
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Electrical and Communications Engineering
Laboratory of Acoustics and Audio Signal Processing

Matti Airas

Development of a Mobile Interactive Musical

Service

Master’s Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Technology.

Espoo, December 1, 2002

Supervisor: Professor Matti Karjalainen
Instructor: Dr. Tero Tolonen

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Matti Airas

Työn nimi: Vuorovaikutteisen musiikillisen mobiilipalvelun toteutus
Päivämäärä: 1.12.2002 Sivuja: 67

Osasto: Sähkö- ja tietoliikennetekniikka
Professuuri: S-89

Työn valvoja: Professori Matti Karjalainen
Työn ohjaajat: TkT Tero Tolonen

Tässä työssä esitellään vuorovaikutteinen soittoäänipalvelu, jonka avulla
palvelun käyttäjä voi laulamalla tai viheltämällä luoda omaan matkapuhe-
limeensa ainutkertaisen soittoäänen. Työssä käsitellään sekä järjestelmän
äänenkäsittelykomponenttien että palveluarkkitehtuurin toteuttamista.

Palvelua käytetään soittamalla matkapuhelimella palvelunumeroon ja laulamalla
lyhyt äänite. Äänite lähetetään soittoäänimuunnoksen tekevälle komponentille,
joka automaattista nuotinnusta käyttäen muuntaa äänitteen soittoääneksi. Luotu
soittoääni lähetetään edelleen lyhytsanomaviestinä käyttäjän matkapuhelimeen.

Työssä tarkastellaan eri menetelmiä perustaajuuden sekä melodian tunnistukseen
ja esitellään valitut menetelmät sekä niihin työssä tehdyt parannukset.

Työssä kiinnitetään huomiota myös järjestelmäarkkitehtuuriin ja sen eri toteu-
tusvaihtoehtoihin. Järjestelmän suorituskykyä tutkitaan sekä simuloimalla että
testaamalla.

Lopuksi esitetään suuntaviivoja jatkokehitykseen tulevien mobiilistandardien val-
ossa sekä käydään läpi päätelaitteessa toimivien musiikkisovellusten tekoon sovel-
tuvia järjestelmiä.

Työn tuloksena syntyi toimiva soittoäänipalvelu. Palvelulla luodut soittoäänet
ovat tunnistettavia ja laadultaan kohtuullisia, joskaan eivät virheettömiä.

Avainsanat: mobiilipalvelu, automaattinen musiikin nuotinnus, soittoääni, äänen
perustaajuuden määrittäminen

1

HELSINKI UNIVERSITY ABSTRACT OF THE
OF TECHNOLOGY MASTER’S THESIS

Author: Matti Airas

Name of the thesis: Development of a mobile interactive musical service
Date: Dec 1, 2002 Number of pages: 67

Department: Electrical and Communications Engineering
Professorship: S-89

Supervisor: Professor Matti Karjalainen
Instructors: D.Sc. (Tech.) Tero Tolonen

This thesis presents an interactive ringing tone service, with which the user of
the service can create a unique ringing tone to his mobile phone by singing or
whistling. The implementation of both the sound signal processing components
and the service architecture are studied.

The ringing tone service is used by calling a service number by a mobile phone
and singing a short recording. The recording is sent to a ringing tone conversion
component, which converts the recording to a ringing tone by using automatic
music transcription. The created ringing tone is further sent to the mobile phone
of the user by a short message service.

The work investigates different methods for fundamental frequency and melody
detection and presents the chosen methods and improvements made to them.

Furthermore, system architecture aspects and different implementation possibil-
ities are studied. The computational efficiency of the system is studied both by
simulating and by testing.

Finally some possible paths for future developments in the light of upcoming
mobile standards are presented and systems suitable for client-based music ap-
plications are reviewed.

As a result of the work a functional ringing ton service was created. The ring-
ing tones created using the service are recognizable and of reasonable quality,
although not perfect.

Keywords: mobile service, automatic music transcription, ringing tone, funda-
mental frequency detection

2

Preface

The work for this thesis has been carried out at Elmorex Ltd. and in the Laboratory
of Acoustics and Audio Signal Processing at Helsinki University of Technology.

The work has been instructed by Dr.Sc.(Tech.) Tero Tolonen, with whom I worked
closely in the initial stages of the project. I want to thank him both for his valuable
insights on the design of the system, and for his helpful comments and suggestions on
the structure and contents of this thesis. I am also grateful to my supervisor Professor
Matti Karjalainen for providing insight on writing the thesis and setting target dates
for the project. Without those deadlines brewing of this thesis probably would have
gone on forever.

I wish to thank Jyrki Kohonen of Elmorex Ltd. for employing me for this project and
supporting the writing of this thesis. Elmorex proved a unique working place for this
fun and entertaining project!

Perttu Hämäläinen, a friend and a co-worker at Elmorex, has had an enormous impact
on his thesis. We spent innumerable hours discussing subjects both on and off-topic,
but those hours were something gained, not wasted. I always marvelled his enthusiasm
on just about anything and his ability of getting things done. Thank you, Perttu!

There are also many other people whom I need to thank for either helping me out
with this thesis, or for helping me keep my (relative) sanity. Listed in no particular
order: my comrade-in-arms Henri Penttinen, Hanna Järveläinen, Riitta Väänänen and
Ville Pulkki of Naistenhuone, Rami Laiho, Laura Turkki and others at Ihana.tv, Antti
Kaihola, Laura Saarilahti, my sisters Katri and Laura and their families (especially
Markku Huhta-Koivisto, who persuaded me to apply to HUT), and many, many others,
whom I have forgotten to mention. Thank you, all of you! I also wish to thank Trurl
and Klapausius for company and not chewing all my clothes.

Finally, I would like to thank my parents Kaija and Kalervo for their love and their
support throughout my studies and showing keen interest on this thesis. My mother
has shown also great skill in patching my chewed clothes, for which I am grateful.

Helsinki, December 1, 2002

Matti Airas

ii

Table of Contents

List of Abbreviations vii

List of Symbols viii

List of Figures x

1 Introduction 1

2 Overview of the system 3

2.1 Use cases . 3

2.2 Structure of the service . 4

3 Background concepts and theories 6

3.1 Speech production . 6

3.2 Voice telecommunication technologies 7

3.2.1 Public switched telephone network 7

3.2.2 GSM . 10

3.3 Fundamental frequency detection methods for monophonic signals . . . 12

3.3.1 Waveform-based fundamental frequency detection methods . . . 13

3.3.2 Autocorrelation-based fundamental frequency detection methods 13

3.3.3 DFT-based methods . 15

3.3.4 Cepstrum-based methods . 16

3.4 Automatic transcription of music . 16

3.4.1 Bottom-up method of Bello, Monti and Sandler 18

3.4.2 Methods for signal segmentation 18

4 Algorithm implementation 20

4.1 Fundamental frequency detection . 21

4.1.1 Frame separation . 21

iii

4.1.2 Windowing and autocorrelation 21

4.1.3 Peak detection . 23

4.1.4 Peak classification . 26

4.1.5 Voicedness detection . 27

4.2 Event creation . 28

4.2.1 Concatenation algorithm . 29

4.3 Ringing tone conversion . 29

4.4 Computational efficiency of the ringing tone conversion 30

5 Implementation of a ringing tone service 34

5.1 Design goals . 34

5.2 System architecture . 35

5.3 Traffic analysis . 37

5.3.1 IVR service quality . 38

5.3.2 Ringing tone conversion service quality 38

5.4 Software architecture . 42

5.4.1 Scalability . 42

5.4.2 Remote procedure call protocols 43

5.4.3 Interface between IVR system and processing backend 46

5.4.4 Interface between processing backend and SMS gateway 48

5.4.5 Programming language considerations 48

5.4.6 Implementation platforms . 49

5.4.7 VoiceXML . 50

5.5 User interface issues . 51

5.6 Development framework . 52

5.6.1 Description of the pilot platform 52

5.6.2 Testing methodology . 53

6 Future technologies 58

6.1 Ringing tone formats . 58

6.2 Polyphonic ringing tones . 58

6.3 Pitch detection based mobile entertainment services 59

6.4 Operating systems for mobile client-based sound applications 59

6.4.1 Java software environment . 59

iv

7 Discussion and conclusions 61

7.1 Ringing tone quality . 61

7.2 Contributions made by the author . 62

7.3 Evaluation of project success . 62

Bibliography 64

v

Abbreviations

ACELP Algebraic Code Excited Linear Prediction
AIX IBM’s UNIX operating system
AMD Advanced Micro Devices, Inc.
API Application Program Interface
ARM A provider of embedded RISC microprocessors
CASA Computational Auditory Scene Analysis
CDMA Code-Division Multiple Access
CEPT European Conference of Postal and Telecommunications

Administrations
CGI Common Gateway Interface
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
DFT Discrete Fourier Transform
DSP Digital Signal Processing
DTMF Dual Tone Multi-Frequency
EFR Enhanced Full Rate
EMS Enhanced Messaging Service
EPOC An operating system designed for mobile computing devices
FFT Fast Fourier Transform
FIFO First in, first out
FTP File Transfer Protocol
GPRS General Packet Radio Service
GSM Global System for Mobile Communications
HFC High Frequency Content
HP Hewlett-Packard
HTTP Hypertext Transfer Protocol
IDL Interface Definition Language
ISDN Integrated Services Digital Network
IVR Interactive Voice Response
JIT Just-in-time (compiler)
JSP Java Server Pages
LP Linear Prediction
LPC Linear Prediction Coefficients
MiB Mebibyte, 220 or 1,048,576 bytes
MIDI Musical Instrument Digital Interface
MIDP Mobile Information Device Profile

vi

MIME Multipurpose Internet Mail Extensions
MMS Multimedia Messaging System
MOS Mean Opinion Score
MPEG Moving Picture Experts Group
.NET A software platform developed by Microsoft Corp.
OS Operating System
PC Personal Computer
PCM Pulse Code Modulation
PRI Primary-Rate Interface
PS Processor-sharing
PSTN Public Switched Telephone Network
RMI Remote Method Invocation
RPC Remote Procedure Call
RPE Regular Pulse Excitation
RTC Ringing Tone Conversion
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SQL Structured Query Language
UML Universal Modeling Language
UMTS Universal Mobile Telecommunications System
UNIX A popular multi-user, multitasking operating system
VSELP Vector Sum Excited Linear Prediction
WAP Wireless Application Protocol
WLAN Wireless Local Area Network
WSDL Web Services Definition Language
WWW World-wide web
XML Extensible Markup Language

vii

Symbols

A Companding rate in A-law quantization
a Traffic intensity
Bc Call blocking probability
cx(k) Cepstrum function
E(ν) Energy error function for peak classification
f0 Fundamental frequency
φk(m) Short-time autocorrelation function
FD Discrete Fourier transform
h Average holding time
λ Peak acceptance threshold
λ Service request arrival rate (traffic theory)
µ Companding rate in µ-law quantization
µ Service rate (traffic theory)
ν Autocorrelation lag value
σ Voicedness threshold
v(k) Voicedness value of a frame
w(n) Time-domain window function

viii

List of Figures

2.1 Rring use case diagram showing the common use cases. 3

2.2 Rring use sequence. 5

2.3 Ringing tone conversion use sequence closeup. 5

3.1 Human vocal organs and a representation of their main acoustical fea-
tures. (After J. L. Flanagan [Fla65].) 6

3.2 Plot of second formant frequency versus first formant frequency for vow-
els by a wide range of speakers. (After Peterson and Barney [PB52].) . 8

3.3 Telephone band limits and transfer characteristics of a Texas Instru-
ments TCM29C13 single-chip PCM codec and filter. (After [Tex86].) . 9

3.4 Signal-to-quantizing-noise ratio, plotted against signal amplitude for
continuous, nonuniform (A-law) quantization. The dashed line repre-
sents uniform quantization with n = 255. (After [Owe82].) 11

3.5 The principle of zero-crossing pitch detector. 13

3.6 Waveform and autocorrelation graphs of vowel /i/. 14

3.7 Spectrum of vowel /i/ after the transmission path. 16

3.8 Scheme of the transcription system presented by Bello, Monti and Sandler. 18

4.1 Waveforms, spectra and autocorrelation graphs of sung vowel /u/. . . . 22

4.2 Block diagram of the fundamental frequency detector. 23

4.3 Periodic extension of sinusoid not periodic in observation interval. (After
[Har78].) . 23

4.4 Local peaks in an autocorrelation vector. 24

4.5 Peaks in an autocorrelation vector as detected by the peak detection
algorithm. 25

4.6 Autocorrelation of a Hamming window. 25

4.7 Error function for the whole frame and limited to vicinity of the peaks. 27

4.8 Effect of different window approximations on voicedness detection. . . . 28

4.9 Execution times of the melody detection program as a function of record-
ing length. 33

ix

5.1 Monolithic service architecture. 35

5.2 A synchronous distributed system. 36

5.3 An asynchronous distributed system. 37

5.4 A partially asynchronous distributed system. 37

5.5 IVR service quality as a function of traffic intensity. 39

5.6 Backend service quality as a function of request intensity. 40

5.7 Backend service load simulation graph. 41

5.8 Basic IVR line bundling. 43

5.9 Multiple IVR servers. 44

5.10 Separate processing backend. 44

5.11 VoiceXML Architecture. 51

5.12 Rring development framework architecture. 53

5.13 Sample processing times in test runs on a Celeron CPU. 55

5.14 Sample processing times in test runs on a Athlon XP CPU. 56

x

Chapter 1

Introduction

The growth of mobile short messaging services has been huge in the last years. Even
though first Finnish commercial SMS content services were launched in 1998, the mar-
ket value in Finland in 2001 was already 44 million euro [Min01, Min02]. The largest
single service group was ringing tone services, amounting to 24% of all service requests
in 2001. It is predicted, however, that the value of ringing tone services rises only
slightly in the future, as the market will already saturate [Min02].

Currently all ringing tone services on the market are very similar to each other. Pre-
made ringing tones can be selected from a list and ordered to user’s own or other
defined mobile phone number. The services differentiate each other only by branding
or by the quality of pre-made ringing tones.

Given the market situation outlined in the previous paragraphs, it is obvious that
new ringing tone services, which clearly differentiate the service provider from the
competition, are sought for. So, when Dr. Tero Tolonen in 1999 had an idea of making
an interactive ringing tone service, the idea was aptly researched, and a project to
make such a service was begun.

The service implemented in this work—dubbed Rring—is a ringing tone service, in
which the user can sing, whistle or hum himself a new mobile phone ringing tone.
Present technologies are utilized in a way that a novel service is created, and so the
technologies are extended to new markets.

To use the service, the user dials a telephone number. He or she hears a instruction
recording, in which he is asked to sing or hum after a beep. After recording the
performance, the service transforms the recorded melody to a symbolic, or object-
based notation, which is then transformed to a vendor-specific ringing tone format and
sent to the user.

The service is implemented as an interactive voice response system, but so that it is as
easy to use as leaving an answering-machine message would be. Since the service only
utilizes user interface elements already known to the user, the barrier to use is kept
low.

The title of this thesis is Development of an mobile interactive musical service. The
title can be broken down as follows. Development means that the work covers the
algorithm selection and implementation, as well as the service framework design and

1

CHAPTER 1. INTRODUCTION 2

implementation. Mobile refers to the fact that the service is characteristically a mobile
phone application. Interactive means that the user is not just a passive consumer of
the service, but actually actively participates in the process. Musical stands for the
musical properties of the service. The user sings, hums or whistles to interact with the
service. Service means that the main effort in the thesis has been to create a service,
which customers can use with ease. The barrier of use should be kept low and usability
and attractiveness should be important design aspects.

