowels. Perceptual studies have, however, shown that

vowels can be synthetically simulated by two-formant patterns. In these two-formant pat-

terns, one or the other formant constitutes a weighted average of two or more formants. It

seems that when formant frequencies are close, as F1 and F2 are for back-vowels, and F2

and F3 are for front vowels, they are perceptually integrated to form the "effective" formant,

which equivalent to an average of the two close spectral peaks. This integration happens

when two spectral peaks occur within a critical distance in a psychophysical frequency scale

(Bark scale). This effective formant is a single spectral peak of weighted average, both in

frequency and amplitude, of the cluster of the formants within a range of 3.0-3.5 Barks.

When center frequencies of formants exceed 3.5 Barks they are perceptually distinct. This

in turn means that for drawing a distinction between vowels in automatic systems, the model

for speech spectrum does not have to be highly detailed, especially if auditory scales are

used.

Because formant frequencies are determined by the size and shape of vocal tract, the abso-

lute values for same vowels produced by different speakers are not the same. Most obvious

is the variation between men, women, and children. These differences can be so big, that

not only we have great deal of variation of F1 and F2 within a vowel category, but there can

be overlap between different vowel categories (i.e sometimes different vowels have same

F1 and F2 frequencies). Still we can tell what vowel the speaker intended to produce. This

phenomenon of perceiving the same vowel for different acoustical realizations is called

"speaker normalization problem".
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Perception of Coarticulated Vowels

It can easily be demonstrated that steady-state acoustic targets for vowels are not often

reached in spontaneous speech. In consonant vowel context vowel formant frequencies

are shifted from target values produced in null contexts. These shifts cause “shrinking” of

F1/F2 space, such that formant patterns of different vowels are more similar to each other.

This means a reduction in the acoustic contrast among vowels when they are produced in

consonantal context. The place of articulation of preceding and following consonant results

in different amounts of reduction.

These acoustic effects of coarticulation are referred to as target undershoot. Speakers’

articulatory intentions are the same for all contexts, but as these articulatory intentions are

carried out at increasingly rapid rates, the speech organs fail to to reach the positions that

they assume when the vowel is pronounced under ideal steady-state conditions, because of

the physiological limitations of speech organs. With respect to the perception of coartic-

ulated vowels, listeners compensate for target undershoot in order to to recover canonical

vowel targets. Listeners show “perceptual overshoot” in identification of vowels in CVC

syllables with moving formant patterns. Perception of coarticulated vowels is not based

exclusively on the frequencies of first three formants of the vowel in the nucleus of syllable

where they approach their canonical values most closely, but also the direction and slope

of formant transitions into and out of the syllable nucleus affect the perceived identity of

the vowel [17]. This would also support the syllable as a recognition unit as opposed to

phoneme.

2.4.4 Consonant Perception

As it was shown in Chapter 2.2 consonants are produced by rapid articulatory gestures that

are superimposed on the slower, more global movements for the vowels. Consonants form

syllable units with vowels, where vowels are the syllable nuclei and consonants occur at

the onsets and offsets of syllables. Consonant gestures make temporary constrictions in the

vocal tract. The vocal tract can be narrowed to cause turbulent, noise-like sound, or even to

block it completely. Consonant gestures can be interpreted as marking the syllable borders.

Because the consonants are produced by reconfiguration of the vocal tract shape between

consonants and vowels, the sound patterns associated with consonants involve changes in

the formants. Also abrupt bursts of noise and/or silences are often involved with consonants.
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2.5 Speech as Patterns on Paper

In the previous sections we showed that the spectral structure of speech signal plays a piv-

otal role in speech perception. Distinctions between different phonemes is based often on

the difference in speech spectrum. Is it possible for a computer to find phoneme segment

boundaries from a stream of fluent speech using spectral information? To give us some

idea if it can be done, and how well, we can look at how well humans perform this task.

Ever since the invention of the sound spectrograph nearly 60 years ago, there have been

numerous attempts to study spectrogram reading. The spectrogram often does not provide

adequate information on certain lingustically relevant cues, such as stress and intonation.

Nevertheless, it gives a good description of the segmental acoustic cues of speech.

In 1980, Cole et. al. examined in detail the methods used by a highly skilled expert spec-

trogram reader [18]. Their qualitative and quantitative studies showed that in the task of

phoneme level segmentation, the expert identified 97% of the segments defined by tran-

scribers. Their study also focused on the methods that the expert was using for placing the

segment boundaries. The expert appeared to make use of only a few simple priciples, as

shown in the following protocol excerpt:

”I am marking at various places

where it shows, you know,

maximal spectral difference...

I’m basically using the spectral change

as a parameter for marking the boundaries...

There is an intensity,

a sharp intensity difference...”

Spectral changes accompany changes in manner of articulation, which in turn are character-

istic for each phone. A succession of phones will produce successive changes in the speech

spectrum, and the expert places segment boundaries at these points of change.

It has been argued that, on theoretical grounds, spectrogram reading cannot be learned,

because the speech signal is such a complex code that phonemes can only be perceived

through the working of a special decoder. The results the human were able to achieve are

nevertheless encouraging, and suggests that it is possible for a machine to achieve at least

97% accuracy for segmentation, just by investigating the spectral changes of a speech sig-

nal; the acoustic signal is the primary information-bearer.

It is interesting to note that the method that the human used to visually segment the speech
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signal was based on the acoustic patterns that are apparently speaker independent and are

not degraded by the use of a spectrographic representation. A spectrogram-like representa-

tion of a speech signal thus would appear to be adequate for high quality speech systems.



Chapter 3

Preprocessing of Speech Signals

3.1 Autoregressive models for speech analysis

3.1.1 Linear prediction

A very powerful method for speech analysis is based on linear prediction (LP). In the field

of speech research the method is called LP-modeling, but in the other fields is called au-

toregressive modeling (AR). It is a fast, simple and effective way of estimating the main

parameters of speech signals. It gives a precise representation of the speech spectral mag-

nitude. The drawback of the LP is that, to minimize analysis complexity, the speech signal

is usually assumed to come from an all-pole source. This means that model spectrum has

no zeros, though the actual speech spectrum has zeros due to the glottal source as well as

zeros from the vocal tract response in nasals and unvoiced sounds.

