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ABSTRACT

This paper1 presents a direct design technique for par-
allel second-order sections based on a perceptually mo-
tivated logarithmic scale, with application to instrument
body modeling. Traditional FIR and IIR design techniques
work on a linear frequency scale, which is usually not
optimal for audio applications. Warped filters and Kautz
filters are good candidates for perceptually motivated fil-
ter design. However, the direct implementation of warped
or Kautz filters is computationally less efficient compared
to an IIR filter of the same order. The perceptually mo-
tivated frequency resolution can also be achieved by the
proposed design method, without the disadvantage of in-
creased computational complexity. The filter design has
two phases. First, the pole frequencies of the second-order
sections are set to a predefined logarithmic scale, or can be
determined from a warped filter design. Then the zeros are
found by a simple least squares algorithm, as the optimiza-
tion problem becomes linear in parameters for a given set
of poles. As high-order (up to 1000) filters can be robustly
designed, this technique is particularly well suited for in-
strument body modeling. Moreover, the parallel structure
allows flexible modifications to the body transfer function.

1. INTRODUCTION

The basic idea of physics-based sound synthesis is that it
models the sound production mechanism of the musical
instrument (see [1] for overview). Therefore, the structure
of the model follows that of a real instrument. Thus, for
string instruments, the model parts are the excitation, the
string and the instrument body. The heart of the instru-
ment is the string, as that is the one which produces the
periodic vibration as a response to the excitation. The in-
strument body has two roles from the modeling point of
view. First, it produces a filtering to the sound when it
converts the string force to sound pressure in a given point
in space (“radiation” properties). Second, it acts as a ter-
mination to the strings, modifying the partial frequencies
and decay times, and implementing a coupling between
the different strings (“termination” properties).

As the real-time fully-physical modeling of the instru-
ment body is still not feasible even with today’s fast DSPs,
the effect of the instrument body is often treated as a filter-
ing operation acting upon the output of the string model.
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Note that this approach separates the “radiation” and “ter-
mination” properties of the soundboard. In practice, usu-
ally only the radiation effects are implemented by the in-
strument body model and the termination effects are in-
cluded in the string model.

The most efficient approach for modeling the radiation
properties of the soundboard is the commuted synthesis
technique [2, 3]. This is based on the fact that if all the
blocks of the model are linear and time invariant, then the
order of the blocks can be commuted and the body im-
pulse response can be read from a wavetable. However,
as nowadays higher computational power is available, we
may seek for other methods that do not require the linear-
ity of the string and excitation models.

The instrument body response can also be implemented
as a fast convolution utilizing the FFT algorithm, such as
the one presented in [4]. While it is very efficient for long
impulse responses, the algorithm becomes quite compli-
cated if low latency is required. Another way of decreas-
ing the complexity of the convolution is the use of the
multi-rate approach. In [5] a simple multi-rate algorithm
have been presented that splits the input signal into two
frequency bands and applies FIR filtering. Naturally, the
idea of multi-rate processing can be used not only for FIR
filters, but for any other filter structure. Thus, it may be
applied as a possible extension to the filter-based body
modeling techniques discussed in this paper.

The filtering effect of the instrument body can also be
modeled as a reverberation algorithm. However, that ap-
proach cannot model the measured responses accurately,
and only the overall properties of the instrument body (mod-
al density, decay, spectral shape) can be controlled.

If the transfer function measurement of a real instru-
ment body is available, then body modeling can be consid-
ered as a filter design problem. Unfortunately, the trans-
fer function of real instrument bodies exhibits high modal
density, making difficulties for standard filter design algo-
rithms. This is mostly because traditional FIR and IIR de-
sign algorithms are optimizing on a linear frequency scale.
A logarithmic or auditory frequency resolution can be ac-
complished by warped or Kautz filters, but they require
special filter structures to be implemented.

This paper, after reviewing the existing filter design al-
ternatives in Sec. 2, proposes a new method for designing
the body filter in the form of parallel second-order sec-
tions on the logarithmic frequency scale in Sec. 3. With



the new method most of the advantages of Kautz filters
are retained, while it requires less computation. Examples
for piano soundboard modeling are given in Sec. 4. The
method can be used not only for instrument body model-
ing, but for any application that requires nonuniform fre-
quency resolution (i.e., in most audio applications). Some
application examples are outlined in Sec. 5 besides de-
scribing the advantages of the method.