The structure of this thesis is as follows.

Chapter 2 gives an overview of the service and describes the different high-level com-
ponents. It is recommended to read this chapter first to familiarize oneself with
the overall structure of the service.

Chapter 3 reviews different algorithms and background information related to the
subject of this thesis.

Chapter 4 describes the particular algorithms chosen for this work and their imple-
mentation specifics. The emphasis is in the digital signal processing part of the
service.

Chapter 5 describes the architecture of the service and several implementation is-
sues such as processing power requirements, traffic analysis and scalability of the
service.

Chapter 6 reviews some upcoming technologies relevant to mobile music entertain-
ment services. These include further development ideas and an operating system
review to chart viable platforms for client-side music entertainment services.

Chapter 7 concludes the thesis, analyzing the achievements of the work and summa-
rizing the results.

Chapter 2

Overview of the system

This chapter gives an overview of the service and familiarizes the reader with the terms
and concepts connected to it.

As mentioned in Chapter 1, Rring is a ringing tone service, in which the user creates
himself a new, individual ringing tone. The following section gives some usage scenarios
for the service. Then, in the light of these scenarios, the structure of the service is
discussed.

2.1 Use cases

Usage of the Rring service is illustrated using terminology and concepts coined by
Universal Modeling Language (UML) [Obj02]. Basic use is described using two use
scenarios. The respective UML Use case diagram is shown in Figure 2.1. The stick
figure represents the user, who is the actor in these cases. The user may either use the
service to create a ringing tone, or forward a created ringing tone to someone else.

User

Create ringing tone

Forward ringing tone

Figure 2.1: Rring use case diagram showing the common use cases.

The first scenario consists of a basic interaction between a user and the system.

A high-school student, having listened to her friend’s new personalized
ringing tone, decides to make one to her own mobile phone. She dials the
advertised service number, and listens to the welcome and instruction record-
ing. After a tone she whistles the theme of her all-time favorite piece, Eu-
rope’s The Final Countdown. After whistling, she hangs up as instructed.

3

CHAPTER 2. OVERVIEW OF THE SYSTEM 4

The service then converts the melody to a ringing tone and sends it as an
SMS message to the phone number the user dialed from. Almost immediately
her mobile phone beeps and tells a new ringing tone has arrived. She listens
to the ringing tone, which resembles her whistling, including all the errors
she made while whistling. She finds it incredibly amusing and sets it as the
ringing tone of her phone.

The first scenario describes the service actually implemented as a result of this thesis.

The second scenario is a sequel to the first one. In it, the user forwards a ringing tone
to her friend, thus giving added value to the created ringing tone.

The generated ringing tone, while having an unmistakable home-baked
flavor, still is recognizable as the original piece, and the user wants to share
it with her boyfriend. As the ringing tone-arrived, it was assigned a unique
name. She sends a forwarding request to an SMS service. The service then
re-sends the ringing tone to the number she gave.

While planned as a future addition, the service outlined in the second scenario was not
implemented in this thesis.

2.2 Structure of the service

The use sequence of Rring service is shown in Figure 2.2. As can be seen in the
Figure, the service consists of three separate functional modules. The first module,
the Interactive Voice Response (IVR) system, automatically handles the telephone
conversation, answering the call, reading prompts and recording user input. The second
module, ringing tone conversion (RTC), receives a recording from the IVR system and
converts it to a ringing tone. The third module is the SMS gateway, through which
the ringing tones are sent to the user.

Figure 2.3 shows a more detailed view of the ringing tone conversion module. After
receiving a recording, the RTC server sends it to the pitch detector. The pitch detector
then creates frame-based pitch and voicedness trajectories from the recording. This
information is then sent to the event creator, which creates musical event data from
the trajectories. This event data is then sent to a music transcription program, which
creates MIDI and ringing tone files from the event data. The RTC server then sends
the ringing tone file to the SMS gateway.

CHAPTER 2. OVERVIEW OF THE SYSTEM 5

User : IVR : Ringing tone conversion : SMS gateway :

Dial Rring

Play instructions

Record

Hangup

Handle recording

Send SMS

Transmit SMS

Figure 2.2: Rring use sequence. Different modules can be seen as vertical
bars, with time advancing down on the vertical axis. Interaction
between the modules can be seen as the different arrows.

RTC server : Pitch detector : Event creation : Music transcription :

Pitch detect wave file

Return frame pitch info

Create events

Return event data

Create ringing tone

Return ringing tone

Figure 2.3: Ringing tone conversion use sequence closeup. Time advances
downwards on the vertical axis, and different arrows represent
interaction between the different modules.

Chapter 3

Background concepts and theories

This Chapter first gives an introduction to human speech production, after which
a primer to relevant voice telecommunication technologies is given. Some different
fundamental frequency detection methods are reviewed, and finally event creation and
music transcription technologies are discussed.

3.1 Speech production

According to Rossing [Ros90], human speech production system is as follows. In speak-
ing, air is forced from the lungs through the larynx into the three main cavities of the
vocal tract: the pharynx and the nasal and oral cavities. From the nasal and oral
cavities, the air flows through the nose and mouth, respectively. In order to produce
speech sounds, the flow of air is interrupted by the vocal cords or by constrictions in
the vocal tract made with the tongue or lips. The sounds from the interrupted flow are
appropriately modified by various cavities in the vocal tract and are eventually radiated
as speech from the mouth and the nose. The human vocal organs and a representation
of their main acoustical features are shown in Figure 3.1.

Figure 3.1: Human vocal organs and a representation of their main acous-
tical features. (After J. L. Flanagan [Fla65].)

Voiced sounds are produced by vocal cords. They modulate the air flow by rapidly

6

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 7

opening and closing, and this vibration produces a buzzing sound from which voiced
sounds are created. These glottal pulses generated by the vocal cords define the funda-
mental frequency of speech. During normal speech, the vibration rate may vary over
one actave, although the range of a singer’s voice is more than two octaves. Typical
frequencies used in speech are 110 Hz in the male, 220 Hz in the female and 300 Hz in
the child, with wide individual variations. The pitch of a male singer can be as low as
80 Hz.

Different voiced sounds are produced by the vocal tract. The vocal tract, as shown in
Figure 3.1, can be considered a single tube extending from the vocal cords to the lips,
with a side branch leading to the nasal cavity. It transforms the sounds produced by
the vocal cords into distinct vowels and voiced consonants. This is accomplished by
changing the shape of the vocal tract to produce various acoustic resonances. These
resonances, or peaks in the sound spectra of vowels, exist independently of pitch, and
are called formants. They appear as envelopes that modify the amplitudes of the
various harmonics of the source sound.

The relative positions of the formants differ for different vowels. Generally speaking,
different vowels can be distinguished from each other if the two first formats of speech
are transmitted. However, for sound quality and recognition of individual speakers,
transmission of more than two formants is preferred.

Peterson and Barney [PB52] measured the formant frequencies of vowels that were
perceived to be equivalent. Their results are shown in Figure 3.2, which shows second
formant frequency as a function of first formant frequency for several vowels spoken
by men and children. The broad ellipses show the approximate range of variation in
formant frequencies for each of these vowels.

3.2 Voice telecommunication technologies

Modern public switch telephone network (PSTN) is a direct descendant of first tele-
phone networks of 1880’s. While the transmission technologies have fundamentally
changed from original dedicated twisted pairs to carrier-based technologies to digital
PCM transmission using broadband coaxial cables and optical transmission, the cus-
tomer interface still remains essentially the same. The PSTN telephone connection still
is a copper twisted pair with same electrical specifications as decades earlier. Therefore
also the transmission band and dynamic range are “set in stone”. This Section intends
not to give a complete review of history of telephony development, but to summarize
modern voice telecommunications technologies relevant to this thesis.

3.2.1 Public switched telephone network

Figure 3.3 shows the frequency response of a typical telephone band integrated codec/filter.
Also shown are the transition band boundaries. The telephone transmission band is
defined to be 300–3400 Hz. The necessary bandwidth was defined to (barely) fit the
first four formant frequencies for vowels in male speech. This improves the legibility of
speech and assists in personalizing the sound. The lower limit of the bandwidth was

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 8

Figure 3.2: Plot of second formant frequency versus first formant frequency
for vowels by a wide range of speakers. (After Peterson and
Barney [PB52].)

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 9

set to provide an ample transition band for a high-pass filter. The high-pass filter was
deemed necessary to eliminate any possibility of the 50 Hz (in North-America 60 Hz)
mains hum coupling to the telephone signal. The higher limit was set so that the signal
can be sampled at a sampling rate of 8 kHz. The 600 Hz transition band was needed so
that analog anti-aliasing filters could be implemented economically. Figure 3.3 shows
that especially the lower transition band slope is allowed to be quite gentle, with only
23 dB of attenuation at 60 Hz. It also has to be noted that while the lower limit of
telephone band is 300 Hz, the maximum attenuation at 200 Hz is still less than 2 dB.1

Figure 3.3: Telephone band limits and transfer characteristics of a Texas In-
struments TCM29C13 single-chip PCM codec and filter. (After
[Tex86].)

The signal is sampled at 8 bits per sample, so that the voice channel becomes repre-
sented by a stream of pulses with a repetition rate of 64 kHz. Uniform quantization of
the signal, while the most straightforward and obvious choice, is not statistically jus-
tifiable. The probability distributions of message signal amplitudes are rarely, if ever,
uniform. In speech, the probability of occurrence of a small amplitude is much greater

1There may be additional filtering performed in other parts of the telephone network, though.

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 10

than a large one. Experiments have shown that the probability distribution of speech
signal amplitudes is approximately exponential [Dav52]. Furthermore, the range of
amplitudes that can occur within a transmission system is considerable. Telephony,
in particular, demands that quantizing equipment be designed to accept a wide range
of amplitudes due to the wide attenuation differences of transmission lines within a
switched telephone network [Owe82]. (The difference in level between two telephonic-
speech signals can easily exceed 30 dB.) Consequently, it is appropriate to allocate
many quantization steps in the small amplitude region, and only a few in the large
amplitude region. This technique is referred to as nonuniform quantization.

The nonuniform quantizations in use are µ-law and A-law. They are used in Americas
and in Eurasia, Africa and Australia/Pacific respectively. The companding algorithm
of µ-law is

y =
log(1 + µx)

log(1 + µ)
, (3.1)

where µ is the companding rate (normally µ = 100). The respective algorithm for
A-law is

y =
Ax

1 + log A
for 0 ≤ x ≤ 1

A
(3.2)

y =
1 + log(Ax)

1 + log A
for

1

A
≤ x ≤ 1 , (3.3)

where A is the companding rate (normally A = 87.6).

Figure 3.4 represents signal-to-quantizing-noise ratio of an A-law companded signal. It
can be seen that the ratio is 38 dB for a wide range of signal amplitudes, and begins
to fall a lot later than with uniform quantization.

3.2.2 GSM

The abbreviation GSM originates from French words Groupe Spécial Mobile, which
was the name of CEPT (Conférence Européenne des Administrations des Postes et
des Télécommunications, or European Conference of Postal and Telecommunications
Administrations) workgroup founded in 1982 [HAHN93]. It was assigned to define a
next generation digital mobile phone system. To ensure creation of a pan-European
mobile phone system, a memorandum of understanding to implement GSM in most
European countries was signed in 1987. The first GSM commercial network was opened
in 1991. Nowadays it is the leading second-generation mobile phone standard in the
world.

GSM works on several frequency bands. In addition to the original 900 MHz band, a
1800 MHz band is allocated as well to reduce bandwidth congestion. In North America,
GSM phones transmit at 1900 MHz. In the frequency domain, the allocated bands are
divided to several 200 kHz bands. In the time domain, these bands are further divided
to eight different time slots. The transmission rate in the channel is 22.8 kbit/s, which
is divided so that 13 kbit/s is the speech codec bit rate and the rest is allocated for
error correction.

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 11

Figure 3.4: Signal-to-quantizing-noise ratio, plotted against signal ampli-
tude for continuous, nonuniform (A-law) quantization. The
dashed line represents uniform quantization with n = 255. (Af-
ter [Owe82].)

The speech coding method used in GSM is RPE-LTP (Regular Pulse Excitation with
Long Term Prediction). It works by first creating eight linear prediction coefficients
(LPC) from a signal frame [Alk99]. These short term LP coefficients are then suitably
represented and quantized.

The LP coefficients are calculated so that the original signal frame can be filtered using
those coefficients. This leaves a residual signal, which can be efficiently quantized and
coded. However, for harmonic signals an impulse structure is left to the residual. These
periodic impulses limit the quanizing, and so it is removed using a one-pole long-term
linear predictor.2

The residual left by the long-term LPC processing is then compressed by down-sampling
it in 3:1 ratio. Four different down-sampled subframes are created, and the one with
most energy is selected. This frame is then scaled and quantized for transmission.

The RPE-LTP decoder is lot simpler than the encoder. It basically just up-samples
the residual and then inverse filters it with the long- and short-time LP coefficients,
thus recreating a signal close to the original.

In the late 90’s, two alternate codecs have become available in GSM phones. First of
these, ACELP (Algebraic Code Excited Linear Prediction) is a so-called EFR-codec
(Enhanced Full Rate), which operates at the same bit-rate as the RPE-LTP codec, but
with a better sound quality. The second new codec is VSELP (Vector Sum Excited
Linear Prediction), which is a half-rate coder, that compresses the speech band twice as

2Since the long-term linear predictor matches the impulse string caused by the periodicity of the signal, it
effectively detects the fundamental frequency of the signal.

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 12

effectively as the RPE-LTP-codec. This enables theoretical doubling of GSM transmis-
sion capacity. The half-rate codec is primarily used in large metropolies of South-East
Asia, while the EFR codec has been more widely adopted. All these speech coding
methods are based on LPC-analysis.

Codec speech quality is commonly measured using mean opinion scores (MOS) [itu96].
The MOS quality metric scale is represented in Table 3.1. The RPE-LTP codec has
a MOS value of 3.5, while the EFR codec reaches 4.0. The half-rate codec also has
a MOS value of 3.5. For comparison, the MOS value of the A-law companded PSTN
telephone transmission path is 4.5 [Sch01].

Score MOS
5 excellent
4 good
3 fair
2 poor
1 bad

Table 3.1: Mean Opinion Score scale.

3.3 Fundamental frequency detection methods for monophonic
signals

Fundamental frequency detection is an algorithm with a myriad of applications. Musi-
cal applications, which this presentation mainly handles, include for example automatic
notation, pitch-shifting (so-called auto-tuning) and speech coding applications.

Fundamental frequency is physically the lowest frequency in the harmonic structure
of sound. The perceived pitch is a complex phenomenon which includes much more
than just detection of fundamental frequencies. For example, the human ear can fol-
low several pitch trajectories simultaneously, and detect slight but expressive pitch
deviations such as vibrato and microtonal intervals. The ear can be led into hearing
non-existing pitches such as fundamental frequencies implied by the presence of their
harmonic series. Other examples of cheating the ear include illusory pitch trajectories
such as sounds that appear to be continuously ascending or descending [Ros90].

While not accurate from the psychoacoustic viewpoint, in signal processing applications
fundamental frequency and pitch are often considered to be synonymous.

The majority of research in fundamental frequency detection methods is focused around
few distinct applications, pitch detection of speech being most prominent of them.
Using speech oriented pitch estimators in music applications is not without problems,
though. Speech pitch estimators are generally accurate on a relatively narrow frequency
band, about 100–600 Hz. In musical applications the pitch varies over a wide range of
frequencies. For example, it can be assumed the input may be sung or whistled. Pitch
of a whistled melody may vary from 700 to 2800 Hz [Ros90], while the pitch of a male
singer can be as low as 80 Hz. So, a musical pitch detector should be able to handle a
pitch range of 80–2800 Hz, a range of over 5 octaves.