Linear prediction provides an analysis-synthesis system for speech signals. The synthe-

sis model consists of an excitation source U(z) that gives input to a spectral shaping filter

H(z). Output of this system is speech Ŝ(z). U(z) and H(z) are chosen, so that Ŝ(z) is

as close as possible in some sense to the original speech S(z). Usually U(z) is chosen to

have a flat spectral envelope so that spectral detail is confined to H(z). This choice is a

reasonable assumption since the excitation for unvoiced sounds resembles white noise. The

source for voiced sounds is viewed as a uniform sample train, having a line spectrum with

uniform-area harmonics. In reality vocal cord puffs of air can be be modeled as the output

of a glottal filter whose input is the sample train. The spectral shaping effects of both vocal

tract and the glottis are combined into one filter H(z). [12][10][19]

H(z) is obtained for speech signal s(n) by first windowing signal for frames of N samples.

In this window the signal is concidered to be stationary. This allows the filter H(z) to be

20
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modeled with constant coefficients. In general pole-zero case, H(z) is assumed to have p

poles and q zeros. In this case speech sample ŝ(n) can be modeled by a linear combination

of the p previous output samples and q + 1 previous input samples

ŝ(n) =

p
∑

k=1

akŝ(n − k) + G

q
∑

l=0

bl(n − l) (3.1)

where G is a gain factor for the input speech (assuming b0 = 1). We can specify the above

in the frequency domain by taking the z transform on both sides of equation 3.1.

H(z) = G
1 +

∑q
l=0 blz

−l

1 −
∑p

k=1 akz−k
(3.2)

In practice most LP work assumes all-pole model (q = 0). Thus we get

H(z) = G
1

1 −
∑p

k=1 akz−k
(3.3)

where G is a gain factor and ai are LP-model coefficients. If speech s(n) is filtered by an

inverse filter (predictor filter) A(Z) (the inverse of an all-pole H(z)

A(z) = 1 −

p
∑

k=1

akz
−k (3.4)

the output e(n) is called error or residual signal:

e(n) = s(n) −

p
∑

k=1

aks(n − k) (3.5)

Now the E(z) and U(z) should be similar, so that H(z) would model the vocal tract system

response. Since speech production cannot be fully modeled with an all-pole filter, there is

differences between e(n) and u(n).

Obtaining filter coefficients for LP-model The set of LP coefficients ak characterizing

an all-pole H(z) model of the speech spectrum can be obtained using the classical least-

squares method. This method chooses the filter coefficients ak to minimize the mean energy

in the error signal over a frame of speech data. In the autocorrelation method (windowing

method) of the least-squares technique, the speech signal is multiplied by a Hamming or

similar time window to obtain signal with finite duration

x(n) = w(n)s(n) (3.6)

The length of the window w(n) is typically choosen to be 20 to 30 ms during which the

signal s(n) is assumed to be stationary. Windowing makes x(n) = 0 outside the range
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n = 0 ≤ N − 1.

For residual e(n) corresponding the windowed signal x(n) the energy E is

E =

∞
∑

n=−∞

e2(n) =

∞
∑

n=−∞

[x(n) −

p
∑

k=1

akx(n − k)]2 (3.7)

Now the task is to choose values ak that minimize residual energy by setting ∂E/∂ak = 0

for k = 1, 2, . . . , p. This leads to p linear equations in p unknowns ak.
∞
∑

n=−∞

x(n − i)x(n) =

p
∑

k=1

ak

∞
∑

n=−∞

x(n − i)x(n − k), i = 1, 2, . . . , p (3.8)

Noticing that the first term of equation 3.8 is autocorrelation r(i) of x(n) and taking advan-

tage of the finite duration of x(n) leads to
p

∑

k=1

akr(i − k) = r(i), i = 1, 2, . . . , p (3.9)

where autocorrelation terms are r(i) =
∑n=∞

n=−∞
snsn−1. The autocorrelation function is

even: r(−i) = r(i). Also since sn is nonzero only during the N samples, is is sufficient to

compute only

r(i) =

N−1
∑

n=1

snsn−i, 0 ≤ i ≤ p (3.10)

The Equation 3.9 can be written in matrix form as
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(3.11)

or equally with corresponding symbols

Ra = r (3.12)

The LP coefficients can be computed with

a = R
−1

r (3.13)

It is worth noting that the autocorrelation matrix R is symmetric and Toeplitz matrix, the

coefficients can be computed without inverting the autocorrelation matrix using Levinson-

Durbin recursion. The gain can be computed with

G =

√

√

√

√R(0) −

p
∑

k=1

akr(k) (3.14)
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3.1.2 Different representations for LP

LP analysis produces a vector of p real-valued coefficients ak. These coefficients represent

an optimal estimate to the spectrum of the windowed speech using p poles. This same in-

formation, can be represented in many different formats. These other formats may be more

useful or more physically interpretable than others. These formats include for example re-

flection coefficients, impulse response h(n) of the LP synthesis filter H(z), autocorrelation

coefficients for ak or h(n), spectral coefficients from a DFT of either autocorrelation, the

cepstrum of ak or h(n), the log-area ratios, inverse sine functions and line spectrum pair

(LSP).

The line spectrum pairs are used in the segmentation algorithm introduced in this thesis,

and thus in the following sections they are discussed in more detail.

LSP

The representation for the LP parameters that will be examined here in more detail is called

line spectrum pair (LSP). The method was first introduced by Itakura [20], and it has since

become a widely utilized and investigated method for representing LP parameters. The

procedure for converting LP-coefficients to LSPs involves mapping the p zeros of A(z)

onto the unit circle through two z-transforms P (z) and Q(z) of (p + 1)st order:

P (z) = A(z) + z−(p+1)A(z−1) (3.15)

Q(z) = A(z) − z−(p+1)A(z−1) (3.16)

And directly from equations 3.15 and 3.16 it follows that

A(z) =
[P (z) + Q(z)]

2
(3.17)

The roots of the polynomials P (z) and Q(z) are called the LSPs.

LSP’s have some interesting properties. Firstly, the zeros of P (z) and Q(z) lie on the

unit circle. Secondly, it can be shown that zeros of P (z) and Q(z) alternate as ω increases

along the circle. Also the LSP coefficients correspond to the frequencies of these zeros. The

LSP coefficients allow interpretation in terms of formant frequencies because each complex

zero of A(z) maps into one zero in each of P (z) and Q(z). If these zeros have close fre-

quencies, it is likely that the original A(z) corresponds to a formant; otherwise, the zero is

likely to be of wide bandwidth and to contribute only to the tilt of the spectrum [12]. This

last property gives the motivation for LSPs’ usage for the segmentation method described

later in this thesis.
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3.1.3 Frequency Warping

As it was shown in Chapter 2.3 human auditory system works in highly non-linear fash-

ion. It is also time-variant, and adaptive in many ways. Combined, these properties make

models of auditory perception complex, and audio techniques that utilize these priciples

are intricate. There are only a few properties of the auditory system that can be exploited

in audio signal processing easily and systematically. Probably the most common auditory

feature that is taken into account in audio signal processing are the pitch scales explaned in

Chapter 2.3.2.