2. EXISTING FILTER DESIGN ALTERNATIVES

2.1. Traditional filter design techniques

The most straightforward approach to design the body mod-
el as an FIR filter is to apply windowing to the measured
impulse response. In the case of the acoustic guitar, filter
orders lower than 1000 do not produce satisfactory sound
[6]. For modeling the piano soundboard at a sampling rate
of fs = 44.1 kHz, the present author has found that 2000
tap filters give a good overall sound quality. However,
for synthesizing the characteristic knocking sound of the
soundboard for high tones, even higher orders (≈ 10000)
are required.

Another straightforward choice for body modeling is
applying one of the standard IIR design techniques. In [6],
two IIR filter design methods were compared for model-
ing the guitar body. It has turned out that IIR filters per-
form almost the same as FIR filters for the same computa-
tional cost. As noted in [6], minimum-phase equalization
is not preferable, since it destroys the reverberant charac-
ter of the response.

Traditional FIR and IIR techniques are not optimal for
instrument body modeling (and for most of the other audio
applications), because their frequency resolution is linear,
as opposed to the quasi-logarithmic resolution of the hu-
man hearing. In the particular case of body modeling,
this is emphasized by the fact that usually the lower body
modes have smaller bandwidth compared to the higher
ones. The linear frequency resolution is inherent in FIR
filters, and while IIR filters could have a higher pole den-
sity in the low frequencies in theory, the traditional filter
design techniques tend to place the filter poles uniformly
around the unit circle. Unfortunately, the logarithmic fre-
quency scale is so highly distorted compared to the linear
scale, that even weighted filter design cannot give satis-
factory results [7]. In the following sections such filter
structures and design techniques will be reviewed which
use a perceptually motivated frequency resolution.

2.2. Warped filters

Warped filters are paricularly well suited for audio ap-
plications because their frequency resolution can closely
match that of the human hearing [7, 8]. The basic idea of
warped filters is that the unit delayz−1 in the traditional
FIR or IIR filters is replaced by an allpass filter

z−1
← D(z) =

z−1
− λ

1− λz−1
. (1)

By a particular choice of theλ parameter, it is possible to
match the Bark or ERB scale closely [9].

The design of warped filters starts with warping the tar-
get impulse responseht(n), e.g., by the use of an allpass
chain. Then, warped FIR (WFIR) filters can be obtained
by truncating or windowing the warped target response
h̃t(n). The WFIR filters have a similar structure as FIR
filters, but the unit delays are replaced by the allpass fil-
ter D(z). That is, the WFIR filter is an allpass chain,
where the signals between the first-order allpass blocks
are tapped and weighted bybk. For warped IIR (WIIR)
filters, standard IIR filter design techniques are applied
to the warped target responseh̃t(n). However, for WIIR
filters, the replacement of unit delays byD(z) leads to
delay-free loops, and the filter structure has to be modi-
fied for practical implementation [8].

The application of frequency warping produces large
savings in terms of filter order for instrument body mod-
eling. For modeling the body of the classical guitar, while
the required order is around 1000–2000 for FIR and around
500–1000 for IIR filters, WIIR filters are capable of pro-
ducing the same quality by an order of 100–200.

The shortcoming of warped filters is that special fil-
ter structures are required for their implementation, which
lead to higher computational complexity compared to tra-
ditional FIR or IIR filters of same order. For low orders
(<20–30), WFIR and WIIR filters can be converted to tra-
ditional (direct form) IIR filters, but for higher orders this
is not possible because of numerical inaccuracies during
conversion [8].

2.3. Kautz filters

In the case of warped filters the frequency resolution is
controlled by one parameter (i.e.,λ). A more flexible al-
location of frequency resolution can be achieved by Kautz
filters. Kautz filters can be seen as the generalization of
WFIR filters, in the sense that now the allpass filters in the
chain do not have to be identical (for overview and audio
applications, see [10]). The Kautz transfer function can
be written as

H(z) =

N
∑

k=0

wkGk(z)

=
N

∑

k=0

wk





√

1− pkp∗k
1− pkz−1

k−1
∏

j=0

z−1
− p∗j

1− pjz−1



 , (2)

whereGk(z) are the orthonormal Kautz functions deter-
mined by the pole setpk. From the design point of view,
Kautz filters can be considered as fixed-pole IIR filters.
The advantage of the orthonormality ofGk(z) functions
is that the weightswk can be determined from the target
responseht(n) by a scalar product

wk =
∞
∑

n=1

gk(n)ht(n), (3)

wheregk(n) are the inversez transform ofGk(z).