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 13

The pitch detection methods can be divided into three categories depending on the
domain they operate in: time-, frequency- and cepstrum-domain [RCRM76]. Exam-
ples of time-domain algorithms include waveform-based methods and autocorrelation
methods. Frequency and cepstrum domain methods usually make use of the discrete
Fourier transform (DFT).

Some pitch detection algorithms are reviewed below shortly. Waveform-based methods
are discussed first. After that, autocorrelation and DFT methods are discussed. The
Section ends with a short review of cepstrum-based pitch detection methods.

3.3.1 Waveform-based fundamental frequency detection methods

One of the oldest waveform-based pitch detection methods is the zero-crossing method.
A zero-crossing is a point where the sample trajectory changes sign. Figure 3.5 illus-
trates zero-crossing fundamental frequency detection. Both Figure (a) and (b) have
the same fundamental frequency, but Figure (b) has five additional harmonic frequen-
cies. Zero-crossing points are sought, after which the fundamental frequency can be
calculated. In the case of the simple harmonic signal shown in Figure 3.5 (a), the
fundamental frequency can be easily detected. However, as Figure 3.5 (b) suggests,
in case of a more complex signal, the basic zero-crossing method proves inadequate.
The additional zero-crossings caused by the harmonics baffle the simplistic detection
routine.

While simple and computationally inexpensive, zero-crossing pitch detectors are less
accurate than more elaborate methods [Roa98]. Therefore they are mainly of historical
interest only.

a) b)

A
m

pl
itu

de

Time

zero-crossing

A
m

pl
itu

de

Time

zero-crossing

Figure 3.5: The principle of zero-crossing pitch detector.

3.3.2 Autocorrelation-based fundamental frequency detection methods

Autocorrelation is a transform of the signal, describing how well a signal correlates with
itself delayed by different durations. At those delay values, in which the correlation is

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 14

strong, periodicity of the signal can be assumed. If the basic period t0, the lag value
of the first correlation peak associated with the desired signal, can be extracted, the
fundamental frequency f0 can be extracted trivially:

f0 =
1

t0
. (3.4)

The fundamental frequency at each instance of time is calculated using short-time
autocorrelation analysis [Rab77]. In short-time autocorrelation analysis, the signal is
split into short segments, for which the autocorrelation function is calculated.

The short-time autocorrelation function of a short segment of signal x(n) is defined as

φk(m) =
1

N

N−1∑
n=0

[x(n+k)w(n)][x(n+k+m)w(n+m)], 0 ≤ m ≤ MC−1, N ≤ MC (3.5)

where MC is the number of autocorrelation points to be computed, N is number of
samples in the segment, k is the index of the starting sample of the frame, and w(n)
is the time-domain window function, such as the Hamming or Hanning window.3

For efficiency, short-time autocorrelation analysis is often implemented using fast cor-
relation, which requires of computation of two discrete Fourier transforms:

φk(m) =
1

N
F−1

D

[
F ∗

D[x(k)]FD[x(k)]
]
, (3.6)

where FD is a discrete Fourier transform, ()∗ is a complex conjugate function and x(k)
is the signal segment.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
m

pl
itu

de

time (s)

Waveform of vowel /i/

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
m

pl
itu

de

lag (s)

Autocorrelation graph of vowel /i/

1

2

3

4
5

6 7

8 9

Figure 3.6: Waveform and autocorrelation graphs of vowel /i/.

Autocorrelation graphs, such as that in Figure 3.6, always have their largest peak at
lag value 0 (peak 1 in Figure 3.6), at which point the signal correlates with itself. The
envelope of the autocorrelation graph for periodic signals follows the autocorrelation of
the windowing function being used. The highest real peak of the autocorrelation graph
(peak 3 in Figure 3.6) is caused by the periodicity at the fundamental frequency (which

3If windowing is omitted, a rectangular window is effectively used.

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 15

is the strongest periodicity in the signal). There may be peaks between the zero lag
value and the fundamental frequency peak (peak 2 in Figure 3.6), which correspond to
the harmonics of the fundamental frequency. The other peaks in the autocorrelation
graph are caused by the fundamental and the higher harmonics delayed by more than
one cycle. Thus peaks 3, 5, 7 and 9 in Figure 3.6 are also caused by the fundamental
frequency, and peaks 2, 4, 6 and 8 by the second harmonic (which also adds up to
peaks 3, 5, 7 and 9).

Fundamental frequency can be extracted from the autocorrelation data by taking the
lag value of the greatest peak of the autocorrelation graph and applying Equation (3.4)
to the value. For example in Figure 3.6, the greatest peak (peak no. 3) is at lag value
of 4.7 ms, so the fundamental frequency is 210 Hz.

One of the problems with basic autocorrelation is its poor resolution. Only very few
signal components can actually be distinguished in the autocorrelation graph. Har-
monic overtones also tend to slightly dislocate the peaks, giving false fundamental
frequencies. To improve the resolution, Judith C. Brown has proposed a narrowed
autocorrelation algorithm [BP89, Bro91], which makes the autocorrelation peaks sig-
nificantly narrower, allowing more detail to show. The computational requirements are
significantly higher, though.

Another problem with autocorrelation based methods is their subjectiveness to har-
monic errors. In such case, the autocorrelation graph becomes distorted so that a peak
caused by a higher harmonic for some reason is higher than the peak caused by the fun-
damental frequency. In Figure 3.6, this would happen if peak 2 were higher than peak
3. Some proposed methods to alleviate this problem include Sondhi’s center-clipping
method [Son68] or methods that aim at whitening the spectrum of the signal. In speech
analysis, the use of Linear Predictive Coding (LPC) residual is common. This thesis
also addresses the harmonic error problem in Section 4.1.

3.3.3 DFT-based methods

The Fourier transform is a signal transform, in which a spectral representation of a time-
based signal is computed. Figure 3.7 shows the magnitude of the Fourier transform
of time-based signal displayed in Figure 3.6. In ideal conditions, the fundamental
frequency simply equals to the location of the strongest peak in the Fourier transform.
In practice, the harmonic series of the frequency is often used to gather additional
information.

In telephony applications, usefulness of methods based on DFT are limited because of
the limited bandwidth of the transmission path. According to Rossing [Ros90], typ-
ical fundemental frequencies of speech are 110 Hz for male speakers, and 220 Hz for
females. In singer’s voice this may vary for more than two octaves. Since the lower
limit of telephone bandwidth is 300 Hz, the transmission path causes the fundamental
frequencies either to attenuate strongly, or disappear altogether. Because of this, har-
monic matching methods have to be utilized in these conditions, and even they have
to be adapted for missing fundamental frequencies.

Harmonic matching methods estimate the fundamental frequency using a theoretical

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 16

-60

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ag

ni
tu

de
 (

dB
)

f (Hz)

Frequency spectra of vowel /i/

1
23456789

Figure 3.7: Spectrum of vowel /i/ after the transmission path.

model based on a maximum likelyhood of the fundamental frequency [DR91]. Harmonic
components are matched to with fundamental frequencies that would best create such
a harmonic series.

3.3.4 Cepstrum-based methods

Cepstral methods are commonly used in speech analysis, as they are able to separate
the glottal frequency from vocal tract resonances. The Cepstrum cx(k) of a signal is
obtained as follows:

cx(k) = F−1
D

[
log|FD[x(k)]|

]
. (3.7)

The fundamental period can be derived from the peak in the cepstral domain repre-
sentation.

The problems of cepstral pitch detection are that it can only analyze a rather narrow
frequency range, and that it relies on the presence of harmonics in the input signal.
It therefore fails to detect pitch in whistled input, as whistling produces a quite pure
sinusoidal tone with few harmonics.

3.4 Automatic transcription of music

Transcription of music is defined to be the act of listening to a piece of music and
of writing down musical notation for the notes that constitute the piece. In other
terms, this means transforming an acoustic signal into a symbolic representation, which

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 17

comprises notes, their pitches, timings, and a classification of the instruments used
[Kla97].

Computational auditory scene analysis (CASA) as an area of research greatly influenced
by Albert Bregman and his book “Auditory Scene Analysis” [Bre90]. CASA tries to
automatically analyse the acoustic information coming from a physical environment
and to interpret the numerous distinct events in it. The scope covers everything from
simple onset-detection algorithms to complete sound-description systems that aim to
’explain’ unrestricted real-world sound ambiences into symbolic representations reflect-
ing the perceived source structure [Ell96].

It is common in computational auditory scene analysis to distinguish from the auditory
perception process three separate levels of representation. The low-level representations
are those appropriate to describe the sound signal reaching the cochlea, whereas the
high-level representations convey meaning, and are those to which human beings have
cognitive access, such as “Someone is whistling the James Bond theme”.

Between the high and low-level representations lies a network of representations labeled
mid-level, about which there is little direct knowledge, as the relevant physiology of
the brain is just beginning to be understood. The knowledge of these representations
arises mainly from the constrains imposed on them at the lower and higher levels about
which more is known [Ell95].

Despite the lack of knowledge of mid-level representations, computer models can be
built to bridge the gap between low and high-level representations.

Since the low-level functions of hearing and signal processing are thought to be rela-
tively well known, the approach of making mid-level representations has mostly been
bottom-up. In these approaches, information is observed in an acoustic waveform,
combined to provide meaningful auditory cues, and passed to higher-level processes
for further interpretation. No information flows in the other direction. Because of
the order of the information flow, the approach is also called data-driven processing
[Kla97].

However, while bottom-up processes are needed to process the acoustic waveform in-
formation, to apply them to the whole auditory perception process would be a gross
oversimplification. The mammal auditory perception process has a lot of a-priori
knowledge or expectations of the auditory signals to be heard. This knowledge inter-
acts with the hearing process so that information actually flows in both directions,
and high-level representation contributes to the mid-level processes. This is called top-
down, or prediction-driven processing. An extensive presentation of this approach can
be found in Daniel Ellis’ PhD Thesis [Ell96].

In music-related CASA the low-level representation is commonly considered as the
acoustic waveform. While note as a high-level representational symbol of music has tra-
ditionally been implicitly accepted, contemporary knowledge of musical perception and
cognition does not support this view [Sch96]. Ellis and Scheirer present a prediction-
driven model of music perception and cognition, in which the listening process is not
seen as a means of virtually transcribing the music into separate note patterns, but
rather in which psychoacoustic cues in the data, such as “tracks”, noisy regions, or

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 18

onsets in the time-frequency spectrum are highlighted. These psychoacoustic cues are
compared against predictions based on the current musical context, and the agreements
or disagreements between prediction and realization are reflected in a new representa-
tion of the musical situation. The representation often is chimeric, combining different
simultaneous instruments in a single coherent event with its own individual properties,
questioning the notational representation of the perceived sound [Bre90].

This work, however, concentrates on transcribing music to a form that resembles the
original melody. Although trying to represent the original melody perceptually as
closely as possible theoretically is very much of interest, the arbitrary limits imposed
by the ringing tone formats practically reduce the problem back to more conventional
automatic music transcription.

3.4.1 Bottom-up method of Bello, Monti and Sandler

Bello, Monti and Sandler describe a monophonic transcription system, which works
with a simple bottom-up orientation [BMS00]. The scheme of their transcription sys-
tem is shown in Figure 3.8. Their system uses a very straight-forward method of cal-
culating pitch values of audible signal segments, converting the pitch values to MIDI
key numbers, and finally collecting the single frame with similar MIDI key numbers
to longer events. Their collector detects sound onsets based on the beginning of the
steady state part of the signal, thus ignoring problems with noisy signal attack phase.

Figure 3.8: Scheme of the transcription system presented by Bello, Monti
and Sandler.

3.4.2 Methods for signal segmentation

Signal segmentation, i.e. extracting information of the onset and offset of events, is
of great importance in creation of ringing tones. The storage space for the melody in
ringing tones is very limited, and avoiding detection of false event boundaries in the
signal allows for longer melodies.

In his Master’s Thesis Tristan Jehan divides signal segmentation field to frequency
and time-based approaches [Jeh97]. Frequency domain method presented by him is
based on calculating values of High Frequency Content function and energy function

CHAPTER 3. BACKGROUND CONCEPTS AND THEORIES 19

for each frame and using them to calculate the detection function. This approach is
also explored by Bello, Monti and Sandler [BMS00].

The energy function is calculated as a sum of the magnitude squared of each frequency
bin:

E =

N
2

+1∑
k=2

(|X(k)|2) (3.8)

where E is the Energy function for the current frame, N is the FFT array length, and
X(k) is the kth bin of the FFT.

The High Frequency Content function is defined as

HFC =

N
2

+1∑
k=2

(|X(k)|2 · k) (3.9)

where HFC is the High Frequency Content function of the current frame.

Since the noisy onset periods of events usually have a lot of high frequency content, a
detection function comparing high frequency content of two consecutive frames can be
formulated as

DFr =
HFCr

HFCr−1

· HFCr

Er

, (3.10)

where subscript r denotes current frame and r − 1 denotes the previous frame. Peaks
of the detection function indicate onsets of events.

Jehan also experimented with alternate event detection methods which worked by high-
frequency filtering the HFC trajectory or by comparing the difference of spectra of the
signals. In his experiments these methods were as reliable as the method presented
above, but they could also indicate the offsets of notes fairly well.

The time-domain approaches explored by Jehan modeled the signal by an autoregres-
sive statistical model and then used these statistics to detect changes in the model
parameters.

Chapter 4

Algorithm implementation

The primary motivation behind this thesis was to create an economically viable ringing
tone service, in which one could sing, whistle or hum a new and unique ringing tone for
his mobile phone. The intended application for a major part designated the algorithm
and technological choices for the implementation. The limitations were as follows:

• Transmission path: the algorithm has to work with telephone bandwidth and over
speech codecs such as the GSM codec.

• Ringing tone formats: upon beginning the work, only mobile phones made by
Nokia supported sending ringing tones using short messages. Therefore, the ser-
vice has to obey the limitations of this format.

• Feasibility: since the service has to be economically viable, development costs
have to be capped, and the computational efficiency of the service has to be
good.

The aforementioned limitations led to the following initial design choices:

• Monophony. Since the output format is strictly monophonic, polyphonic pitch
detection would be of no use.

• Autocorrelation based pitch detection techniques are used to bypass the band-
width limitations, since they work well even when the fundamental frequency is
missing from the signal.

• The design will be kept sufficiently simple to cut the development costs. This
means that only traditional bottom-up based transcription algorithms will be
used.

In the following sections different design and algorithm choices will be addressed in
detail.

20

CHAPTER 4. ALGORITHM IMPLEMENTATION 21

4.1 Fundamental frequency detection

The fundamental frequency detection is implemented using traditional autocorrelation-
based techniques already described by Rabiner [Rab77]. While these are often not said
to be suited for fundamental frequency detection when large ranges of pitches and
varieties of spectra are encountered ([DR91, RCRM76]), they have been recently used
in such purposes as well [Tol00].

Autocorrelation-based f0 detection methods usually work by extracting the position
of the largest peak in the autocorrelation graph, interpolating its exact position and
converting it to the frequency domain. This was the first method implemented in
Rring. It was soon noted that when testing the system over GSM codec, there were
often anomalies in the autocorrelation graph, causing false peaks to be higher than
the one caused by the fundamental frequency. These false peaks invariably resulted in
detection errors. The cause of these anomalies is still uncertain, although imperfections
in fundamental frequency detection of GSM codec have been proposed by Dr. Tolonen
as one possible cause.