Frequency warping is a process of transforming one spectral representation for signals on

some frequency scale to another representaion on a new frequency scale. The original scale

(e.g., Hz, f-domain) has a certain frequency resolution; most often uniform, and the new

frequency scale is non-uniform (e.g., Bark). The new representation obtained through this

transform has a uniform frequency resolution on a new scale. However, when observed

from the original frequency scale, it has a nonuniform frequency resolution. This transfor-

mation from one frequency scale to another is presented with the warping function v(f)

which defines the relation between the new frequency scale and the old one. The warping

function v(f) is a smooth and monotonic function.

Warped linear prediction (WLPC) dates back to 1980 (Strube) [21], but the idea of perform-

ing linear predictive analysis on a modified frequency scale have been introduced earlier (for

example see [22]). The frequency scale used in digital signal-processing has convention-

ally been linear in relation to hertz (Hz) scale, i.e., frequency resolution is uniform for the

whole band from dc to Nyquist frequency (0.5fs, where fs is sampling frequency). The

basic building block of DSP is unit delay z−1, which delays signal components of all fre-

quencies by the same amount. There exist ways to implement DSP on a warped freqency

scale that approximates Bark scale instead of uniform frequency scale [21]. One technique

to implement frequency warped DSP algorithms is to replace unit-delays with first-order

all-pass filters to obtain a variable digital filter that can be controlled by adjusting the co-

efficient of the all-pass element. Transfer function of first-order all-pass filter is given by

D(z) =
z−1 − λ

1 − λz−1
(3.18)

By definition, an all-pass filter has a constant magnitude response for the whole frequency

band. However, the phase response of D(z) varies with λ. With λ = 0, the transfer

fuction reduces to a single unit delay linear phase and constant group delay. Now we can

build an all-pass filter chain by cascading a set of all-pass filters. If λ is positive, the
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nonuniform group delay makes low-frequency components of a signal proceed slower and

high-frequency components faster than in a chain of unit delays. The mapping between

natural frequency domain, and the warped frequency domain is determined by the phase

function of the all-pass filter, given by

ω′ = arctan
(1 − λ2) sin(ω)

(1 + λ2) cos(ω) − 2λ
(3.19)

where ω = 2πf/fs, and fs is the sampling frequency. For a specific value of λ, it is possi-

ble to achieve the frequency transformation that closely resembles the frequency mapping

occuring in the human auditory system. [23] It would be desirable to design signal process-

ing systems and algorithms that work directly on some auditory frequency scale. In this

chapter we review a general approach to designing DSP techniques on a warped frequency

scale that approximates the Bark scale as presented in [23].

Warped Linear Prediction

In the previous chapter the classical forward linear prediction was shown. In classical LP

analysis an estimate for the sample value x(n) was obtained as a linear combination of N

previous values given by

x̂(n) =

N
∑

k=1

akx(n − k) (3.20)

and same written in z-plane

X̂(z) = (
N

∑

k=1

akz
−k)X(z) (3.21)

where ak k = 1, . . . , N are fixed filter coefficients. Here the shift operator zk (unit delay

filter or a shift operator) may be replaced by a first-order all-pass filter. Denoting all-pass

filter by D(z) we can write the equation 3.1.3 as

X̂(z) = [
N

∑

k=1

akD(z)k]X(z) (3.22)

D(z)−k in equation 3.1.3 can be interpreted as a generalized shift operator defined as

dk[x(n)] ≡ δ(n) ? δ(n) ? · · · ? δ(n) ? x(n) (3.23)

where the asterisk indicates convolution and δ(n) is impulse response of the filter D(z).

δ(n)’s form a k-fold convolution. In k = 0 let us write d0[x(n)] ≡ x(n). The error of the

estimate to be minimized may now be written as

e = E{|x(n) −

N
∑

k=1

akdk[x(n)]|2} (3.24)
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where E{·} denotes expectation. Filter coefficients ak are solved minimizing this error.

Setting ∂e/∂ak with k = 1, 2, . . . , N leads to system of normal equations,

E{dm[x(n)]d0[x(n)]} −

N
∑

k=1

akE{dk[x(n)]dm[x(n)]} = 0 (3.25)

where m = 0, . . . , N −1. It is shown that since D(z) is an all-pass filter, the equation [23]

E{dm[x(n)]dk[x(n)]} = E{dm+p[x(n)]dk+p[x(n)]} (3.26)

holds, for all values of m, k, and p. This means that in both parts of equation 3.1.3 there

appear the same correlation values. This in turn means that equation 3.1.3 can be seen

as a generalized form of the Wiener-Hopf equations. Figure 3.1 shows an autocorrelation

network structure, which can be used to solve the correlation terms. The optimal filter co-

efficiants ak can be solved efficiently using the Levinson-Durbin algorithm, like in the case

of classical autocorrelation method of linear prediction.

Now we have a prediction error filter given by

A(z) = 1 −
N

∑

k=1

akD(z)k (3.27)

This filter can be implemented easily by simply replacing all unit delays (Z−1) of a con-

ventional FIR structure with all-pass filter D(z) blocks. The LP synthesis filter (IIR)

A−1(z) =
1

1 −
∑N

k=1 akD(z)k
(3.28)

is possible to implement using techniques discussed in [23][24]. [23] Using frequency

warped methods for linear prediction the order of the model can be significantly lower

compared to the conventional LP-modeling. This is of great importance when used with

vector autoregression, which will be expained in more detail in next chapter.

3.2 Vector Autoregression

Finite order vector autoregressive (VAR) models are used in forecasting and structural anal-

ysis. There has not been extensive use of these models in the field of speech processing.

Some attempts to model temporal variations of speech spectra with vector autoregression

has been done, for example, in the field of speaker identification. [25] [26] [27] [28]

Here first the models are introduced and later the least squares estimation procedure to

solve the estimation problem is introduced.
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Figure 3.1: Warped autocorrelation network

3.2.1 Stable VAR(p) Processes

Assume a K-dimensional multiple time series y1, . . . ,yT where yt = (y1t, . . . ,yKt)
′ and

that the series is known to be generated by a stationary and stable VAR(p) process

yt = v + A1yt−1 + . . . + Apyt−p + ut. (3.29)

In equation 3.29 yt = (y1t, . . . , yKt)
′ is a (K×1) random vector, the Ai are fixed (K×K)

coefficient matrices, v = (v1, . . . , vK)′ is a fixed (K×1) vector of intercept terms allowing

for the possibility of nonzero mean E(yt) and ut = (u1t, . . . , uKt)
′ is a K-dimensional

white noise with non-singular covariance matrix Cu. The coefficients v,A1, . . . ,Ap, and

Cu are unknown parameters. The coefficients will be estimated from the multivariate time

series data. The VAR(1) is called stable if all eigenvalues of A1 have modulus less than 1.