For determining the polespk of the Kautz filter, several
methods are discussed in [10]. The simplest is to use a
logarithmic pole distribution

ϑk =
2πfk

fs
(4)

pk = Rϑk/πe±jϑk , (5)

whereϑk are the pole frequencies in radians determined
by the logarithmic frequency seriesfk and the sampling
frequencyfs. The pole magnitudes form an exponen-
tially damping sequence approximating a constantQ res-
olution. The pole magnitude at the Nyquist rate is set
by the damping parameterR. Another way of finding
the poles is an iterative algorithm, like the Brandenstein-
Undehaunen method discussed in [10]. For better results
in the case of body modeling, warped pole positioning can
be applied. Adding some poles manually can also help in
focusing on the critical regions of the transfer function.
For modeling the guitar body, a Kautz filter with warped
Brandenstein-Undehaunen pole positioning produced sat-
isfactory results already at an order of 120 [10]. This is
comparable to the orders required for warped IIR filters.

It is impractical to implement Kautz filters by a series
of complex first-order allpass filters as in Eq. (2), and
combining the complex pole pairs to second-order sec-
tions yields lower computational complexity [10]. How-
ever, the combined cascade-parallel nature of the filter
still requires more computation compared to filters im-
plemented in direct or cascade form on DSP. This can be
overcome by converting the Kautz filter to a direct form
IIR filter, but this is possible only for low filter orders due
to numerical problems during conversion.

3. PARALLEL SECOND-ORDER SECTIONS

We have seen that Kautz filters provide more flexibility
in the distribution of frequency resolution compared to
warped filters. This is because the resolution is controlled
by the entire pole set and not only by one parameter. It
would be beneficial to find a filter structure that retains this
property of Kautz filters, while enables more efficient im-
plementation. This is achievable by parallel second-order
sections.

Implementing IIR filters in the form of parallel second-
order sections have been used traditionally because its bet-
ter quantization noise performance [11] and the possibil-
ity of code parallelization. The parameters of the second-
order sections are usually determined from the direct form
IIR filters, by, e.g., the partial fraction expansion or a sim-
ilar algorithm [12]. However, this approach is not applica-
ble for our case, as traditional IIR filter design techniques
are not well suited for audio applications because of the
reasons discussed in Sec. 2.1. For converting the better
performing warped or Kautz filters to parallel form, they
should be converted to direct form IIR filters first, which
is not possible due to numerical inaccuracies. Therefore,
a different approach has to be taken for the parameter es-
timation of the second-order sections.

The algorithm presented here designs the parallel second-
order filter-bank directly, without the intermediate direct-
form IIR filter. After determining the poles, it uses the out-
puts of the second-order sections (i.e., exponentially de-
caying sinusoidal functions) as basis functions of a linear-
in-parameter model. In this sense the concept is similar to
that of Kautz filters, but by giving up the orthonormality
of the basis functions, the scalar product of Eq. (3) cannot
be used for parameter estimation. On the other hand, the
new method results in a simpler structure and significant
computational savings.

3.1. Problem formulation

Every transfer function of the formH(z−1) = B(z−1)/
A(z−1) can be rewritten in the form of partial fractions:

H(z−1) =

K
∑

k=1

ck
1

1− pkz−1
+

M
∑

m=0

bmz−n, (6)

wherepk are the poles, forming either conjugate pairs or
real valued, if the system has a real impulse response. The
second sum in Eq. (6) is the FIR part of orderM . If the
order ofA(z−1) andB(z−1) is the same, then it reduces
to a constant coefficientb0. Note that Eq. (6) is valid only
if no multiple poles are present. In the case of pole multi-
plicity, terms of higher order also appear.

Now let us assume that not only the target response,
but the poles of our IIR filter are known (the pole position-
ing problem will be outlined in the next section). In this
case Eq. (6) becomes linear in parametersck andbm, thus,
they can be estimated by a simple least squares algorithm
to match the required response. This can also be done in
the frequency domain by the substitutionz−1 = e−jϑ,
whereϑ is the digital angular frequency. Then the right-
hand side of Eq. (6) is evaluated at those frequenciesϑi,
where the target responseH(e−jϑi) is known, and the pa-
rametersck andbm are set by least squares optimization
so that the mean squared error between the target and the
implemented frequency response is minimal.