Figure 4.1 shows correct and anomalous autocorrelation graphs. Both represent one
40 ms frame taken from the same vowel /u/ sung by a male person. The voice is
stationary, and the fundamental frequency is about 195 Hz. The total length of the
vowel is about 300 ms. In the right-hand column, the fundamental frequency cannot be
readily interpreted by taking the highest autocorrelation peak, while in the left-hand
column it is possible. It can be seen that the energy of the second harmonic varies
quite strongly, and when it is attenuated, the autocorrelation becomes degenerate.

To face the problem of degenerate autocorrelations, the fundamental frequency detec-
tion was enhanced to take into account not only the strongest, but several strongest
autocorrelation peaks. While this did not help with the extreme worst case blocks like
the one shown in the right column of Figure 4.1, it still reduced the number of errors
and clearly enhanced the audible quality of the end result. The block diagram of the
f0 detector used in this work is shown in Figure 4.2.

The different blocks of Figure 4.2 are described in detail below.

4.1.1 Frame separation

First, the incoming signal is split to separate frames. The frames and the hop size used
in the separation define both the temporal and spectral resolution of the f0 detection.
As of this writing, Rring uses frame length of 1024 samples or 42 ms at a sampling rate
of 24 kHz. The hop size is 128 samples or 5 ms, although nearly identical performance
can be achieved on a hop size of 256 samples as well. Using smaller hop size appears to
help in latter stages of processing by creating extra redundancy in the signal, however.

4.1.2 Windowing and autocorrelation

When calculating a discrete Fourier transform (or by extension, fast autocorrelation)
of a signal frame, the frame is actually considered to be one periodic segment of a

CHAPTER 4. ALGORITHM IMPLEMENTATION 22

a) b)

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
m

pl
itu

de

time (s)

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
m

pl
itu

de

time (s)

c) d)

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

e) f)

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
m

pl
itu

de

lag (s)

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
m

pl
itu

de

lag (s)

Figure 4.1: Waveforms (a, b), spectra (c, d) and autocorrelation (e, f)
graphs of two recordings of sung vowel /u/, both having a funda-
mental frequency of approximately 195 Hz (corresponding to a
lag value of 5.1 ms). The left-hand column (Figures a), c) and e))
represents a normal, while the right-hand column (Figures b), d)
and f)) represent a recording leading to a degenerate autocorre-
lation. In the left-hand column, fundamental frequency can be
derived from the autocorrelation graph. In the right-hand col-
umn, attenuated second harmonic distorts the autocorrelation
and correct f0 detection can be made no longer.

CHAPTER 4. ALGORITHM IMPLEMENTATION 23

Figure 4.2: Block diagram of the fundamental frequency detector.

continuous signal. If the frequencies in the signal do not precisely match the observation
interval, there exist discontinuities between the periodic segments. Figure 4.3 illustrates
this phenomenon. These discontinuities exhibit so-called spectral leakage to the data
set, which corrupts the transform [Har78].

Figure 4.3: Periodic extension of sinusoid not periodic in observation inter-
val. (After [Har78].)

According to Harris [Har78], windows are weighting functions applied to data to reduce
the spectral leakage associated with finite observation intervals. The window is applied
to data to reduce the order of discontinuity at the boundary of the periodic extension.
This is accomplished by matching as many orders of derivative of the weighted data
as possible at the boundary. Windowed data are smoothly brought to zero at the
boundaries so that the periodic extension is continuous in many orders of derivative.

Many different window functions have been proposed, each having unique properties.
However, all of the commonly used window functions (such as Hanning, Hamming,
Blackman, Kaiser) reduce the spectral leakage efficiently enough to be useful in this
work. Of these, Hamming windowing is used. See [Har78] for a thorough discussion of
different window functions.

A short-time autocorrelation function is calculated from the windowed frames using
Equation (3.6). This yields a list of autocorrelations of frames, from which the peaks
can be detected and classified.

4.1.3 Peak detection

Autocorrelation peak detection was designed to collect repeating maxima of the auto-
correlation signal, while also correctly taking the effects of windowing of the signal into
account. The peaks are detected from the graph by selectively collecting all the local
maxima from the autocorrelation vector. The details of the procedure are described

CHAPTER 4. ALGORITHM IMPLEMENTATION 24

below.

First, all peaks in the autocorrelation vector are detected, as shown in Figure 4.4. A
peak here is defined as any point in the autocorrelation vector, of which neighbors have
a lower value.

-10

-5

 0

 5

 10

 15

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
m

pl
itu

de

lag (s)

Autocorrelation
Peaks

Figure 4.4: All local peaks in an autocorrelation vector. The frame is the
same as in Figure 3.6.

After the local peak detection, the detected peaks are traversed in reverse lag order
(i.e. from right to left). The first peak is automatically accepted, but after that the
next peaks are accepted only if their height is at least 97% of the previous accepted
peak (denoted as λ = 0.97). The value of λ is completely heuristic—it has been found
experimentally, and there is no theoretical reasoning behind it.

Figure 4.5 shows the result of the peak detection algorithm. When peak no. 13 has
been detected, the next peak to be detected has to have amplitude of at least λ (97%)
that of peak 13. Thus, peaks 8–12 do not apply, but peak 7 clearly applies. After that,
no peak exceeds the threshold. The first peak at lag value 0 is ignored, as it provides
no information in f0 detection.

Since the envelope of the autocorrelation vector follows the shape of autocorrelation
of Hamming window (shown in Figure 4.6), it is evident that there exists a long low-
amplitude tail, in which amplitude differences are negligible. Therefore there are plenty
of false detections in the right-hand side of the autocorrelation vector. However, the
whole length of the frame has to be analyzed, or low-frequency signals, which have
sparse autocorrelation peaks, would not be detected at all.

The peak detection algorithm is presented in pseudocode below.

CHAPTER 4. ALGORITHM IMPLEMENTATION 25

-10

-5

 0

 5

 10

 15

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
m

pl
itu

de

lag (s)

2

3

4

5

6

7

8

9

10

11

12

13

Autocorrelation
Peaks

Selected peaks

Figure 4.5: Peaks in an autocorrelation vector as detected by the peak de-
tection algorithm.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
m

pl
itu

de

lag (s)

Figure 4.6: Autocorrelation of a Hamming window.

CHAPTER 4. ALGORITHM IMPLEMENTATION 26

last_peak=0

lambda=0.97

for peak in reverse(peaks):

if peak<lambda*last_peak:

peaks=peaks.remove(peak)

else

last_peak=peak

4.1.4 Peak classification

For a periodic signal the autocorrelation function has a period equaling to that of
the signal. Thus, assuming that part of the gathered autocorrelation peaks belong
to the sequence defined by the fundamental frequency and the rest are peaks with no
underlying periodicity, the peak corresponding to the fundamental frequency is the one
that has the most integer ’harmonics’ in the autocorrelation function:

nN = N ∗ n0 where N ∈ N, (4.1)

where nN is the N th periodic of the fundamental lag n0.

Using this knowledge, the following energy function for retrieving the fundamental lag
can be deduced:

E(ν) =
N∑

i=1

min2

(
1

2
−

∣∣∣∣12 − frac
(pi

ν

)∣∣∣∣ , κ

)
, (4.2)

where E(ν) is the total error for the decimal lag value of ν, frac() is a function returning
the fractional part of its argument, N is the total number of accepted autocorrelation
peaks, pi is the lag of ith autocorrelation peak, and κ is an arbitrary maximum value
for the error induced by a single peak. Currently, κ is set to a value of 0.1.

Equation (4.2) is basically a least-square optimization algorithm (
∑

f2()) with a max-
imum error limit (f = min(g, κ)) added. Normally error samples are handled in least-
square algorithms by dropping L samples with largest errors out, but since the number
of peaks in the calculation varies greatly depending on the fundamental frequency,
selection of fixed L would not have been feasible.

To find the fundamental lag, E(ν) must be minimized. To limit detection of false
positives for small lag values matching many peaks, the search area is limited to be
in the vicinity of detected peaks. Furthermore, lag values are limited to a minimum
of 0.5 ms (2 kHz) and a maximum of 17 ms (60 Hz). These are reasonable limits for
human voice scale, both when singing and whistling. The search has to be performed
using interpolated values, since integer values do not give sufficient precision. The
interpolation method used in this work is cubic interpolation.

Figure 4.7 shows the error function for the left-hand column of Figure 4.1. It can be
seen that while the error varies greatly for small lag values, in the search region it is
quite predictable and gives the correct result.

CHAPTER 4. ALGORITHM IMPLEMENTATION 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

E
rr

or

lag (s)

Near peaks
All

Figure 4.7: Error function for the whole frame and limited to vicinity of the
peaks. Correct lag value is 5.1 ms, at which point there is a
minimum in the near peaks -curve.

4.1.5 Voicedness detection

In addition to the fundamental frequency, some data regarding the reliability of the f0

detection results is needed. In any recording, there exists ample amount of frames with
no meaningful pitch. They might be simply frames with no sound energy, or frames
with only inharmonic noise.

A simple method for assessing the strength of the harmonic components is to compare
the highest autocorrelation peak to the value of autocorrelation at lag of 0:

v(k) =

φk(mmax)
φk(0)

φH(mmax)
φH(0)

(4.3)

where v(k) is the voicedness value of the frame, φk the short-time autocorrelation
function given in (3.5), mmax is the location of the highest peak in that frame, and φH

is the autocorrelation of a Hamming window.

The denominator part of Equation (4.3) is needed for normalizing out the effect of the
Hamming window. Initially, the normalization was performed using computationally
inexpensive triangle window approximation. While this worked well for most signals, it
was noted that voiced frames with low pitch values would get artificially low voicedness
values, thus hindering the performance of the pitch detector.

Figure 4.8 shows the voicedness values of a sine sweep ranging from 60 Hz to 2 kHz
when using triangle window and Hamming window normalization. Although the curve

CHAPTER 4. ALGORITHM IMPLEMENTATION 28

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 100 1000

V
oi

ce
dn

es
s

va
lu

e

Frequency (Hz)

Triangle window
Hamming window

Figure 4.8: Effect of different window approximations on voicedness detec-
tion.

should have a constant level of 1, in triangle window normalization it ranges from 0.7
at 60 Hz to 1.05 at approximately 250 Hz, while in Hamming window normalization it
stays considerably closer to the correct value. Such variations facilitate the need to use
more precise normalization using autocorrelation of a Hamming window. The reason
for the periodic variation of the value in high frequencies is not known.

The voicedness value is a decimal number with a value approximately between 0 and
1.05, depending on the window approximation used. A simple threshold, σ, is in the
voicedness decision. A value of σ = 0.8 has worked well for the purposes of this project.

4.2 Event creation

As a bottom-up approach was selected for the transcription problem, the event creation
is performed based solely on frame data. Event creation utilizes pitch and voicedness
data in the process of forming note events from single frames.

This approach has its problems. Since no higher-level knowledge is used, all pitch values
are allowed at all instances of time, leaving a lot of room for errors. Furthermore, as
the tuning of singing of untrained people generally varies throughout the melody, no
tuning correction can be performed. In some cases this results in disturbing one half-
note errors.

First, it is determined, whether the frame has voiced content or not. This is done by
comparing the voicedness value to a pre-defined threshold. The non-voiced frames are
marked as pauses, while the MIDI pitch values of the voiced frames are calculated.

CHAPTER 4. ALGORITHM IMPLEMENTATION 29

Consecutive frames with same pitch values are then concatenated to a single note.

4.2.1 Concatenation algorithm

Single frames are concatenated to note events as follows:

for frame in frames:

if abs(note.pitch-frame.pitch) < maxdelta:

note.pitch =

(note.length*note.pitch+frame.length*frame.pitch)

/

(note.length+frame.length)

note.length = note.length + frame.length

else

notes.append(note)

note.pitch = frame.pitch

note.length = frame.length

where maxdelta is the maximum allowed pitch difference of two note events, below
which the events still are concatenated together. A value of 0.5 half-notes was observed
to be suitable for maxdelta.

That is, as long as the pitch difference of the note being assembled and the next frame
does not exceed maxdelta (1

2
half-notes), the frame is concatenated to the note so

that the pitch value of the note is the weighted sum of the note and the last frame.
Otherwise, assembly of a new note begins.

After the first concatenation phase, several heuristics are applied. First, a minimum
length of notes and pauses is enforced. In our experiments, a minimum length of 43 ms
(1024 samples at a sampling rate of 24 kHz) was found to be suitable. Shorter events
are merged to preceding event without any pitch averaging. Then, events with equal
rounded MIDI pitch are merged together. These two steps are used to remove short
octave errors or unvoiced segments from the melody.

After this, one more merging pass is made, in which short notes with a pitch difference
of less than one half-note are merged with adjacent notes. This is done to control
the unstable attack and release periods of notes, which cause artifacts in the pitch
trajectory.

4.3 Ringing tone conversion

After the event data is output from the event creation routine, it is converted both to
an audible melody and to the Nokia Smart Messaging ringing tone format [Nok99].

The transformations were implemented in several steps. First, the event data is con-
verted to MIDI file format [MID96] using a custom Perl script. Then, the MIDI file is
converted to a Smart Messaging ringing tone file.

CHAPTER 4. ALGORITHM IMPLEMENTATION 30

While the MIDI generation is a relatively simple format conversion, it also takes care
of transposing the melody to pitch range allowed by Nokia mobile handsets. While
not stated in [Nok99], it was found that the lowest note Nokia phones can play is C5,
and the pitch range is three octaves. The specification [Nok99] defines a range of four
octaves, beginning from C4, but it was noted that the phones transpose the lowest
octave to the next-higher one. Furthermore, an optimal value for tempo is sought
using least-square fitting. The optimization criterium is how well note lengths fit full-,
half-, quarter- or one-eighth-notes at different tempos.

The ringing tone conversion is performed by another Perl program. The ringing tone
specification imposes many restrictions on the possible tones:

• Note pitch values are limited to exact half-notes (as in MIDI).

• Tempo has to be explicitly defined.

• Note duration is limited to full, 1/2, 1/4, 1/8, 1/16 and 1/32 notes, with dotted
and double-dotted variants.

• Pitch is a combination of scale (octave) and note-value, instead of a single value.
Once a scale is defined, all further notes are in that scale, until the next scale
definition.

If tempo detection fails, note duration restrictions may cause unnecessary quantiza-
tion of note durations. This has been confirmed in tests, although it has not been
a significant problem. The pitch encoding causes problems by making prediction of
the length of the final melody difficult. For example, the sequence B-C-B-C, which
crosses scale-boundaries three times, therefore takes nearly twice the space of sequence
C-D-C-D, which stays on one scale only.

The pre-listening melody is generated using the event data as the source. Initially the
melody was generated from the MIDI file with a separate MIDI wave-table synthesizer
program, but to enhance portability a simple sine-tone synthesizer was implemented
in Java. This synthesizer uses the event data directly, so that the MIDI conversion is
at the moment only used as an intermediate step in the actual ringing tone conversion.

4.4 Computational efficiency of the ringing tone conversion

The bulk of the processing time in Rring is spent in the C language analyzer program.
Table 4.1 shows the execution profile of the analyzer. It can be seen that nearly 80% of
the execution time is spent in the FFT routines, so in practice they determine the total
execution time. FFT is used in Rring to calculate the short-time autocorrelation for
each window. Different methods for optimizing Rring processing power requirements
would be to use some highly optimized FFT implementation or to increase the hop size
to reduce the amount of analyzed frames.