Multivariate Least Sequares Estimation

Assume the time series y1, . . . ,yT of y variables to be available. Also we assume p pre-

sample values for each variable, y−p+1, . . . ,y0 to be available. To simplify the notation let
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us define
Y := (y1, . . . ,yT ) (K × T ),

B := (v,A1, . . . ,Ap) (K × (Kp + 1)),

Zt :=













1

yt

...

yt−p+1













((Kp + 1) × 1),

Z := (Z0, . . . ,ZT−1) ((Kp + 1) × T ),

U := (u1, . . . ,uT ) (K × T ),

With the notation defined above we can write the VAR(p) model for t = 1, . . . , T as

Y = BZ + U (3.30)

It has been shown in [29] that in least squares sense the estimation for B can be obtained as

B̂ = YZ′(ZZ′)−1 (3.31)

In this thesis models of order p = 1 are used only (i.e., VAR(1)-models).

3.3 Approaches to Automatic Speech Segmentation

In this section will give a short review of the existing methods for automatic speech seg-

mentation. The segmentation systems can be broadly divided into two categories. One

class of algorithms perform the segmentation when both the signal and the underlying se-

quence of phonemes is known [30]. Also some of these systems require either manually

or automatically segmented training data. Another class of algorithms take only the speech

signal as an input, and do not use any knowledge about the underlying phoneme sequence

contained within the speech signal [31].. Instead these algorithms locate the time instances

where segment boundaries are, based on where there is a high degree of variation in speech

waveform. The system proposed in this thesis is unsupervised segmentation method that

takes as input only the speech signal, and does not require training data.

The output of the segmentation systems can vary from simple end-point detection, to phoneme



CHAPTER 3. PREPROCESSING OF SPEECH SIGNALS 29

or syllable level segmentation depends on the application in question.

The segmentation systems can also be divided into two categories based on the approach

they use for segmentation. Some systems are based on specific acoustic cues or features for

the segmentation [5][32][33]. They typically focus, for instance, on transient behavior or

specific differences between phoneme classes. The other category of segmentation systems

use general features and acoustic modeling which are common in ASR systems [34]. It is

not in the scope of this thesis to discuss all the different types of segmentation algorithms,

so here we will just mention some attempts to perform segmentation using acoustic cues

without the use of phonetic transcription.

In 1975 Mermelstein [35] proposed a convex hull algorithm to segment speech into syl-

labic length units. The algorithm used maxima and minima in a loudness measure extracted

from the speech signal to find the prominent peaks and dips. The peaks were marked as

syllabic peaks and the points near the syllabic peaks with maximal difference in loudness

were marked as syllable boundaries.

The approach adopted by Sharma et. al. [36] suggested a procedure involving finding

the ”optimal” number of sub-word segments in the given speech sample, before locating

the sub-word segment boundaries. They used dynamic programming and subjective loud-

ness function to achieve this. As with many segmentation systems developed in the past,

the results shown in this paper are not comparable with other results, because there is not

any absolute ”right” solution for segmentation.

Aversano et. al. [37] proposed a method for segmentation using jump-function. Jump-

function is a measure of variation of a local spectrum. It is formed by comparing the av-

erages of spectrum on both sides of hypothesised segment boundaries. A peak detection

algorithm was introduced to select the peak values of jump-function to represent the hy-

pothesized segment boundaries.

In a recent paper Prashad et. al. (2004) [38] present a method to automatically segment

speech into syllable length units. Their method is based on “group delay processing” of the

short time energy function of the continuous speech signal. At segment boundary they have

achieved an error rate less than 20% of the syllable duration for 70% of the syllables. Their

system introduces 5% insertions.



Chapter 4

Algorithm

4.1 Segmentation Algorithm

4.1.1 Introduction

In this chapter the proposed segmentation algorithm will be described in detail. The al-

gorithm is based on analyzing variations in speech spectrum with vector autoregressive

modeling (VAR). The speech signal is batch processed in non-real time. The method does

not use labeled data to teach the system in any way; the only input for the algorithm is the

utterance to be segmented. The systems based on this algorithm are speaker independent

(some parameters might need adaptation for individual speakers). The aim of the algorithm

is to efficiently, and accurately, find the time instances from the speech signal, where there

is a change in short-time the speech spectrum. It is expected that the biggest and most rapid

changes in the speech spectrum have resulted from transitions from one segment to another

segment. Studies so far have shown that this segmentation corresponds, to some degree, to

manual segmentation done by trained phoneticians, based on phonetic boundaries. The first

order vector autoregressive model described in the chapter 3.2 tries to predict the vector at

time t, using the vector at time t − 1. The model is estimated from a sequence of vectors

with the least squares estimate (LSE) method. The error used for estimation of the model is

the one-step prediction error between subsequent vectors. Essentially, the model is used to

produce values of the vector at time t from the values of vector at time t − 1. In this thesis

first order VAR models are used exlucively (VAR(1)).

ŷt = Ayt−1 + v (4.1)

Where yt is a (K × 1) vector, A is fixed (K × K) coefficient matrix, and v is a fixed

(K × 1) vector allowing for the possibility of nonzero mean E(yt). This property of the

model can be further exploited, by using the model to recursively produce vectors for values

30
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Figure 4.1: Recursively produced multivariate time series

t + 1, t + 2 . . . t + M .

ŷt+1 = Aŷt + v (4.2)

In Figure 4.1, an example of recursively produced vector sequence is shown. The original

multivariate time series is shown with solid lines, and the recursively produced times series

with dashed line. First order VAR model was estimated from the original time series using

least squares estimation. Then a new time series was created using the first vector of the

original sequence with equation 4.2. From the figure we can see that the simple first order

V AR model follows the trends of the original time series, but does not follow the fine

structure of the original signal. If we estimate a model from vectors taken from a steady part

of an utterance (e.g. long vowel) preceding a segment boundary, we can expect that model

to produce similar vectors with the vectors in the steady part, when used to recursively

produce new vectors. It also means that the difference et between the original vectors yt,

and the recursively produced vectors ŷt, over the boundary, should be large. The prediction

error can be defined as

et =

p
∑

(yt − ŷt)
2 (4.3)
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where p is the length of the vector yt. This model sees only the past, and cannot predict

the changes the original signal will have in the future. The model keeps producing steady

part vectors, regardless of the changes in the original signal. This error between the original

vectors and the recursively-produced vectors is used to detect spectral changes at segment

boundaries in the algorithm presented here.