However, the simplest way for finding the coefficients
ck and bm is to compute the impulse responses of the
complex first-order filters of Eq. (6) in the time domain,
up to the length of the target impulse response. The im-
pulse response of thekth term1/(1 − pkz−1) becomes
uk(n) = (pk)n, wheren is the discrete time step. Then
the columns of the modeling signal matrixM are com-
posed of the vectorsuk(n). Moreover, for the FIR part, a
set of delayed impulsesδ(n −m) have to be added. The
parameter vectorp is composed of theck and thebm pa-
rametersp = [c1 . . . cK , b0 . . . bM ]T . Thus, the resulting
filter impulse responseh can be calculated as

h = Mp. (7)

Because of the nature of the linear-in-parameter problems,
the error function is quadratic inp and has a unique mini-
mum, as opposed to nonlinear optimization problems. The
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Figure 1. The structure of the parallel second-order filter.

mean squared error between the target responseht and the
resulting filter responseh is minimized by the expression

popt = (MHM)−1MHht, (8)

where the vectorpopt contains the optimal parameters,
andMH is the conjugate transpose ofM.

The resulting filter can be implemented directly as Eq. (6)
forming parallel first-order complex filters. However, this
is not optimal from the computational point of view. On
the other hand, if the complex pole pairs are brought to a
common denominator, we obtain

ck

1− pkz−1
+

ck+1

1− pk+1z−1
=

ck(1 − pk+1z
−1) + ck+1(1 − pkz−1)

(1− pkz−1)(1 − pk+1z−1)
=

dk,0 + dk,1z
−1

1− (pk + pk+1)z−1 + pkpk+1z−2
, (9)

wherepk andpk+1, andck andck+1 are complex conju-
gate pairs. This is a second-order section with real valued
coefficients, which can be implemented much more effi-
ciently. Those fractions of Eq. (6) that have real poles
are either implemented as first-order IIR filters, or com-
bined with other real poles to form second-order IIR fil-
ters, yielding a canonical structure. This is depicted in
Fig. 1. In the case of multiple poles, higher order sections
also appear. However, in our applications, multiple poles
do not occur in practice (see Sec. 3.2).

Although dk,0 and dk,1 can be determined uniquely
from ck andpk by the help of Eq. (9), the optimization
problem is still linear in parameters if the second-order
sections are used instead of the complex first-order filters.
With that approach the feedforward parametersdk,0 and
dk,1 can be estimated directly with the least squares algo-
rithm, and there is no need to calculate them from theck

andpk values of Eq. (6). In that case, the matrixM con-
tains not only the outputs of the two-pole resonators but

also their delayed versions by one temporal sample. Then,
the optimal parameter setpopt is obtained by Eq. (8), and
nowpopt = [d1,0, d1,1, . . . dK/2,0, dK/2,1, b0 . . . bM ]T .

3.2. Pole positioning

The poles of the second-order sections can be determined
by all the methods suggested for the case of Kautz filters
[10], some of them were briefly outlined in Sec. 2.3. Po-
sitioning the poles logarithmically is the simplest way. In
this case, pole multiplicity is naturally avoided. In gen-
eral, the pole set does not have to be strictly logarithmic,
but can also focus to specific frequencies by increasing the
pole density in that region.

Another simple way of finding the poles of the second-
order filters is first designing a warped IIR filter to the
warped target responsẽht(n). Then, the poles of this
warped filter have to be found. This is in practice possible
even for filter orders of 1000, as the poles are spread ap-
proximately uniformly along the unit circle in the warped
domain. The warped poles̃pk are converted back to linear
frequency scale by an expression similar to Eq. (1):

pk =
p̃k + λ

1 + p̃k
, (10)

whereλ is the warping parameter with which the WIIR
filter was designed. The polespk can be directly used
for filter design. It has to be noted that the author has
never experienced the appearance of multiple poles with
any practical design method, meaning that the canonical
structure of Fig. 1 can usually be retained.

4. DESIGN EXAMPLES

The performance benefit of the warped or logarithmic fre-
quency scale methods strongly depends on the phase prop-
erties of the target response. Warping tends to stretch
the high-frequency components of the target response in
time, while compresses the signals at low frequencies [8].
Therefore, if the target response is non-minimumphase,
thus, having maximum power at, e.g., 5 ms, warping will
move this to 10–20 ms in the high frequencies, making
them out of reach for the filter design algorithm for low
filter orders. On the other hand, minimum-phase target re-
sponses have their power maxima in the beginning of the
response for all frequencies, thus, warped or logarithmic
frequency resolution filters can perform optimally.