Figure 4.9 shows execution times of the melody detection program measured with
two different hardware. In Figure 4.9 a) a modest 375 MHz Intel Celeron processor

CHAPTER 4. ALGORITHM IMPLEMENTATION 31

% cumulative self self total
time seconds seconds calls us/call us/call name
41.33 1.86 1.86 3954 470.41 470.41 ifft
37.11 3.53 1.67 3954 422.36 422.36 fft
7.56 3.87 0.34 165137 2.06 2.06 sum_sq
6.44 4.16 0.29 3954 73.34 966.11 autocorr_win
4.22 4.35 0.19 3953 48.06 134.08 getMaxLag
2.00 4.44 0.09 5 18000.00 18000.00 biquad_section
0.67 4.47 0.03 1 30000.00 130000.00 getPCMData
0.44 4.49 0.02 1 20000.00 20000.00 highpass
0.22 4.50 0.01 168960 0.06 0.06 st_Alaw_to_linear
0.00 4.50 0.00 7905 0.00 0.00 freqToMidi
0.00 4.50 0.00 3953 0.00 966.11 autocorr
0.00 4.50 0.00 513 0.00 0.00 LLSnodePtr
0.00 4.50 0.00 420 0.00 0.00 LLSnodePtr2Next
0.00 4.50 0.00 192 0.00 0.00 LLSnodeAppend
0.00 4.50 0.00 192 0.00 0.00 LLSnodeAppendFrom
0.00 4.50 0.00 93 0.00 0.00 LLSnodeDelete
0.00 4.50 0.00 4 0.00 0.00 LLSnodePtr2First
0.00 4.50 0.00 2 0.00 0.00 ListInit
0.00 4.50 0.00 1 0.00 0.00 LLScreate
0.00 4.50 0.00 1 0.00 0.00 LLSsystemInit
0.00 4.50 0.00 1 0.00 530000.00 analyzeFrames
0.00 4.50 0.00 1 0.00 0.00 biquad_iir
0.00 4.50 0.00 1 0.00 0.00 detectEvents
0.00 4.50 0.00 1 0.00 0.00 fftInit
0.00 4.50 0.00 1 0.00 966.11 rringAnalysisInit
0.00 4.50 0.00 1 0.00 0.00 rringAnalysisRelease

Table 4.1: Execution profile of RTC pitch detector and event creator.

CHAPTER 4. ALGORITHM IMPLEMENTATION 32

is used, while Figure 4.9 b) represents execution times of a more modern 1400 MHz
AMD Athlon XP processor. The measurements utilize 379 different real-life record-
ings, recorded between December 2000 and June 2001. The length of the recordings
varies from zero to 30 seconds, the average length being 11.1 seconds. Both computers
were running some other services during the measurements, which may have induced
some extra deviation in processing times. This, however, represents real-life operating
conditions.

The processing speed of the Celeron processor is 16.3 kS/s (kilosamples per second),
or 2 times real-time. While this performance is inadequate for proper scalability, the
Athlon processor has a more acceptable processing speed of 63.2 kS/s, or approximately
8 times real-time.

CHAPTER 4. ALGORITHM IMPLEMENTATION 33

a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30

P
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

Clip size (seconds)

Measured durations
Fitted curve

b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30

P
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

Clip size (seconds)

Measured durations
Fitted curve

Figure 4.9: Execution times of the melody detection program as a function
of recording length. Figure a) shows processing time taken by
a Celeron 375 MHz processor, while Figure b) shows processing
time required by a more modern Athlon XP 1400 MHz processor.

Chapter 5

Implementation of a ringing tone
service

5.1 Design goals

The design goals for Rring service have been quality, performance, flexibility, reliability,
scalability, usability and profitability. The quality requirement in this context refers to
the quality of produced ringing tones. They should resemble the original piece wherever
possible, without unnecessary omissions or undesired artifacts. Quality considerations
are addressed in Chapter 4, so they are not addressed here anymore.

The performance requirement means that the service has to be able to produce ringing
tones in a reasonable amount of time (say, 10–20 seconds for a non-interactive service,
or less than 10 seconds for an interactive one), and it has to be able to handle several
simultaneous service requests without dropping any calls or recordings at any point.

The flexibility requirement means that the service has to be easily adaptable and
modifiable to both new operating system environments and use purposes. For example,
even though the system currently runs on a Linux platform, it has to be able to be
ported to Solaris when needed. Similarly, if the service environment changes (a different
IVR platform is used, the ringing tone format changes, etc.), it must be possible to
adapt the software to the new situation easily.

The requirement of reliability: The system should never go inoperable, nor should it
drop any calls or ringing tones unintentionally. As the customer pays for the service,
he should always receive some kind of feedback from the service. In a distributed
system, all modules should work independently and handle communication breakdowns
gracefully. For example, if the IVR system cannot reach the conversion module, it
should queue the request and retry sending after a short while.

Scalability means that it must be possible to expand and still maintain the system as it
grows beyond original usage expectations. For example, it should be possible to balance
the load of different components by clustering, and there should be no fatal bottlenecks
in the system design. That way, construction and maintenance of service handling 200
simultaneous users should not be significantly more difficult than implementation of a
basic service handling only two simultaneous users.

34

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 35

Usability is defined as “the effectiveness, efficiency, and satisfaction with which specified
users achieve specified goals in particular environments.”[DFAB98] In the case of the
Rring service, the users are the customers of the service and the specified goal is to
successfully record and receive a ringing tone. If the users do not perceive the system
as usable, they will not try it again, nor will they recommend it to their friends.

Profitability is the most straightforward goal: the service needs to make profit. The
development, infrastructure and running costs have to be kept under control, and
unless the system is perceived as a special novelty by operator, the service income has
to exceed costs at some time-scale.

5.2 System architecture

Rring service in its basic form has three functionally separate modules:

1. Recording acquisition

2. Ringing-tone conversion

3. SMS sending

In the first part, a recording from the user is obtained. This is done with an interactive
voice response (IVR) platform, which receives telephone calls, plays prompt record-
ings to the customer, records customer input and then sends the results forward to
the ringing-tone conversion module. The ringing-tone conversion module receives the
recording from the previous module and converts the recording to a ringing tone as
described in Chapter 4. After the ringing tone is generated, it is sent to the SMS
gateway, which then sends it to the SMS center of the mobile operator.

There are several ways to implement this functional chain. The most straightforward
way is a monolithic system (depicted in Figure 5.1), in which all these modules are
placed in the same computer, so they can closely interact. This may be desirable in
development phase, as the structure is very simple and easily understandable. However,
in a production system it is a somewhat simplistic approach, as it is impractical for
clustering, and limits available hardware, software and business partners (in cases where
some parts of the functionality are preferred to be externalized) too much.

Figure 5.1: Monolithic service architecture. All service components are lo-
cated in a single computer, and parallel requests are handled
concurrently.

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 36

Since the three aforementioned modules are functionally quite separate, it is possible
to construct a distributed system, where each module is located in a different computer
system or even in a different company. In such an arrangement, some messaging sys-
tem needs to convey the recordings and auxiliary data such as telephone numbers from
the IVR to the ringing-tone conversion module and from the ringing-tone conversion
module to the SMS sending module. While the messaging system increases system
complexity, it makes the system a lot more flexible: the IVR can be an autonomous
module, which transmits the recordings to a different location for ringing-tone con-
version. Similarly the SMS gateway may be provided by a separate company. The
obvious drawback is that all of the service chain may be no longer in control of a single
company, potentially making updates and service development more cumbersome than
necessary.

There are two different ways to implement a distributed system. The simpler of these
implements non-queuing, or synchronous messaging. Such a system is shown in Figure
5.2. In this system, once the IVR system has finished recording, it sends the results
forward and waits for a result. If the ringing-tone conversion module is not available for
some reason, IVR fails immediately and reports the problem to the user. Depending
on how the next module is designed, the result may come immediately or only after the
ringing-tone conversion module has sent the resulting ringing-tone to the SMS-sending
module. A synchronous system should be implemented only over reliable networks,
e.g. local-area networks, as any disruption in the network will make the service drop
messages.

Figure 5.2: A synchronous distributed system. Different modules are lo-
cated in separate computers, and the messaging between them
is non-queuing.

The other way to make a distributed system is to implement queuing, or asynchronous
messaging, shown in Figure 5.3. This works so that the IVR puts the recorded message
to a sending queue, and another process reads the queue and sends the recordings to
the ringing-tone conversion module. In case of network problems, the messages stay
in the queue, and are sent when the ringing-tone conversion module becomes available
again. After placing the recordings to the queue, the IVR system can resume opera-
tion, so the customer may received feedback immediately after recording. Depending
on the implementation, the ringing-tone conversion module may send an acknowledge-
ment message after handling the recording. Also, the ringing-tone conversion module
respectively places the generated ringing tones to a queue, from which the ringing tones
are sent to the SMS gateway. This schema is most complicated to construct, but it
also provides greatest reliability and flexibility for the system. Reporting results back
to the IVR system also requires a separate upstream messaging channel, which also

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 37

complicates the modules when constructing interactive services. If the user interface
design does not require immediate feedback, the upstream messaging channel is not
required, as the system works reliably also without it.

Figure 5.3: An asynchronous distributed system. Different modules are lo-
cated in separate computers, and the messaging between them
is queued.

It is possible to implement a distributed system as partially asynchronous. If, for
example, the IVR service provider chooses to not implement queuing, it can still be
used in other modules. That just creates a single weak link in the service chain. A
partially asynchronous system in shown in Figure 5.4.

Figure 5.4: A partially asynchronous distributed system. The IVR operates
synchronously, and the requests are queued in the ringing-tone
conversion module.

Furthermore, the service can be also only partially distributed. In such an arrangement,
for example the IVR platform and ringing-tone conversion service are embedded in a
same system, and the SMS gateway is separated. Such arrangements may be worth
considering in some special situations, such as when only low usage is expected, or in
development phase, in which rapid changes are implemented both to IVR and ringing-
tone conversion services.

5.3 Traffic analysis

In terms of capacity, the service has two bottlenecks. The first, and the most obvious
one, is the number of incoming telephone lines in the IVR service. The second is the
amount of processing power available for the DSP calculation. While these two can be
analyzed separately, they are intricately linked to each other. If the processing backend
cannot handle the load generated by the IVR server, it can lead to situations in which
incoming calls are accepted and the customer is charged for the call, while the service
is inoperable because of excessive backend server load, resulting in excessive waiting

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 38

times or service collapse.

5.3.1 IVR service quality

From a teletraffic theory point of view, the IVR service can be seen as a pure loss
system [HP93]. It has n parallel servers, which accept calls. If all the servers are
reserved, any additional calls are dropped. Note that while a queueing system would
increase the service quality, it may not be possible to implement because of the planned
revenue models. That is also the reason why queueing systems are not considered in
this analysis.

For a pure M/G/n/n loss system with calls arriving according to a Poisson process
with a rate of λ and having an average holding time of h, the traffic intensity is defined
as

a = λh. (5.1)

This is used in Erlang’s blocking formula, which defines call blocking probability (Bc)
in terms of number of lines and traffic intensity [HP93]. Call blocking is the probability
that an arriving call finds all n channels blocked. Erlang’s blocking formula is defined
as:

Bc = Erl(n, a) =
an

n!∑n
i=0

ai

i!

. (5.2)

The service quality 1 − Bc for a service with 10, 20 or 30 lines is shown in Figure 5.5.
If service quality of 0.8 is deemed as satisfactory, it can be seen that a 10-line IVR
platform can manage a service with a traffic intensity of 10 Erlang. Given a mean call
duration of 1 minute, 10 Erlang equals 600 calls an hour. A 30-line service can then
manage a traffic intensity of 34 Erlang, or 2040 calls an hour, which should be plenty
for even big markets.

As the IVR platform telephone network connection typically is one or more ISDN E1
lines (30 simultaneous voice lines), the IVR capacity typically is not a problem in
implementing the service.

5.3.2 Ringing tone conversion service quality

The RTC backend calculation process can be seen as a pure waiting system, in which
there is one server and a service queue of infinite length. Theoretically it does not
matter whether the system works as a “First in, first out” (FIFO) queueing system or
as a processor sharing (PS) system 1. Thus, it is an M/M/1 queueing system [HP93].
Requests arrive according to a Poisson process with a rate of λ, and the service rate has
a mean of µ, and has an exponential distribution. It has to be noted that the actual
service rate depends on the melody length, which is clipped to a certain period, and
the rate distribution is probably not exactly exponential. However, the assumption of
exponential distribution is kept because of its mathematical simplicity.

1These correspond to asynchronous, or serial, and synchronous, or parallel processing described in Section
5.2

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 39

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

S
er

vi
ce

 q
ua

lit
y

Traffic intensity (erl)

IVR service quality as a function of traffic intensity

10 lines
20 lines
30 lines

Figure 5.5: IVR service quality as a function of traffic intensity.

Traffic load is defined as a quotient of request arrival rate and the service rate:

ρ =
λ

µ
. (5.3)

The value represents the utilization of the server.

Using λ, µ and maximum allowed service wait time, z, a parameter describing the
service quality of a waiting system can be defined:

Pz = Wait(λ, µ, z) =

{
λ
µ

exp((λ− µ)z) if ρ < 1

1 if ρ ≥ 1
. (5.4)

Pz is the probability for a service incident to take longer time than z. Assuming service
time of 2 seconds (µ = 1/2, assumption made from the results of the computational
efficiency tests using modern hardware in Chapter 4.4), the service quality behaves
as seen in Figure 5.6. A 1-processor server would begin to collapse after a request
intensity of 20 requests per minute, while a 2-processor system could manage 50 before
the service quality begins to deteriorate. In practice, if the service is designed to be
interactive, even 10 seconds waiting time (as shown in Figure 5.6) is already very long.

One possibility would be to dispatch the service process to the IVR and meanwhile
playback some music or advertisements to the customer.

Although previously stated that FIFO and PS systems are identical regarding traffic
intensity aspects, this assumption holds only with systems having an unlimited amount
of memory. In real systems, computer main memory is a limited resource, and running
out of it induces swapping behavior, where less frequently used memory pages (pro-
cesses or parts of processes) are moved to a swap file residing on a hard disk drive.

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

S
er

vi
ce

 q
ua

lit
y

Requests per minute

Backend service quality as a function of request intensity (max allowed time is 10 sec)

1 processor
2 processors

Figure 5.6: Backend service quality as a function of request intensity.

Hard disks are generally over 100 times slower than main memory, and because of the
rotational delays seek latency differences are even larger. Some swapping does not
radically affect system performance, since modern multi-tasking operating systems are
able to allocate processing time to in-memory processes while waiting for disk reads to
complete. However, when memory load still increases, the ratio of in-memory processes
and swapped-out processes decreases until swapping occurs at most process contexts
switches. At this point process throughput collapses, and the computer enters a state
commonly known as “thrashing”, where time is spent mostly waiting for disk activity.
Since the RTC service can use up to 24 MiB of main memory for the analysis, it can
easily be seen that on a computer with 128 MiB of main memory, only five concurrent
processes fit into memory at one time, and this does not take even the memory required
kernel or any other services into account. Even with 512 MiB of main memory, the
amount of concurrent processes fitting to memory is only about 20, not counting the
memory use of the kernel and other processes.

In FIFO systems, there exists only one process continuously processing queued service
requests. Since the process count is constant, memory requirements vary only little,
and swapping never occurs. On the other hand, in process sharing systems, a new
process is started immediately when service request arrives, so there may be multiple
parallel processes at a given time. If the traffic intensity rises sufficiently, swapping
and trashing may occur. On modern hardware, this happens only with comparatively
high traffic intensities, but it is still quite possible to reach such behavior.

Some simulations to reveal the differences of PS and FIFO system performances were
performed. In the simulation, service requests appear at random intervals with a
traffic intensity of 0.8 Erlang. Holding time is defined to be constant 5 seconds. FIFO

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 41

Figure 5.7: Backend service load simulation graph.