4.1.2 The Algorithm

First the digital speech signal s(n) is converted into a sequence of short-time features yt

with each being a (p × 1) vector, where t is the frame that the coefficients were computed

from. In this work, the short time features used are p:th order frequency warped line spec-

trum pairs (WLSP) (p = 12−16). The motivation for using WLSP’s can be found from the

chapter 3.1.2. The short-time features should be computed with relatively short intervals to

obtain adequate time resolution for the purpose. This requires a lot of overlap between the

subsequent frames. The step size used in this work is 3ms as opposed to 10ms which is the

standard in most ASR systems. Also this step-size maches better to the time resolution of

human hearing. Let At be the VAR(1) model computed from the data preceding the frame

at time t

At = V ARLSE(yt−L+1, . . . ,yt) (4.4)

The value of L should correspond to average length of a steady state of a phoneme in speech.

For each vector yt we compute recursively M estimates with the models At−M . . .At−1

ŷt1 = At−1yt−1

ŷt2 = A2
t−2yt−2

...

ŷtM = AM
t−Myt−M

(4.5)

From these estimates we can compute relative errors

et1 = (yt−ŷt1)T (yt−ŷt1)

vT
t
·vt

et2 = (yt−ŷt2)T (yt−ŷt2)

vT
t
·vt

...

etM = (yt−ŷtM )T (yt−ŷtM )

vT
t
·vt

(4.6)

From these errors we select the median value to represent the error at time t

et = median(et1, . . . , etM ) (4.7)

The small values of et are emphasized taking the logarithm of the error signal

Et = 10 ∗ log10(1 + et) (4.8)
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Figure 4.2: An error signal Et over one sentence. The vertical lines are manually assigned

segment boundaries

Et is a signal that has large values, whenever there has been a steady state, followed by a

sudden change in the speech spectrum. An example of error signal during one sentence is

shown in Figure 4.2. The vertical lines in Figure 4.2 are boundaries of phonemes set by a

trained phonetician. Model A is used to predict the values for yt outside the window, from

which the model was estimated. Until this point the model At has been used to recursively

produce vectors for time instances t . . . t + M . That means, that model predicts the future

values of yt. The model can be used to predict the values outside of its scope also for values

before the model. This can be easily done by reversing the original sequence of vectors y,

and performing the same analysis as we have done so far for the reversed signal. After doing

the analysis for the reversed signal also, we have two error signals, which we will denote

by Et+ and Et−: forward and backward prediction error. These two signals are presented

in Figure 4.3. To help the visualization the backwards error has been negated. In the next

step of the algorithm, the errors Et+ and Et− are combined to a single error Et∗ with

Et∗ = Et+ − Et− (4.9)

The resultant error should have a large negative peak before a segment boundary, and large

positive peak after a segment boundary. An example of combined error signal Et∗ is shown
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Figure 4.3: Forward and backwards prediction errors Et+ and Et−, with manually seg-

mented boundaries. Et− has been given as negative values to help the visualization.
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Figure 4.4: Combined backwards and forwards error signals ecomb

in Figure 4.4. There is a fair amount of local variation in the error Et∗, as we can see from

the Figure 4.4. The signal is smoothed with a simple low-pass filter

H(z) = 1 + 0.95z−1 (4.10)

The candidates for segment boundaries are now in the parts of signal, where the error goes

rapidly to a large negative value, and shortly after that has a large positive value. In order

to help the location of these parts, the signal Et∗ is filtered with

h(t) =



















t
d

+ 1 −d < t < 0

0 t = 0

t
d
− 1 0 < t < d

(4.11)

where d is set to be approximately the average width of peaks in the error. Filtering Et∗ with

h(t) gives us a signal, where there are peaks at the points of segment boundary candidates.

Local maxima can be detected by sliding a short window over the whole signal, and keeping

track of the maximum values within the window. An example of the result we get from this

can be seen in Figure 4.5.
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Figure 4.5: Up - error signal Et∗ filtered with h(t). Down - peak detection from the filtered

error signal with a sliding window technique.



Chapter 5

Experiments

5.1 Performance Evaluation

5.1.1 Evaluation Criterion

Evaluation of performance of a segmentation algorithm is not straightforward. The method

presented here detects acoustic landmarks, and it would be desirable that these acoustic

landmarks would correspond to phonetic landmarks. Thus in this work a phonetic transcrip-

tion was used to determine the identity of important acoustic-phonetic landmarks. Although

there are many cases where it is difficult to precisely determine the location of a boundary

between adjacent phones, the boundaries in the phonetic transcription usually corresponds

to important landmarks which would be useful for subsequent acoustic-phonetic analysis of

the speech signal. As such, they define a reasonable criterion for judging the performance

of our algorithm. It is worth noting though, that differences between manual segmentation

and automatic segmentation are not necessarily ’errors’, especially if the differences occur

in systematic manner. These differences might, for instance, point out inconsistencies in

the nature of the phonetic transcription. At the present phase of the study, the ultimate goal

is not to produce a comprehensive phonetic segmentation by detecting every phone bound-

ary; we can concentrate especially to those boundaries which are the most reliable ones to

detect. However, it may be expedient to see how far the basic method leads us.

The performance of the algorithm can be measured in various ways. In this work in ad-

dition to the obvious question of how accurately the method finds phoneme boundaries,

we also investigate where the method performs poorly, and also how robust the system is

under noisy conditions by gathering statistics on insertions and deletions. Also the per-

formance under different parameter values is tested. The performance of the system at

segment boundaries between different phoneme classes is investigated. All these statistics

37
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together provide a reasonable indication of how well the system detects acoustic-phonetic

information in the speech signal.

5.1.2 Performance Measures

To gain some useful knowledge about the performance of our system, we have to define

some performance measures. There are two types of errors that the segmentation algorithm

may introduce: deletion of segment boundaries, and insertion of boundaries where they do

not belong. We shall denote total number of these errors with D (deletion), and I (insertion).