Body responses are non-minimumphase in the strict
sense. However, closely miked responses behave almost
like minimum-phase responses from the design point of
view. Generally, the literature [8, 10] uses closely miked
responses and sometimes even makes them completely
minimum-phase artificially. In this section, a closely miked
(20 cm) piano soundboard response is used in general, but
as an example of a largely non-minimumphase target, a
far-miked soundboard response is presented in Sec. 4.4.

Examples of warped or Kautz designs are not shown
in the next sections. Kautz filters perform in principle in
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Figure 2. Comparison of frequency responses achieved
by different filter structures at an order of 200. From the
top to bottom: the proposed parallel filter, the Kautz filter,
the warped filter, and finally the target specification.

the same way as the parallel second-order sections for the
same pole set, and warped filters have a very similar per-
formance as the parallel filter, when the pole set is deter-
mined from a warped filter. This is illustrated in Fig. 2,
where first a 200 order warped IIR filter was fitted to the
target specification. Then, the poles of the warped filter
were used for designing the Kautz and parallel filters.

4.1. Reference IIR filter design

Figure 3 (a) shows the frequency response of two IIR fil-
ters designed by the Prony’s method. The target response
is displayed by the bottom curves of Figure 3, and has a
length of 10000 taps atfs = 44.1 kHz. Filter orders of
200 are needed for acceptable sound (top curves), while
the filter response starts to be perceptually indistinguish-
able from the target only at an order of 800. It can be
seen from Fig. 3 (a) that the design wastes too much effort
for the perceptually less significant high frequencies. The
impulse responses of the filters are depicted in Fig. 3 (b).
They produce an excellent match for the first few hundred
samples (until the length of their FIR part, they are per-
fect by principle), but they are unable to follow the long-
ringing low modes of the target response.

4.2. Parallel second-order sections with logarithmic pole
positioning

Figure 4 (a) shows the frequency response of two parallel
second-order designs, where the poles are set on a loga-
rithmic scale. For the top curve, 25 logarithmically spaced
resonators are used from 60 Hz to 20 kHz yielding a fil-
ter order of 50. The poles are calculated by Eqs. (4) and
(5) with R = 0.9. The middle curve uses 100 logarith-
mically spaced poles withR = 0.98, giving a filter order
of 200. The order of the FIR partM was set to zero in
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Figure 3. Frequency (a) and time-domain (b) responses of
traditional IIR filters of order 200 (top) and 800 (middle),
and the target impulse response (bottom).

both examples, resulting in a canonical structure contain-
ing second-order IIR sections only. The time-domain re-
sponses of Fig. 4 show that the parallel filter can follow the
long-ringing modes better than traditional IIR filters even
at lower filter orders. Naturally, this can be already antici-
pated from the more precise fit in the magnitude response
at low frequencies. The author has found in general that
around four times lower order filters are required for the
same sound quality compared to traditional IIR design.

4.3. Parallel second-order sections with warped-filter
based pole positioning

Next, the pole set of the parallel second-order filter is esti-
mated by warped filter design. For the top curve of Fig. 5
a 50th order WIIR filter was designed on the warped tar-
get response withλ = 0.75. Then, the poles of the warped
filter were determined and transferred to the normal (un-
warped) domain by Eq. (10). The middle curve of Fig. 5
shows a similar example but with an order of 200. Sim-
ilarly to the previous examples, no parallel FIR part was
implemented. The warping-based pole positioning gives
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Figure 4. Frequency (a) and time-domain (b) responses of
parallel second-order sections designed with logarithmic
pole positioning for orders of 50 (top) and 200 (middle),
and the target impulse response (bottom).

comparable preceptual results to the logarithmic position-
ing for the same filter order.

4.4. Fitting on a largely non-minumphase response

In this example, a piano soundboard impulse response is
used which was recorded at 2 m distance from the piano
in a fairly damped rehearsal room. This means that the
target responseh(n) (the lowest curve in Fig. 6 (b)) is
far from being minimum-phase: it reaches its maximum
around the 200th sample. Indeed, a 200th order parallel
filter (middle curve in Fig. 6 (b)) is unable to follow the
onset accurately. It can be seen that the resulting response
contains high-frequency components only in the first part,
which is a general shortcoming of warped or logarithmic
filter designs. In this case, the pole set is determined from
a warped design, but similar results are obtained for log-
arithmic pole positioning. Designing a filter of an order
of 400 cures the problem, but at the expense of doubled
computational complexity.