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 42

and PS systems are simulated separately. In FIFO, there is an infinite queue and a
default processing time. In PS, all requests are accepted immediately, but throughput
proportionally decreases when there are more than six concurrent processes. This
behavior simulates swapping and thrashing. Furthermore, there is a maximum limit of
ten simultaneous processes, which simulates the effect of finite main memory. In real
systems the process and memory limits may be higher, and these values should be seen
only as representative.

Figure 5.7 shows results of simulation of backend load. The x-axis depicts time, while
the y-axis shows the expected waiting time (sum of unhandled request durations).
It has to be noted that in PS system, the actual waiting time may be longer since
high process counts induce swapping, which decreases throughput. There is a burst of
requests beginning at about t = 30 s, during which the expected waiting time increases
considerably. It can be seen that the FIFO system is able to consume queued requests
without problems, while the performance of PS systems strongly deteriorates after the
load had risen sufficiently. The FIFO system is able to clear the request burst in 70
seconds, while the effects last significantly longer in the process sharing system. What
is even worse, the PS system is forced to reject requests because of insufficient memory,
and the rejects are spread over a long duration of time. Depending on the thrashing
behavior and the virtual memory management capabilities of the operating system, it
is even possible to reach a state where the system is not able to recover from thrashing.

5.4 Software architecture

5.4.1 Scalability

While the development of Rring has occurred in a small one-computer environment,
it is clear that commercial deployment has very much different requirements for op-
eration. The most obvious requirement is sufficient capacity to handle the expected
amount of connections. While a limited system of 6–8 simultaneous users might be
implemented using a PC with several ISDN controllers, practical implementations re-
quire a commercial interactive voice response (IVR) system with a 30-line ISDN PRI
or similar connection. Section 5.3 outlines some traffic estimates for the service.

Scalability is another key requirement for a commercial installation. The service has
to scale in terms of user amounts, so that both the number of incoming lines and
the available processing power have to be easily increased when necessary, without
proportionally increasing administrative or maintenance workload.

There are several possible models to scale the service. Outlines of a few different
models are shown in Figure 5.8. Figure 5.8 (a) shows the monolithic configuration,
in which both the IVR service and ringing-tone creation are integrated to the same
computer. This arrangement is very simple to set up and easy to operate. This method,
however, allows only for 30 simultaneous users (limited by the capacity of ISDN E1
connection). Furthermore, the amount of incoming phone lines and the processing
power required for handling the service are difficult to balance in model shown in
Figure 5.8 (a), since handling 30 simultaneous users requires considerable amount of

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 43

processing power, which requires server hardware with support of multiple central
processing units. The model can be scaled up either by acquiring an IVR system with
multiple ISDN E1 connections, as in Figure 5.8 (b) or by replicating a single server
(Figure 5.9 (a)). While E1 spans are an easy and straightforward way to scale ordinary
IVR services, the still increased processing power requirements make it an even more
impractical solution for Rring. On the other hand, server replication necessitate the
use of a separate database server for any kind of data storage purposes, Figure 5.9 (b).

Probably the most practical models to implement the service separate the IVR platform
from the backend processing as shown in Figure 5.10 (a). In such a model, the IVR
platform handles the call logic and sends processing requests to the backend as remote
procedure calls (RPC). Different RPC protocols are discussed in the next section.

High availability can be achieved by replicating any critical components of the service.
This can be performed in any configuration, but models shown in Figure 5.9 or 5.10 (b)
are especially suitable for replication. The IVR platform can be configured to have a
hot spare, that is, an idle backup IVR server that takes over the service in case of a
primary server crash. Similar replication or clustering can be performed to all other
components (IVR system and SMS gateway) as well, although in distributed systems
the network quickly becomes the weakest link. While it is possible to provide redundant
service by using two separate Internet service providers, it is neither straightforward
nor simple to do.

a) b)

Figure 5.8: Basic IVR line bundling.

5.4.2 Remote procedure call protocols

Remote Procedure Call (RPC) is a protocol that one program can use to request
a service from a program located in another computer in a network without having
to understand network details. RPC uses the client/server model. The requesting
program is a client and the service-providing program is the server. Like a regular or
local procedure call (often known as a function call or a subroutine call), an RPC is

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 44

a) b)

Figure 5.9: Multiple IVR servers.

a) b)

Figure 5.10: Separate processing backend.

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 45

a synchronous operation requiring the requesting program to be suspended until the
results of the remote procedure are returned.

There are several alternative RPC protocols, including (but not limited to) CORBA,
XML-RPC, SOAP, and Java RMI [OMG02, XML02, BEK+00, Jav02]. Although
HTTP by itself is usually not regarded as remote procedure call protocol, it can be
used as such, and so it is included in this presentation.

Each RPC protocol has its strengths and weaknesses. HTTP requests are most simple,
and they are easily implemented in VoiceXML, the standard IVR service definition
language. HTTP based services are also very easy to scale up, so that the processing
power and IVR capacity can be replicated individually. Figure 5.10 (b) shows such an
arrangement. This provides increased redundancy as well, providing an easy way to
make the service highly available. On the other hand, using raw HTTP calls provides
no standardized RPC parameter passing method (other than HTTP GET and POST
parameters). HTTP interfaces are quite commonly used to provide simple service
interfaces such as short-message sending and receiving services.

CORBA is a stable and widely used RPC protocol, and suitable for IVR-backend
communication as well. In CORBA, the interfaces are defined in interface definition
language (IDL), which provides accurate and unambiguous description of the call inter-
face. The IDL files are then used to create proxies and stubs in the target programming
languages. Proxies are function libraries, which make calling the interface methods
look like calling native, local functions. Stubs are function templates, which are im-
plemented to provide server side implementation of the said interface. IDL interface
definitions make it fairly straightforward to implement interfaces, but the process of
defining and implementing a CORBA interface still requires many steps and has quite
a steep learning curve. The actual network traffic is performed in binary form, which
makes CORBA quite efficient in that manner. CORBA is widely used both as desktop
environment object access protocol and as enterprise-level object access protocol of
choice.

SOAP (Simple Object Access Protocol) and XML-RPC are both XML-based RPC
protocols. Both normally use HTTP as a transport layer protocol, although SOAP
can be adapted to use a multitude of common protocols, including FTP, SMTP, and
Jabber. Both have data typing and fault handling properties. Because its simplicity,
XML-RPC does not have an explicit interface definition language, instead the interfaces
are defined by external means. SOAP, on the other hand, has WSDL (Web Service
Description Language), which is analogous to CORBA’s IDL. The WSDL files are gen-
erated either by hand, or from an already implemented interface. The client proxies
can then be generated from the interface definition. Some SOAP implementations also
allow dynamic method calling, so that the actual calls are generated on-the-fly from the
WSDL definition. Despite of not having any interface definition language, XML-RPC
interfaces are fairly simple to implement. SOAP interoperability, on the other hand,
suffers from the complexity of specification, and getting different implementations to
communicate reliably can be a difficult task. Both SOAP and XML-RPC are state-
less protocols, and so they scale identically to HTTP servers. As they are based on
XML, transmitting large amounts of binary data is very inefficient for both of them.

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 46

There is a separate MIME attachment specification for SOAP though, so that large
binary objects such as audio recordings in Rring can be transmitted efficiently. SOAP
has become a common protocol for many remote call tasks. For example, Microsoft
.NET architecture uses SOAP as its remote call protocol. Also XML-RPC is widely
used, especially in constructing distributed web applications. Many new high-level
programming languages provide excellent XML-RPC interfaces.

Java RMI (Remote Method Invocation) is an RPC interface for the Java language. It is
limited to Java language only, but the protocol is very efficient and easy to implement.
The interfaces are defined as Java language interfaces with no further steps. The server
and the client can be easily implemented using the defined interfaces. While very
straightforward to use, its usefulness is limited because of dependency on Java. When
creating interfaces dealing with custom hardware and systems such as IVR systems,
and when the systems are spread across several different companies, such language
assumptions usually cannot be made. Java RMI is extensively used in J2EE (Java2
Enterprise Edition) environments.

In Rring, raw HTTP interfaces were used so that the implementation could be kept
simple and the different components easily deployed across different companies.

5.4.3 Interface between IVR system and processing backend

Communication between the IVR system and the processing backend is done using
HTTP calls, which the IVR system makes. Parameters and data to be processed are
transmitted using HTTP GET and POST methods, and success status is conveyed
using HTTP status codes and supplementary messages.

There is support both for session-based requests, which support pre-listening of the
ringing tones and only optional sending of ringing tones, and sessionless requests, which
take care of both converting the ringing tone and sending it during a single request.

The following describes different CGI scripts that define the interface between the IVR
system and the processing backend.

get session.cgi

Purpose get session.cgi begins a new session and returns a session cookie to the client.

Receives Nothing.

Returns Session cookie named “sesid”. The cookie does not have a defined lifetime,
so it is supposed to last only that session.

Remarks Calling of get session.cgi is not strictly necessary, but it ensures that the
server is available at the beginning of the call.

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 47

pitch detect.cgi

Purpose pitch detect.cgi performs the pitch detection and creates a pre-listening sound
clip.

Receives pitch detect.cgi receives the following arguments sent via HTTP POST re-
quest:

sesid (Optional.) Session id given by get session.cgi.

data PCM data as a file upload. The MIME type of the data should be either
audio/x-wav or audio/x-pcm. In the first case, the file should be a mono-
phonic wave file with sample rate of 8 kHz. In the latter case, the file should
be raw A-law-compressed audio data with 8 kHz sample rate.

nosave (Optional.) If this parameter is set, saving of the recording in the backend
is prevented even if it otherwise would have been done.

Returns • Session cookie named “sesid”.

• Output with the same MIME type as the input data. The output audio clip
holds a pre-listening sample of the generated ringing tone.

• In case of an error, returns with HTTP Status 500 together with an associated
error message.

Remarks If a session cookie is not given as an argument, one is generated in get session.cgi.

send sms.cgi

Purpose send sms.cgi sends a previously generated ringing tone to the client via a
SMS gateway.

Receives sesid Session id given by get session.cgi or pitch detect.cgi.

telnum The telephone number to which the ringing tone should be sent.

name (Optional.) The name of the ringing tone to be sent. If one is not given,
a random name will be generated.

dummy (Optional.) If set, the ringing tone will not be sent actually, but in-
stead an artificial delay will be inserted. This is useful for benchmarking the
backend functionality.

Returns “OK” if sending succeeded. Otherwise returns HTTP Status 500 together
with an error message.

end session.cgi

Purpose end session.cgi ends a session.

Receives Session id “sesid” given by get session.cgi or pitch detect.cgi.

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 48

Returns “OK” if sending succeeded. Otherwise returns HTTP Status 500 together
with an error message.

Remarks Calling of end session.cgi is not required, as sessions expire after a set time.
It is provided as a courtesy method to clean the session immediately.

detect and send.cgi

Purpose Convert a recording to a ringing tone and send it in a single, sessionless
request.

Receives telnum The telephone number to which the ringing tone should be sent.

name (Optional.) The name of the ringing tone to be sent. If one is not given,
a random name will be generated.

dummy (Optional.) If set, the ringing tone will not be sent actually, but in-
stead an artificial delay will be inserted. This is useful for benchmarking the
backend functionality.

data PCM data as a file upload. The MIME type of the data should be either
audio/x-wav or audio/x-pcm. In the first case, the file should be a mono-
phonic wave file with sample rate of 8 kHz. In the latter case, the file should
be raw A-law-compressed audio data with 8 kHz sample rate.

nosave (Optional.) If this parameter is set, saving of the recording in the backend
is prevented even if it otherwise would have been done.

Returns “OK” if sending succeeded. Otherwise returns HTTP Status 500 together
with an error message.

5.4.4 Interface between processing backend and SMS gateway

The interface between the processing backend and SMS gateway is also based on HTTP.
The requests are sent as HTTP GET calls with parameters defining the data format,
telephone number and header information. Since the interface is defined by the SMS
gateway service provider, it is not described here in further detail.

5.4.5 Programming language considerations

Rring currently has been implemented using several different programming languages.
In the early planning and prototyping phases, C was deemed to be only feasible lan-
guage in the implementation of the digital signal processing functionality. Likewise, the
auxiliary scripting, including different conversion tools and the IVR scripts themselves
were programmed in Perl. Perl is flexible and rich language, and well suited for such
purposes. Perl cgi-binaries can easily be executed within the Apache process using the
mod perl Apache module [Fou01].

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 49

It has been noted that there would be several benefits if the service was implemented
with Java technologies. First, a Java implementation would be fairly platform-in-
dependent and easily portable to different IVR systems. Second, all of the application
logic, including DSP algorithms, could be componentized and implemented in only one
language. This would ease the maintenance of the software and encourage component
and technology reuse. Third, installation and upgrades of Java Servlet packages is
standardized and automated, further easing service maintenance. Fourth, Java Servlet
and Java Servlet Page (JSP) platforms are well supported and deemed as standard
platforms by several different value-added service providers, facilitating easier service
integration.

Java platform, however, is not without its problems. The primary concern in this case is
the execution performance. Traditionally programs written in Java have been deemed
as being slow, because the program binaries have to be translated to native machine
code prior to execution. While no tests regarding Java performance has been performed
at Elmorex, several tests available on the web indicate that with modern Java just-
in-time (JIT) compilers, execution speed of Java programs is comparable to programs
written in C or C++ [Rij00, Shu01]. In some tests, the Java JIT compilers even
outperformed some C compilers. Execution speed similarity also applied to different
tests involving Fast Fourier Transform (FFT) calculation, such as SciMark benchmarks
performed by Roldan Pozo [Poz00, PM00]. FFT benchmarks are particularly important
regarding Rring, since the bulk of the calculation time is spent in FFT calculation. The
importance of FFT in Rring is illustrated in program execution profile shown in table
4.1.

Converting the backend service to Java cannot be efficiently done in steps. The whole
backend architecture has to be changed in one sweep to servlets, as stand alone Java
programs executed as cgi-binaries are extremely inefficient. The process invocation
overhead includes time spent in the just-in-time compiler, and can easily exceed 1.5 sec-
onds for even relatively simple programs.

5.4.6 Implementation platforms

IVR systems are traditionally implemented with proprietary systems using specialized
command languages. Re-implementation of applications using a system of different
vendor is costly, effectively locking the service provider to a single service platform.
The proprietary systems are generally built on Solaris, AIX or some other commercial
Unix platform, and they utilize special hardware for telephone network connectivity.
Lately also Linux and Windows are used as IVR platforms.

VoiceXML has become a promising new standard for IVR platforms. VoiceXML is a
standardized description language for IVR services. It may be implemented on same
platforms as traditional IVR systems, although usually it is provided as a specialized
turn-key solution. A closer description of VoiceXML may be found a little further
below.

The ringing tone conversion and SMS gateway modules are not as limited to any par-
ticular platform, since they are basically regular network servers. Therefore viable op-

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 50

erating systems include commercial Unixes, Linux and Windows. Commercial Unixes,
such as Solaris, HP-UX and AIX are well supported, reliable and established operat-
ing systems with good scalability and proven track record. On the other hand, they
(with exception to Solaris/x86) only run on proprietary hardware, require knowledge
of that particular brand of Unix and are generally quite costly. Linux servers are now
considered in practice as capable as the commercial Unixes, at least as reliable, and
a lot more cost-effective than the commercial Unixes. Windows servers are tempting
because of their deep desktop market penetration and apparent ease of administra-
tion. In practice, however, they require a lot more administration than the different
Linux/Unix variants, are not as reliable, and require costly licenses.