These two types of errors are not unambiguous, because we have to define how far from

the manual segmentation the automatic segmentation be placed for it to still be considered

as correct segmentation. Depending on the application, we are interested in reducing some

specific types of errors, and thus the analysis of different type of errors is valuable. Let us

denote the total number of segment boundaries with N , and the number of correctly placed

segment boundaries with H (hit). The correctness C (Eq. 5.1) describes the portion of

segment boundaries placed correctly, and it is calculated by

C =
H

H + I
(5.1)

Correctness is sometimes seen in the literature as precision. Recall R is the ratio of correctly

placed boundaries to all manually placed segment boundaries calculated by

R =
H

N
(5.2)

Quality Q (Eq. 5.3) is another performance measure. Quality takes the number of incor-

rectly inserted segment boundaries into account, and is calculated by

Q =
H − I

N
=

N − D − I

N
(5.3)

The allowed deviation from manual segmentation for correct assignment of a segment

boundary was set to ±15ms. This is justified noting, that the time resolution used in most

ASR systems is 10ms. In addition to these aforementioned performance measures, the

temporal deviations from manually assigned segment boundaries were investigated.

5.1.3 Evaluation Data

The evaluation of the method was based on 201 Finnish language utterances combined from

three different speakers (two males, and one female). The utterances were designed to cover

as many different types of transitions between phoneme classes as possible. Talkers read

the sentences aloud avoiding any emotional emphasis. Words were pronounced clearly and
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more accurately than in normal conversations, though some of the test sentences were quite

difficult to pronounce for native Finnish speakers, due to their somewhat artificial nature.

Recordings were done in an anechoic room in the Laboratory of Acoustics and Audio Signal

Processing at Helsinki University of Technology. The recordings were then digitized with

21.05 kHz sampling frequency. After the recording, the material was manually labeled with

phonetic labels using Praat 1 software.

5.1.4 Preprocessing

Since the method described in this thesis is essentially a method of finding the acoustic

landmarks which correspond to change in spectra of the speech, the digitized speech signal

has to be converted from time domain into frequency domain representation. The repre-

sentation chosen for this work was warped line spectrum pairs (WLSP), described in more

detail in sections 3.1.2 and 3.1.3. The digitized speech signal was converted into warped

LP coefficients of order 12, 14, and 16, and then these WLPC parameters were transformed

into WLSP parameters. The time domain signal was windowed piecewise with a 20 ms

Hamming window. There was a great amount of overlap between adjacent frames since

the step size between frames was chosen to 3 ms. The unusually short step size between

adjacent frames is appropriate for two reasons. Firstly, for the least squares estimation of

the V AR model, the time series from where the model is estimated from has to be longer

than the number of variables in a single vector. Secondly, the step size dictates the time

resolution that the segmentation algorithm is capable of performing. This also matches the

time resolution of the human hearing more accurately. In this work, the aim was to achieve

good time resolution, and thus the step size selection which is different from the one used

in standard ASR systems (= 10ms).

To investigate the robustness of the algorithm’s performance under noisy conditions the

original signal was corrupted with both pink and babble noise with different signal to noise

(SNR) ratios before the analysis. Noise sequences were obtained from The Signal Process-

ing Information Base (SPIB) 2.

1http://www.praat.org/. Praat is a tool for speech analysis developed by Paul Paul Boersma and David

Weenink at Institute of Phonetic Sciences, University of Amsterdam
2http://spib.rice.edu/. The Signal Processing Information Base (SPIB) is a project sponsored by the Sig-

nal Processing Society and the National Science Foundation. SPIB is a repository of data, papers, software,

newsgroups, bibliographies, and addresses as well as links to other relevant repositories.
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5.2 Evaluation Results

5.2.1 Overall Results

In this section we look at the segmentation results for clean speech (not corrupted by noise).

The threshold after which the deviation from the transcribed segment boundaries was con-

sidered as an error was set to 15 ms. First the overall results are shown, and the for each

speaker separately. We shall call the speakers ’Male 1’, ’Male 2’, and ’Female’.

Table 5.2.1 summarizes the segmentation results of the three speakers. The overall quality

Q did not vary significantly between the three speakers. The highest hit probability was

achieved with the female voice, whereas the highest quality of performance was with the

male speaker 1. The result confirms that the method is, by and large, speaker independent.

It is worth noting that the quality (Q) is mostly reduced by the deletion rate (D), not the

accuracy (C) of the segmentation. This suggests that the method is fairly reliable, yet not

comprehensive. In section 5.2.3 we will look in detail which transitions between different

broader phoneme classes cause the most deletions (D).

Table 5.1: Segmentation results [%] for three different speakers (C: Correctness, D: Dele-

tions, Q: Quality, P: Precision), M = 7, L = 66ms, threshold = 0.2
C D Q P

Male 1 87.3 26.0 48.7 74.0

Male 2 88.2 32.6 43.7 67.5

Female 91.5 35.2 47.8 64.8

5.2.2 Effect of Parameter Selection

Next, we concentrate on detailed results obtained for the speaker ’Male 1’ using different

values for system parameters. Results for clean speech case are summarized in Figures 5.1

- 5.18. The results are plotted for different parameter values of p (WLSP order), the number

of prediction errors included M and L, the length of the sequence from which the V AR(1)

model is estimated. Different threshold values for peak detection was also used. In all fig-

ures the three performance measures C , D, and Q are included.

An overall result that can be seen from all the figures is that as the correctness C increases

the deletion rate D also always increases. On the other hand, the relation of these two per-

formance measures does not stay the same. The selection of threshold is the most obvious
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way to increase C . By selecting a larger threshold, the system detects only the biggest

changes in the time-frequency domain, thus producing segmentation that is more syllabic

than phonetic.

The number of correctly detected boundaries C is constantly higher when a larger amount

of prediction errors (M ) is included. However, increasing M also increases the number

of deletions (D). This difference is most obvious when changing from value M = 7 to

M = 9. This effect of changing M is the same for all the values of p.

The length of the data window L seems to have a similar effect. From the figures we can

observe that as L increases, the number of correctly set segment boundaries C increases,

but at the same time the more and more segment boundaries are ignored. This applies to all

values of p.

When comparing results in terms of the WLSP order p, we can see that, for models that

are estimated from long time series, the effect of p is very small. The only effect of increas-

ing the WLSP model order p in this case is that the number of ignored segment boundaries

decreases. For models that are estimated from shorter time series, the effect of variation of

p is more evident.

