

TIME-VARYING SPECTRAL DELAY FILTERS

60

Time (ms)

80

DAFx-09 presentation — September 4, 2009 — Slide 10 / 11

Original

100

120

Example: K = 1, with coefficients modulated with an 8 Hz sine

M = 256 M = 512 M = 1024

having amplitude 0.9, without EQ filter, and with a feedback

path with a constant multiplier of B(z) = 0.99

20

Spectral Delay Filters with Feedback and Time-Varying Coefficients Jussi Pekonen, Vesa Välimäki Jonathan S. Abel and Julius O. Smith Introduction Cascaded First-Order Allpass Filters

Equalization Filter Design Stretched

Spectral Delay Filters

Spectral Delay Filters with Feedback

Time-Varying Spectral Delay Filters

Conclusions

Ć

Paper on Audio-Rate Modulated SDF

0

• J. Kleimola et al., "Sound Synthesis Using an Allpass Filter Chain with Audio-Rate Coefficient Modulation," in Proc. DAFx-09...

40

Impulse response

Plot: Impulse

response with

M = 64

Drumming pattern

 $(\mathrm{kHz})^{20}$

Frequency (

Spectral Delay Filters with	Conclusions
Feedback and Time-Varying	
Jussi Pekonen.	Summary
Vesa Välimäki, Jonathan S. Abel and Julius O. Smith	 Frequency-dependent delay implemented with allpass filters Inherently good resolution Large delays obtainable with a low-order filter
Cascaded	• EQ filter to emphasize the slow (soft) part of the chirp
First-Order Allpass Filters	• Multirate structures \Rightarrow Simultaneous chirps
Equalization Filter Design	• Feedback structures \Rightarrow Series of chirps
Stretched Spectral Delay Filters	• Time-varying structures \Rightarrow Lively, dynamic effects
Spectral Delay Filters with	Further Pointers
Time-Varying Spectral Delay Filters	 The conference paper Background paper: V. Välimäki, J. S. Abel and J. O. Smith,
Conclusions	"Spectral Delay Filters," <i>J. Audio Eng. Soc.</i> , vol. 57, no. 7/8, pp. 521–531, July/Aug. 2009.
	 Companion page: http://www.acoustics.hut.fi/ publications/papers/dafx09-sdf/
HELSINKI U Department o	NIVERSITY OF TECHNOLOGY (Signal Processing and Acoustic) DAFx-09 presentation — September 4, 2009 — Slide 11 / 11