Rring was developed on a Linux platform. While the ringing tone conversion module
currently runs only on Linux, it may easily be ported to commercial Unixes. The IVR
platform and the SMS gateway are currently handled by third parties, which use Sun
Solaris and Linux operating systems, respectively.

5.4.7 VoiceXML

VoiceXML is an XML-based language designed for creating audio dialogs that fea-
ture synthesized speech, digitized audio, recognition of spoken and DTMF key input,
recording of spoken input, telephony, and mixed-initiative conversations [Voi00].

Voice applications are nowadays abundant, ranging from simple information retrieval
systems, e.g. weather services, to automated mail order and ticket reservation systems
or entertainment services such as ringing tone services. While widely used, the devel-
opment systems are proprietary and re-implementation of applications using a system
of different vendor is costly. Even worse, the interaction model of the service may not
match the established commodity systems well.

The goal of VoiceXML is to make the well-established client-server architecture of
WWW applications available to interactive voice response applications. This will make
it easier to treat telephony applications as an alternative user interface for ordinary
WWW or mobile services, or to use web application technologies in creation of IVR
services. By defining the data and interaction with XML, standard tools can be used,
reducing product development time and simplifying development.

The VoiceXML architecture is modeled to closely match that of a web service client-
server model. See Figure 5.11 for an overview of the architectural model. A document
server, e.g. a web server acts as an architectural backbone, handling requests from
the VoiceXML interpreter and providing it documents. The VoiceXML interpreter
handles the user inputs together with VoiceXML interpreter context. The VoiceXML
interpreter parses the actual VoiceXML documents and the state information encoded
within, while the VoiceXML interpreter context responds to certain system-wide pre-
defined events, e.g. special escapes for reaching human operator, adjusting output
volume or speech synthesis characteristics.

The VoiceXML interpreter controls the implementation platform together with Voice-
XML interpreter context. The implementation platform is responsible for the actual
hardware interaction, text-to-speech synthesis and speech recognition. The platform

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 51

Figure 5.11: VoiceXML Architecture.

generates events according to user actions like spoken or DTMF input, or disconnect.
The events are then handled as defined in the VoiceXML document by the VoiceXML
interpreter, or if the interaction is not defined in the VoiceXML interpreter, by the
VoiceXML interpreter context.

The main drawback of VoiceXML at the moment is its incompleteness. Many central
aspects of the language, like the speech and DTMF grammars, are completely un-
specified. Furthermore, specifications for such things as supported audio formats are
quite lacking. The language also supports many different platform-specific extensions.
The shortcomings may lead to a situation similar to different SQL dialects, in which
the applications in principle are written in a common language, but the porting costs
between different platforms are still considerable.

5.5 User interface issues

Usability of the service is important for the perception of service quality and for the
overall image of the service. For the end-user, several criteria have to be fulfilled:

• The IVR service has to be easy to use.

• The service has to give always feedback.

• The response time has to be short.

The IVR service has to be designed so that the prompt speeches are short and clear,
that the user will not have to make extra key-presses, and that the user may not get

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 52

lost in the service. Ideally the user only hears a short prompt speech, gets to record the
message, and then finishes the recording by hanging up the phone. The ringing tone is
then automatically sent to his mobile phone. That way, no user-interface interaction
with the IVR service is required. Another possibility is to provide the user a choice
to listen to the generated ringing tone and to decide whether it is sent to the mobile
phone. However, this is not desirable for two reasons. First, it has been noted that
the male singing voice often gets misinterpreted as DTMF signals, causing preliminary
ending of the recordings. Second, even if the end-user has a flat-rate charge, the IVR
system providers usually charge by service use time, so that the shorter the call is, the
less the IVR service provider charges.

The customer always has to get feedback from the service. If no ringing tone is gen-
erated or if there are network problems, the customer has to be informed of this by
some means. This may be a notification during the phone call, or a short message,
depending on the IVR structure chosen.

The delay between recording and receiving the ringing tone has to be short, preferably
less than 20 seconds. Fast operation improves the perception of quality of service, and
encourages the customer or his friends to use the service again.

5.6 Development framework

5.6.1 Description of the pilot platform

The pilot system was constructed as a process sharing system, since it is a lot easier
to implement than a FIFO system, especially when using a HTTP server to receive
the requests. To construct a PS system, the HTTP server receiving the request can
simply execute the programs handling the input data itself. The drawback is that the
HTTP server process has to wait for the processing to complete, and that consumes
extra memory.

An IVR platform has been implemented locally for development and demonstration
purposes. In the beginning of the project, purchase of a commercial development
platform was not deemed necessary or viable, so the development has occurred on a
custom system built from commodity components and free software. The architecture
of the system is shown in Figure 5.12.

The development platform is a generic x86 computer which is connected to an ISDN
line with a passive ISDN card. The operating system used is Red Hat Linux 6.2 [red01].

The SMS sending facilities are provided by connecting a Nokia 6150 handset to the
computer with a serial cable and by communicating with the handset via Gnokii soft-
ware package [gno01]. Small changes to the Gnokii software were required in order to
facilitate raw SMS sending.

The custom IVR service implementation has been done using Vgetty modem software
package [Ebe98], which is controlled by a state machine implemented in Perl. The IVR
implementation takes care of playing prompts back to the user, reading user input and
recording the singing of user. Slight bug-fixes to Vgetty and to Linux kernel ISDN

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 53

Figure 5.12: Rring development framework architecture. Light gray por-
tions have been modified or enhanced during the project, dark
gray portions have been implemented from scratch.

driver were required for reliable operation.

Vgetty could not recognize user hangups, instead it waited until timeout. In the
development system this was considered highly undesirable, since the IVR would first
wait until timeout of the recording, then play next prompt, then wait until timeout of
the prompt answer, and finally exit the system. The whole process would take up to
two minutes time, during which the line would return available instead of busy tone to
the next caller. Vgetty was modified (and the patches sent back to Vgetty development
team) so that it would recognize user hangups immediately and return the information
back to the IVR software.

Linux ISDN driver often misinterpreted singing as dual tone modulated frequency
(DTMF) signals induced by phone key-presses. The phenomenon occurred especially
on male voices. There exists no simple fix for the problem, since it also occurs in
commercial IVR platforms, but the problem was alleviated by implementing a detection
buffer to Linux kernel ISDN driver, so that several consecutive positive detections are
needed for triggering the DTMF detection routine.

The service architecture has been implemented in a model as compatible with Voice-
XML as possible. Although the IVR functionality is defined in the IVR script, commu-
nication with different backend modules is performed solely by using a standard web
server and services implemented on that server.

5.6.2 Testing methodology

Since a flawless operation of the RTC backend is critical for reliable service operation,
a test bench was built for finding any deficiencies in the backend server operation.

The test bench program was designed to simulate the IVR service as closely as possible.
It is run in another computer (so that the existence of the test program itself would
not skew the test results), from which it sends service requests to the backend server
by HTTP. It simulates multiple clients accessing an IVR service simultaneously, by

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 54

initiating calls with delays falling on an exponential distribution, as in a traffic theory
Poisson model [Aal01]. The maximum number of simultaneous connections is limited
to 30, as in an IVR system with ISDN PRI connection.

Each simulated call proceeds exactly like a real call would do. The list below outlines
the steps taken by each simulated call.

1. A random real-life recording is selected from a pool. The pool consists of 379
different recordings, the length of which varies from one second to 30 seconds, the
mean being approximately 10.5 seconds.

2. Simulation is paused for a duration of 15 seconds plus the length of the selected
recording, to mimic the instruction prompt and the user recording.

3. The selected recording is sent to detect and send.cgi, which then transforms
it to the event data by executing the pitch detection program at the server, and
simulates sending the results to the SMS gateway by pausing for 2 seconds.

Each remote call made by the test bench together with its results are also logged in a
log file, so that the results can be analyzed later. The log includes precise times of script
executions, time taken by the script and information on whether the call succeeded or
not.

The RTC backend was tested on two different computer configurations. The first one
was a low-end computer with a 375 MHz Intel Celeron CPU and 128 megabytes of
main memory, while the second one was a more modern 1.4 GHz AMD Athlon XP
CPU and 512 megabytes of main memory. The computers were selected so that the
meager performance of the Celeron system would induce any problems inherent in the
design, while the Athlon system would give a reasonable insight of the performance of
a modern production system.

Figures 5.13 and 5.14 show the backend processing times during the load tests. The
processing times have been recorded with one-second granularity, which explains the
visible step size in the graphs. Especially in the case of the Celeron CPU it can be seen
clearly that request bursts cause strong peaks in processing times, which last long after
the recordings have been processed. While average processing times are approximately
10 seconds, the highest peaks reach several times higher, and in Figure 5.13 c) even to
180 s, at which point the client timeouts. Once the load reaches levels where timeouts
occur, the server stays congested for several hundred seconds, and during that time
only very few processing requests get through.

By comparing Figures 5.13 and 5.14, it can be seen that the great amount of memory
of the tested Athlon configuration allows the computer to recover immediately from
the momentary high-traffic situations. Even in Figure 5.14 d), in which the mean
delay between calls is only 2 s, the longest processing times only slightly excess 50 s,
and the performance recovers quickly from the congestion. This may be accounted to
the generous amount of main memory of the computer–swapping never occurs, even
though the number of processes is nearly 20. However, on these load levels processing
times already have increased enough to be unacceptable with regard to service quality.

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 55

a) b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1000 2000 3000 4000 5000 6000 7000 8000
 0

 1

 2

 3

 4

 5

T
im

e
(s

ec
on

ds
)

P
ro

ce
ss

es

Time from start of test (seconds)

Processing time
Consecutive processes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000 6000 7000 8000
 0

 2

 4

 6

 8

 10

 12

 14

T
im

e
(s

ec
on

ds
)

P
ro

ce
ss

es

Time from start of test (seconds)

Processing time
Consecutive processes

c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000
 0

 5

 10

 15

 20

 25

 30

T
im

e
(s

ec
on

ds
)

P
ro

ce
ss

es

Time from start of test (seconds)

Processing time
Consecutive processes

Failed

Figure 5.13: Sample processing times in test runs on a Celeron CPU. Figure
a) represents a mean delay of 20 seconds between calls (traffic
intensity of 1.3 Erl at the IVR), Figure b) represents a mean
delay of 10 s (traffic intensity 2.6 Erl), Figure c) represents a
mean delay of 7 s (traffic intensity 3.6 Erl).

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 56

a) b)

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1000 2000 3000 4000 5000 6000 7000 8000
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
im

e
(s

ec
on

ds
)

P
ro

ce
ss

es

Time from start of test (seconds)

Processing time
Consecutive processes

 0

 2

 4

 6

 8

 10

 12

 14

 0 1000 2000 3000 4000 5000 6000 7000 8000
 0

 1

 2

 3

 4

 5

 6

 7

T
im

e
(s

ec
on

ds
)

P
ro

ce
ss

es

Time from start of test (seconds)

Processing time
Consecutive processes

c) d)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1000 2000 3000 4000 5000 6000 7000 8000
 0

 2

 4

 6

 8

 10

 12

T
im

e
(s

ec
on

ds
)

P
ro

ce
ss

es

Time from start of test (seconds)

Processing time
Consecutive processes

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000 6000 7000 8000
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

T
im

e
(s

ec
on

ds
)

P
ro

ce
ss

es
Time from start of test (seconds)

Processing time
Consecutive processes

Figure 5.14: Sample processing times in test runs on a Athlon XP CPU.
Figure a) represents a mean delay of 10 seconds between calls
(traffic intensity of 2.6 Erl at the IVR), Figure b) represents a
mean delay of 7 s (traffic intensity 3.6 Erl), Figure c) represents
a mean delay of 4 s (traffic intensity 6.4 Erl), and Figure d)
represents a mean delay of 2 s (traffic intensity 12.8 Erl).

CHAPTER 5. IMPLEMENTATION OF A RINGING TONE SERVICE 57

While the tests clearly confirmed the simulation results in section 5.3.2 and further
emphasize the need for serializing the backend processing, they also showed that given
enough processing power and main memory, a modern computer can acceptably handle
light and moderate loads even with parallelized backend processing.

Chapter 6

Future technologies

6.1 Ringing tone formats

So far practically all ringing tone providers have been offering only Nokia-compatible
ringing tones. Nokia supports ringing tones in their Smart Messaging Specification,
introduced already in 1997. Smart messaging not only defines sending of ringing tones,
but e.g. sending of business cards, calendar items, dynamic menu items, Internet access
configuration data, and so on. Currently all Nokia phones on the market support
Smart Messaging. Nokia has opened Smart Messaging Specification for royalty-free
licensing in December 2000, although so far Samsung is the only major mobile phone
manufacturer to have licensed Smart Messaging technologies [Nok00, Nok01].

Multimedia Messaging Services (MMS) is the next-generation messaging format stan-
dardized by 3rd Generation Partnership Project (3GPP) [Nok02]. It is supported by
every major mobile manufacturer, and also the operators expect it to be a new rev-
enue source, so it is expected to gain rapid market acceptance. The first MMS-enabled
phone, Ericsson T68, was released in Q1 2002, and the actual breakthrough is expected
to happen in 2003 or 2004 [Mob02]. MMS supports several different message formats,
including text-based messages, picture messaging, image messaging, and even audio
and video messages. The standard is not bound to any specific carrier methods, allow-
ing both GSM and UMTS as well as CDMA networks to be used. On a GSM network,
the messages are sent as a combination of a SMS notification and WAP over GPRS
transmission [Nok02].

6.2 Polyphonic ringing tones

As the demand for phone personalization features has increased, handset manufacturers
have been adopting support for polyphonic ringing tones. In Japan, i-Mode devices
generally support polyphonic ringing tones, although different phone manufacturers
have their own ringing tone formats [KPN02].

In Europe, adoption of polyphonic ringing tone technologies has been slower than
in Asia Pacific. However, several mobile phone manufacturers have introduced models
supporting polyphonic ringing tones in 2002. Phones made by Nokia and Sony Ericsson

58

CHAPTER 6. FUTURE TECHNOLOGIES 59

have support for ringing tones in MIDI format [MID96]. On Nokia phones, the ringing
tones may be transmitted either using SMS Smart messaging [Nok99] or WAP. Sony
Ericsson phones support WAP on-the-air transmission only.

6.3 Pitch detection based mobile entertainment services

Of course, ringing tone services are not the only possible mobile services to utilize pitch
detection technologies. Several other concepts have been depicted at Elmorex. Pitch
detection may easily be adapted to creation of melody messages. One could compose
a message consisting of a personalized greeting melody together with a text passage.
Such service could work for example so that the user calls a number and sings a melody,
after which he or she sends an SMS message to a SMS service number. The service
then combines these separate messages to a single multimedia message, which is sent
to the intended receiver.

Even more intriguing possibilities arise in real-time pitch detection applications. One
could for example have a real-time melody karaoke in an Internet-based virtual chat-
room like Habbo Hotel [Hab01]. In such a service, one would queue up for a performance
in the virtual room. Then, on his/her turn, the user would call a service number and
make a singing performance. The result could be then streamed to all listeners in real-
time using MIDI or some other high-level music description language. So, the performer
could sing in relative anonymity, while the audience would still get a reasonable image
of the performer’s skills. Other real-time applications proposed at Elmorex are for
example different interactive entertainment applications for Digital TV. There, people
would call service numbers, perform on-line and see the results directly on the TV
screen. It is also possible to create applications utilizing no other devices than regular
telephone or mobile handsets. One such service would be automatic accompaniment
generator for singing. The customer would call the service, then defining a phone
number to be called. After the connection is made, one could sing a song to the
recipient, while the accompaniment generator created accompaniment to the singing.
Such services could easily be marketed for Christmas, valentines or birthday greetings.