In the case when p = 16 the number of correctly assigned segment boundaries decreases

significantly (down to less than 80%), although the number of ignored segment boundaries

also decreases. This is possibly because the number of vectors that the V AR model is esti-

mated from is almost the same as the number of elements in each vector. The least squares

estimation algorithm needs a multiple time series to estimate the model A with Equation

3.31, and if the number of elements in each vector of the time series is almost the same or

less than the length of the time series, the model tries to model all the details of the time

series, instead of capturing the trend of the original time series.
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Figure 5.1: Segmentation accuracy p = 12,

threshold = 0.10
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Figure 5.2: Segmentation accuracy p = 12,

threshold = 0.20
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Figure 5.3: Segmentation accuracy p = 12,

threshold = 0.30
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Figure 5.4: Segmentation accuracy p = 12,

threshold = 0.15
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Figure 5.5: Segmentation accuracy p = 12,

threshold = 0.25
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Figure 5.6: Segmentation accuracy p = 12,

threshold = 0.35
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Figure 5.7: Segmentation accuracy p = 14,

threshold = 0.10
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Figure 5.8: Segmentation accuracy p = 14,

threshold = 0.20
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Figure 5.9: Segmentation accuracy p = 14,

threshold = 0.30
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Figure 5.10: Segmentation accuracy p = 14,

threshold = 0.15
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Figure 5.11: Segmentation accuracy p = 14,

threshold = 0.25
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Figure 5.12: Segmentation accuracy p = 14,

threshold = 0.35
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Figure 5.13: Segmentation accuracy p = 16,

threshold = 0.10
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Figure 5.14: Segmentation accuracy p = 16,

threshold = 0.20
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Figure 5.15: Segmentation accuracy p = 16,

threshold = 0.30
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Figure 5.16: Segmentation accuracy p = 16,

threshold = 0.15
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Figure 5.17: Segmentation accuracy p = 16,

threshold = 0.25
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Figure 5.18: Segmentation accuracy p = 16,

threshold = 0.35
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5.2.3 Errors in Terms of Phoneme Classes

The way the acoustic signal changes at the segment boundary obviously depends on the

phones around the segment boundary. To analyze the performance of our system thor-

oughly, we should investigate how the system works in all the different transitions from one

phoneme to another. This, though, would be tedious and require more test data and time

than was available for this analysis. Nevertheless, we can gain valuable information by

grouping phonemes into some subclasses. The grouping scheme selected for this analysis

was based on articulatory phonetics. In Section 2.2.2, the different classes of phonemes was

shortly reviewed. This grouping scheme can be justified, if we remember that the phonemes

belonging to a same class share characteristics in the way the are pronounced, and the man-

ner of articulation reflects the properties of the acoustic signal. Laterals and semi-vowels

were grouped together, because only a few instances of these phonemes were included in

the test material.

The statistics were collected from segmentation results for speaker ’Male 1’ using follow-

ing parameter values: M = 7, L = 66ms, threshold = 0.2, p = 14. From Figure 5.8, we

can see that the performance of the system is good with this selection of parameter values.

Theoretically, there are 49 different kind of transitions between the 7 phoneme classes.

Seven of these transitions were not present in the material. Five of them are not realizable

at all, or there are conflicting phonological rules of Finnish (marked with ×). Two of the

cases are possible, but were not present in the material (marked with 0). 34 of 42 cases have

three or more occurances.

The results for this test are shown in Table 5.2 with C and the number of occurances of

each segment types n. The results show that the easiest segment boundaries to detect are

vowel-stop and stop-vowel transitions which were detected with 94.0-96.5% accuracy. The

most problematic segment boundries are the boundaries between two vowels. These are

detected with 18.2% accuracy. Segment boundaries involving fricatives are detected with

high accuracy. For segment boundary types which only occur less than three times, the

analysis does not bring any information to light.

The last row of Table 5.2 shows the number of insertions in each phoneme class. The

most common class for insertions is vowels, but vowels are also the most common class. If

the number of insertions is compared with the relative probability of each segment, we can

see that the most insertions occur in nasals, laterals+semivowels, trills, and silences.
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Table 5.2: Percentage of correctly detected segment boundaries between phoneme classes,

and number of insertions. Male speaker, M = 7, L = 66ms, p = 14 threshold = 0.2. Total

number of segments 2264.
vowels stops nasals fricatives laterals + trill silence

semivowels

vowels 18.2 94.0 71.1 90.8 57.2 85.7 66.7

n = 181 300 190 141 138 70 12

stops 96.5 54.5 85.7 95.5 100 80.0

n = 374 11 7 22 8 15 0

nasals 87.6 92.1 50.0 88.2 38.5 80.0 100

n = 121 38 4 17 13 5 4

fricatives 87.7 92.3 100 0 69.2 75.0

n = 162 26 3 2 13 4 0

laterals +

semi-vowels 51.5 87.5 100 100 20.0

n = 165 8 2 9 5 × ×

trill 26.3 69.2 50.0 75.0 0

n = 76 13 2 4 3 × ×

silence 75.0 30.2 75.0 37.5 88.9 75.0

n = 12 43 12 16 9 4 ×

insertions 145 16 33 5 8 17 19

insertion [%] 13.3 3.6 15.0 2.4 4.2 17.4 19.8

n = 1091 439 220 211 189 98 96
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5.2.4 Amount of E∗ at Segment Boundaries

Spectral change at different phoneme class boundaries is not similar between classes, thus it

is interesting to investigate what is the amount of error E∗ at these points. The value of error

at the boundary might give us some indication what kind of segment boundary is in ques-

tion. An analysis of the E∗ at manually assigned segment boundaries was conducted for

speaker ’Male 1’ using parameter values p = 14, M = 7, L = 66ms. The local maximum

around the manually assigned segment boundary was located for all segment boundaries.

Distributions of the values of E∗ were computed, and are presented in Figure 5.19. For

vowel-vowel transitions, the amount of error is low, which was expected since this segment

boundary is the most difficult to detect using threshold. The same effect, even though not

so dramatic, is between vowel and ’lateral+semivowel’ classes. For vowel-stop and stop-

vowel transitions, the values of E∗ are concentrated well above zero. Distributions of E∗

in transitions involving fricatives do not have distinct peaks, but values of E∗ are spread

evenly. Nasal-fricative transition has two peak distribution. This could be explained by re-

membering that the phoneme /h/ is sometimes slightly voiced, and in transition from voiced

/h/ to nasal there is no radical spectral change.

These E∗ distributions between phoneme classes could be used as a discrete transition prob-

ability distributions in pronunciation network in segmental speech recognition.

5.2.5 Temporal Deviation from the Manually Assigned Segment Boundaries

”Blind” segmentation algorithms such as the one introduced in this thesis are speech anal-

ysis tools that could be used in multitude of applications. Depending on the application,

different performance measures are of interest. For example, it was emphasized in Section

1.1.3 that temporal alignment of speech signals for recognition of stop consonants has been

overlooked in mainstream speech recognition. If we wish to use our segmentation algorithm

as a front-end for segmental speech recognition system, we are interested of the temporal

accuracy of the system.