6.4 Operating systems for mobile client-based sound applica-
tions

6.4.1 Java software environment

Java2 Micro Edition (J2ME) is a version of Java designed for consumer devices, such
as smart cards, pagers, mobile handsets, or even set-top boxes. The specification is
currently at version 1.0a, which was released on December 15th, 2000.

For each J2ME device group, there exists a special API for generating applications
in that genre. The mobile API is dubbed Mobile Information Device Profile (MIDP).
It does provide rudimentary means for networking, persistent data storage and user
interface API, but sound support is limited to playing one of a few pre-defined alert

CHAPTER 6. FUTURE TECHNOLOGIES 60

sounds. Therefore development of sound-based entertainment software or services is
not possible on J2ME.

As of October 2002, Java-enabled mobile devices are already widely available in Japan
and Europe.

PalmOS, the operating system of Palm handheld devices, has had support for MIDI
sounds since version 3.0. However, at least the older devices have been very limited
in sound support, featuring only a simple piezo-electric buzzer, so only simple sound
applications may be implemented.

PalmOS version 5 is the port of PalmOS from the previous Motorola Thunderball
platform to the ARM processor platform. Simultaneously with the platform change,
a new sampled sound API has been included. This includes support for playback and
recording of 16-bit sampled stereo and mono sounds in different formats [Pal02]. While
the connectivity of Palm devices won’t be on the same level as that of most mobile
phones, these inclusions still make Palm a viable platform for client-based mobile sound
applications.

Symbian’s EPOC, which is the operating system of most new advanced mobile phone
devices, does have support for recording and playing sampled audio clips. It also has
a telephony API, which provides application access to the phone’s telephony function-
ality, and a framework for writing drivers for particular telephony hardware [Sym02].

The most advanced Windows CE devices, namely Compaq iPaq, have fairly advanced
audio capabilities. They support stereophonic playback through headphone speakers,
as well as audio recording with an integrated microphone. With their fast StrongARM
processors they have enough processing power for MPEG 1 Layer 3 and even com-
pressed video playback.

There already exists a multitude of music playback and generation software for the iPaq.
The main problem with Windows CE based products is their weak mobile connectivity.
None of them are currently integrated with mobile handsets, and while for example iPaq
can utilize wireless local area network (WLAN) cards, they do not offer communication
capabilities similar to for example already existing Nokia Communicator devices. So,
although the audio technology of Windows CE devices is most mature of all, it is
not very attractive as platform for mobile musical entertainment services, until their
connectivity is enhanced.

Chapter 7

Discussion and conclusions

7.1 Ringing tone quality

Systematic interviews would have given valuable insight of the perceived quality and
performance of the system, but such effort could not be feasibly done in the time
frame and scope of this project. However, lots of informal feedback was gathered by
discussing with testers and following the usage patterns and listening to the recordings
and the created ringing tones.

Unfortunately the use experience of the pilot system was skewed because of a bug
which caused full-length ringing tones to not get transmitted correctly. This bug was
corrected only late in the pilot phase, and so no conclusive results from the pilot period
could be obtained.

Good singers were often able to create ringing tones of very good quality, although even
then there would almost always be some impurities in the ringing tone. The impurities
would range from missing short notes to a few half-note errors and short high-pitched
notes. However, often the users sang very badly, and in these cases the ringing tones
were completely unrecognizable, more or less random note sequences. This seemed to
often come as a surprise to the users, who might have expected to receive a corrected
version of their performance.

One observation was that the users with little musical skills often intentionally spoke
or just made noises. While ringing tones created this way were not melodic, they still
sounded very unique and were suitable as alarm ringing tones.

Most of the test users were pleased with the service. It was considered to be a novel
concept, and while the created ringing tones were not perfect, their quality was consid-
ered acceptable. It was also noted, maybe not surprisingly, that the users with at least
some musical background, be that choir singing or piano lessons in the childhood, were
most eager to use the service, while the ones with no musical background mostly had a
neutral attitude towards it. Also, professional musicians often had negative attitudes
towards the service, not tolerating the errors and impurities in the produced ringing
tones.

The ringing tone quality is quite dependent on the type of the input recordings. Mono-
phonic recordings with a moderate tempo and long, clear notes gave the best results.

61

CHAPTER 7. DISCUSSION AND CONCLUSIONS 62

Short adjacent notes tend to get bound together, but there seemed not to be any simple
way to get rid of that behavior. Also background noise generated extra notes in the
ringing tones.

It was also noted that the GSM transmission path frequently causes different clicks and
pauses to the sound. While they are short enough to not degrade legibility of speech,
they do propagate to generated ringing tones. Since the user is not aware of transmis-
sion path artifacts, the service itself is blamed for these artifacts. Unfortunately there
are no solutions to this when using the IVR approach. If the transmission path was
lossless, the problem would be automatically solved. One way to achieve this would be
to use recorded messages and send them via MMS.

7.2 Contributions made by the author

The initial idea for this project came from Tero Tolonen, who was employed at El-
morex Ltd. at that time. He also developed the initial version of the f0 detection
and event creation routines. Many fundamental design choices, such as the use of fast
autocorrelation and the bottom-up event creation process were made at that time by
him. All other parts of the system were developed by the author. Also the fundamen-
tal frequency detection and event creation routines, except the autocorrelation and
associated FFT routines were extensively refined by the author, so that the routines
described in this thesis are the handwriting of the author.

During the pilot phase of the project, the interactive voice response platform and the
SMS gateway were provided by third parties, and so only the interfaces to these systems
were designed by the author.

7.3 Evaluation of project success

The objective of this thesis was to develop a ringing tone generation service, in which
the user can sing or hum himself a new ringing tone. This objective was fulfilled. A
functional service was created, first as a development system, and then as an operational
commercial pilot service. While the quality of the created ringing tones is not perfect,
it is considered adequate for a commercial service.

Although the proposed architecture changes proposed in section 5.4 were not imple-
mented, the original parallel processing architecture was proved viable in light use.
During a period of several months, there were no performance problems. Even though
the arrival of the ringing tones was intermittently delayed, it turned out that the
greatest delays were caused by the SMS centre, and were thus unavoidable.

The implementation of the system might be cleaner if done using the Java language
and application platforms, as suggested in Section 5.4.5.

Given the market conditions outlined in Chapter 1, a commercial service would prob-
ably be viable still with the quality limitations described in this Chapter. Marketing
of the service would just have to be adjusted accordingly. Given the current state of

CHAPTER 7. DISCUSSION AND CONCLUSIONS 63

the application, it would take only little work to turn it into a fully-fledged commercial
service.

Bibliography

[Aal01] Samuli Aalto. S-38.145 introduction to teletraffic theory. Helsinki Univer-
sity of Technology Course Material, January 2001.

[Alk99] Paavo Alku. S-89.126 puheensiirtotekniikka (speech transmission technol-
ogy). Helsinki University of Technology course material, 1999.

[BEK+00] Don Box, David Ehnebuske, Gobal Kakivaya, Andrew Layman, Noah
Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Sim-
ple object access protocol 1.1. Web page, May 2000. http://www.w3.org/-
TR/SOAP/.

[BMS00] Juan Pablo Bello, Giuliano Monti, and Mark Sandler. Techniques for au-
tomatic music transcription. In International Symposium on Music Infor-
mation Retrieval, Plymouth, MA, October 2000.

[BP89] Judy Brown and M. Puckette. Calculation of a narrowed autocorrelation
function. Journal of Acoustical Society of America, 85:1595–1601, 1989.

[Bre90] Albert Bregman. Auditory Scene Analysis. MIT Press, Cambridge, MA,
1990.

[Bro91] Judy Brown. Musical frequency tracking using the methods of conventional
and narrowed autocorrelation. Journal of Acoustical Society of America,
89:2346–2354, 1991.

[Dav52] W. B. Davenport, Jr. An experimental study of speech-wave probability
distributions. Journal of the Acoustical Society of America, 24:390–399,
1952.

[DFAB98] Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human Com-
puter Interaction. Prentice Hall Europe, 1998.

[DR91] Boris Doval and Xavier Rodet. Estimation of fundamental frequency of
musical sound signals. In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, 1991.

[Ebe98] Marc Eberhard. Vgetty documentation center. Web page, 1998.
http://alpha.greenie.net/vgetty/.

[Ell95] Daniel Ellis. Mid-level representations for computational auditory scene
analysis. In Proceedings of the International Joint Conference on AI, Work-
shop on Computational Auditory Scene Analysis, August 1995.

64

BIBLIOGRAPHY 65

[Ell96] Daniel P. W. Ellis. Prediction-driven computational auditory scene analysis.
PhD thesis, Massachusetts Institute of Technology, 1996.

[Fla65] James L. Flanagan. Speech Analysis, Synthesis and Perception. Springer-
Verlag, 1965.

[Fou01] The Apache Software Foundation. Apache/perl integration project. Web
page, July 2001. http://perl.apache.org/.

[gno01] Gnokii homepage. Web page, April 2001. http://www.gnokii.org/.

[Hab01] Habbo Hotel. Web page, May 2001. http://www.habbohotel.com/.

[HAHN93] Risto Hämeen-Anttila, Pertti Hölttä, and Seppo Niinioja. Tietoliiken-
nejärjestelmät. Painatuskeskus, 1993.

[Har78] Fredric J. Harris. On the use of windows for harmonic analysis with the
discrete fourier transform. Proceedings of the IEEE, 66(1):51–83, January
1978.

[HP93] Peter G. Harrison and Naresh Patel. Performance Modelling of Commu-
nication Networks and Computer Architectures. Longman Group, January
1993.

[itu96] International Telecommunication Union. Methods for subjective determi-
nation of transmission quality. Recommendation P.800, August 1996.

[Jav02] Java remote method invocation. Web page, October 2002.
http://java.sun.com/products/jdk/rmi/.

[Jeh97] Tristan Jehan. Musical signal parameter estimation. Master’s thesis, CN-
MAT, University of California, Berkeley, 1997.

[Kla97] Anssi Klapuri. Automatic transcription of music. Master’s thesis, Tampere
University of Technology, 1997.

[KPN02] How to create an i-mode site. PDF Document, July 2002.
http://www.imode.nl/.

[MID96] MIDI Manufacturers Association. The Complete MIDI 1.0 Detailed Speci-
fication, 1996.

[Min01] Tekstiviestimarkkinat 1999-2002. PDF publication, April 2001.
http://www.mintc.fi/www/sivut/dokumentit/julkaisu/julkaisu-
sarja/2001/a20.pdf.

[Min02] Tekstiviestimarkkinat 2000-2003. PDF publication, April 2002.
http://www.mintc.fi/www/sivut/dokumentit/julkaisu/julkaisu-
sarja/2002/a192002.pdf.

[Mob02] Mobilemms.com. Web page, October 2002. http://www.mobilemms.com/.

BIBLIOGRAPHY 66

[Nok99] Nokia Mobile Phones Ltd. Smart Messaging Specification, version 2.0,
1999.

[Nok00] Nokia opens the specification for ring tones and mobile phone logos for free
licensing. Press release, December 2000.

[Nok01] Samsung and Nokia announce licensing agreement on mobile browser and
smart messaging technology. Press release, November 2001.

[Nok02] How to create MMS services. PDF Document, September 2002.
http://www.forum.nokia.com/ndsCookieBuilder?fileParamID=2411.

[Obj02] Unified modeling language. Web page, October 2002.
http://www.omg.org/uml/.

[OMG02] CORBA FAQ. Web page, October 2002. http://www.omg.org/getting-
started/corbafaq.htm.

[Owe82] Frank Owen. PCM and Digital Transmission Systems. McGraw-Hill, 1982.

[Pal02] PalmOS 5 overview. Web page, October 2002. http://www.palmos.com/-
dev/support/docs/palmos5/os5overview.html.

[PB52] G. E. Peterson and H. L. Barney. Control methods used in a study of the
vowels. Journal of Acoustical Society of America, 24:175–184, 1952.

[PM00] Roldan Pozo and Bruce Miller. SciMark 2.0. Web page, 2000.
http://math.nist.gov/scimark2/.

[Poz00] Roldan Pozo. Java performance analysis for scientific computing. seminar
presentation slides, November 2000. http://www.ukhec.ac.uk/events/java-
hec/pozo.pdf.

[Rab77] L. R. Rabiner. On the use of autocorrelation analysis for pitch detection.
IEEE Transactions on Acoustics, Speech and Signal Processing, 25(1):24–
33, 1977.

[RCRM76] Rabiner, Cheng, Rosenberg, and McGonegal. A comparative performance
study of several pitch detection algorithms. IEEE Transactions on Acous-
tics, Speech and Signal Processing, ASSP-24(5), October 1976.

[red01] Red Hat Inc. Web page, 2001. http://www.redhat.com/.

[Rij00] Chris Rijk. Binaries vs byte-codes. Web page, June 2000. http://www.aces-
hardware.com/Spades/read.php?article id=153.

[Roa98] Curtis Roads. The computer music tutorial. The MIT Press, 1998.

[Ros90] Thomas D. Rossing. The Science of Sound. Addison-Wesley, 1990.

[Sch96] Eric Scheirer. Bregman’s chimerae: Music perception as auditory scene
analysis. In Proceedings of 1996 International Conference on Music Per-
ception and Cognition, 1996.

BIBLIOGRAPHY 67

[Sch01] Henning Schulzrinne. Advanced internet services, audio compression. Lec-
ture slides, October 2001.

[Shu01] Kazuyuki Shudo. Performance comparison of JITs. Web page, February
2001. http://www.shudo.net/jit/perf/.

[Son68] M. M. Sondhi. New methods of pitch extraction. IEEE Transactions on
Audio and Electroacoustics, pages 262–266, June 1968.

[Sym02] Symbian Development Library v7, July 2002.

[Tex86] Texas Instruments. TCM29C13 Data Sheet, April 1986.

[Tol00] Tero Tolonen. Object-based sound source modeling. PhD thesis, Helsinki
University of Technology, 2000.

[Voi00] VoiceXML forum home page. Web page, October 2000. http://www.voice-
xml.org/.

[XML02] XML-RPC home page. Web page, October 2002. http://www.xmlrpc.com.

	Table of Contents
	List of Abbreviations
	List of Symbols
	List of Figures
	Introduction
	Overview of the system
	Use cases
	Structure of the service

	Background concepts and theories
	Speech production
	Voice telecommunication technologies
	Public switched telephone network
	GSM

	Fundamental frequency detection methods for monophonic signals
	Waveform-based fundamental frequency detection methods
	Autocorrelation-based fundamental frequency detection methods
	DFT-based methods
	Cepstrum-based methods

	Automatic transcription of music
	Bottom-up method of Bello, Monti and Sandler
	Methods for signal segmentation

	Algorithm implementation
	Fundamental frequency detection
	Frame separation
	Windowing and autocorrelation
	Peak detection
	Peak classification
	Voicedness detection

	Event creation
	Concatenation algorithm

	Ringing tone conversion
	Computational efficiency of the ringing tone conversion

	Implementation of a ringing tone service
	Design goals
	System architecture
	Traffic analysis
	IVR service quality
	Ringing tone conversion service quality

	Software architecture
	Scalability
	Remote procedure call protocols
	Interface between IVR system and processing backend
	Interface between processing backend and SMS gateway
	Programming language considerations
	Implementation platforms
	VoiceXML

	User interface issues
	Development framework
	Description of the pilot platform
	Testing methodology

	Future technologies
	Ringing tone formats
	Polyphonic ringing tones
	Pitch detection based mobile entertainment services
	Operating systems for mobile client-based sound applications
	Java software environment

	Discussion and conclusions
	Ringing tone quality
	Contributions made by the author
	Evaluation of project success

	Bibliography