Distribution of deviations from the manually assigned segment boundaries was collected

for speaker ’Male 1’ for clean speech. Since the segmentation algorithm works in symmet-

ric fashion (forward-backward prediction for vector autoregression), the distributions were

symmetric, and the data could be collected without an emphasis if the automatically set

segment boundary was before or after the manually set boundary.
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Figure 5.19: Histograms of amounts of errors around manually located phoneme class

boundaries. Parameter values used: p = 14, M = 7, L = 66ms.
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Figure 5.20: Deviation from the manually labeled boundaries using three different values

of M .

In Figure 5.20 an example of three different distributions of temporal deviations is shown.

The deviations are in each case concentrated around 0 − 3ms. It should be noted that for

each case M = 5, 7, 9, the deletion D and correctness C is higher and thus comparison

between these three cases is not possible. The mean and the variance of the temporal de-

viations for the nine cases are listed in Table 5.3. Both mean and variance increase a little

when M and threshold are increased respectively. It is also worth noting here that the per-

formance measures C and Q are different in each case, thereby making the comparison of

these means and variances difficult.

5.2.6 Effect of Noise

The segmentation performance was tested by controlling the sentence level SNR by adding

both pink and babble noise to the speech signal. The results are presented in Fig. 5.21 with

parameter values L = 66ms, p = 14, threshold = 0.2. The quality of performance drops
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Table 5.3: Means and variances of the deviations from the manually asigned segment

boundaries (L = 66ms, p = 14).
M = 5 M = 7 M = 9

threshold = mean: 1.8 ms mean: 1.9 ms mean: 2.2 ms

0.1 variance: 5.9 ms variance: 7.0 ms variance: 8.5 ms

threshold = mean: 1.8 ms mean: 2.0 ms mean: 2.3 ms

0.2 variance: 6.0 ms variance: 7.2 ms variance: 8.8 ms

threshold = mean: 1.9 ms mean: 2.1 ms mean: 2.3 ms

0.3 variance: 6.0 ms variance: 7.4 ms variance: 9.0 ms
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Figure 5.21: Segmentation accuracy in noisy conditions p = 14, threshold = 0.20,M =

7, L = 66ms

significantly when SNR goes below 15dB. The additive babble noise decreased the quality

faster than the pink noise. This is intuitive, since the method is trying to detect changes in

the speech spectrum, and the pink noise signal spectrum does not vary over time, whereas

the babble noise spectrum is constantly changing.

5.2.7 Computational Load

The execution time of the algorithm was also shortly investigated. The system under which

the algoritm was tested was modern standard PC (2 GHz Intel R© Pentium R© 4 processor,

512 MB of RAM) running Linux. All the algorithms were written for Matlab R© software

without any special optimization. The computational load depends on the selection of pa-

rameters such as order of the linear prediction, length of the sequence from which the V AR

model is estimated, and temporal resolution of the segmentation (i.e. the step size for com-

putation of LP). Since this algorithm was not a part of any particular system, but instead

an attempt to investigate the possibilities to utilize vector autoregressive modeling for this
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specific speech analysis subtask, the computational load was not considered a major issue.

Thus the computational load is examined here only in the form of a single test with some

typical parameter values.

In the test the selected parameters were the 14-th order WLSP (p = 14) computed in 20ms

window with a 3ms step size. VAR models were estimated from 24 vectors (L = 72ms),

and each model was used to iteratively produce 7 vectors (M = 7). With this setup the

system execution time was 1.955 times the realtime.



Chapter 6

Conclusion and Perspectives

In this thesis a novel method to detect unpredictable auditory time-frequency changes in

acoustic signals was introduced. The method is based on VAR-modeling of auditory spec-

trograms, and thus does not apply any a priori knowledge of the signals chosen for segmen-

tation. Therefore the method is fully unsupervised and immediately applicable without any

prior training. An interesting property of the method is that it matches the human auditory

system in many respects, and is fully signal independent. This property allows its use in

other fields of audio signal processing as well.

The method was tested on three speakers for the Finnish language. The results show that

the introduced method is, by and large, speaker independent. The segmentation is reli-

able between classes that produce abrupt spectral changes at segment boundaries. Segment

boundaries between vowel-vowel pairs proved the most difficult to detect.

6.1 Future Work

The performance of the method was measured in terms of its correlation to manual phonetic

transcription. This can be considered as a reasonable benchmark for any segmentation sys-

tem, but by no means is it ubiquitous. When testing the segmentation systems this way

there are factors that affect the performance: for example, selection of the phoneme set, the

way the manual segment boundaries are assigned. The latter is a source of a systematic

error that we can not rectify. The former problem is of variable interest depending on our

application.

In this work the multivariate time series used for VAR modeling consisted of warped line

spectrum frequencies. This selection of variables was not proved to be optimal, and in the

52
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future our aim is to investigate the use of other frame based parameters of speech signal for

VAR based segmentation. There exists a number of different features that have been sug-

gested to help categorize the speech signal into meaningful classes. These same features

might be used to find segment boundaries between two different types of speech segments.

These features include for example: log-energy, zero-crossing rate, energy across different

frequency bands, autocorrelation coefficient at unit sample, normalized prediction error,

and so forth. [39]. In the VAR method presented here, the multivariate time series can

consist of vectors whose elements are scaled differently, and thus we can combine several

of these parameters to our vector representation of the signal. Systematic analysis of differ-

ent parameters at the phone boundaries could give us an optimal set of features to use for

segmentation.

The tests we conducted in this thesis produced an explicit segmentation of the speech sig-

nal (single level of segmentation). This type of segmentation scheme always produces

errors in the form of deletions and substitutions, which might be crucial for some applica-

tions. One possible method to overcome this is to build a multi-level segmentation [40].

For our algorithm this could be done using different decision rules to select the bound-

aries from the forward-backward prediction error. With this kind of approach, instead of

the single-segmantation scheme for the utterance, we would have a dendogram of different

possible segmentations for the utterance. This kind of approach could be used for example

in segment-based speech recognition.

Even though the presented segmentation method is signal independent, the nature of the

test material itself might have an effect on the results. The method should not be language

depepndent, but as shown in this work, deletions occur more often between some phonetic

boundaries than others; thus, the types of typical phoneme transitions in the language af-

fects the performance. The set of test utterances used in this work was constructed to cover

as many different transitions as possible in a compact set. The speech consisted of many

occurances of sequence of several vowels (e.g. /lieoissa/), something that is not present

in many languages. In the near future, the method will be tested with English-language

material obtained from TIMIT speech database.
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