It is a better solution to include a parallel FIR chain
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Figure 5. Frequency (a) and time-domain (b) responses of
parallel second-order sections with a pole set obtained by
warped filter design for orders of 50 (top) and 200 (mid-
dle), and the target impulse response (bottom).

in the filter structure, as depicted in the bottom of Fig. 1.
For the top curves of Fig. 6, a 100th order IIR part and
a 200th order FIR part was used, which have the same
computational complexity in terms of additions and mul-
tiplications as the 200th order parallel IIR filter displayed
in the middle. The pole set was again determined from a
warped design, but now with aλ = 0.9 giving more em-
phasis on low frequencies, as the high frequency part is
taken care by the FIR part anyway. The top curve of Fig. 6
(b) shows that the time-domain response is much more ac-
curate (actually, perfect up to the length of the FIR part),
and the magnitude response has also improved in the high
frequencies.

In this example the linear frequency resolution of the
FIR filter is combined with the auditory scale of the par-
allel filter. This approach often results in the lowest com-
putational complexity even in the case of closely miked re-
sponses, but the canonical structure of having only second-
order filters in parallel is lost, meaning that some of the
additional benefits of the method (discussed in Sec. 5.1)
cannot be utilized.
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5. DISCUSSION

The new method requires around four times less num-
ber of additions and multiplications compared to tradi-
tional IIR filter designs for piano soundboard modeling.
This decrease is even larger if the target response is made
minimum-phase before filter design.

If the pole set of the parallel filter is determined from
a warped design, the parallel filter performs the same way
as the WIIR filter of the same order. However, the parallel
filter yields a simpler DSP implementation and provides
more flexibility in the distribution of frequency resolution.

As the design of the parallel second-order filter is very
similar to that of the Kautz filter, the parallel filter per-
forms the same way as the Kautz filter for a given pole
set. On the other hand, it requires smaller number of mul-
tiplications and additions and its parallel structure is bet-
ter suited for DSP implementation compared to the mixed
cascade-parallel structure of the Kautz filter. The pro-
posed method has two disadvantages compared to Kautz

filters, but none of them cause any problems in our case.
First, in the case of multiple poles, the canonical structure
of Fig. 1 has to be extended, while for Kautz filters the
structure is not dependent on pole multiplicity (in practice,
multiple poles do not appear in body modeling). Second,
because the basis functions of the parallel filter are not
orthonormal, filter design takes longer time and can be in
theory numerically more sensitive, as the filter coefficients
have to be determined by the matrix operations of Eq. (8)
instead of a scalar product. However, in practice the fil-
ters used in this study (or even orders up to 1000) could
be robustly designed without any numerical problems.

5.1. Additional advantages

The structure of the parallel filter is well suited for code
parallelization, which can lead to even higher computa-
tional savings on some DSPs. Moreover, the parallel sec-
ond-order structure has a lower quantization noise com-
pared to direct form or cascade implementations [11].

Another benefit for physical modeling is that the par-
allel filter structure can have a physical interpretation: it
can be related to modal synthesis, where the vibration
of a structure is combined from that of its modes [13].
This analogy to the physical reality leads to interesting pa-
rameter modifications. The resonance frequencies of the
second-order filters (pole angles) can be changed to simu-
late a bigger or smaller instrument body. The decay times
of the body modes can be influenced by varying the pole
radii. Changing the overall magnitude response can be
accomplished by scaling the feedforward coefficientsdk,0

anddk,1 of Fig. 1, without an additional filter. Morphing
of different body responses is also possible.

The same method can be utilized for scalability in terms
of sampling rate. The parameters of the second-order sec-
tions have to be determined for the highest possible sam-
pling rate, and when the system has to run at a lower rate
f ′

s, the modes abovef ′
s/2 are dropped and the remaining

ones are stretched appropriately. Multiple outputs (e.g.,
for stereo effects) can be efficiently achieved by using the
same set of poles for the different channels, thus, only the
output coefficients of Fig. 1 have to be implemented for
the channels separately.

5.2. Future research

The construction of an adequate perceptual model for the
quantitative evaluation of body modeling techniques would
be beneficial, but it is far from being a straightforward
task. This is because the perception of the body response
is highly dependent on the input signal, thus, looking at
transfer functions or impulse responses gives only a rough
measure of quality.

The proposed method may find applications in all those
cases, where Kautz filters have been proven to be effec-
tive, as it produces comparable performance at lower com-
putational cost. Trivial examples are audio applications
such as loudspeaker or room equalization. The applica-
tion of the technique for the source-filter modeling of mu-



sical instrument sounds and comparison with previous pa-
rameter estimation techniques, such as the ones used in
[14, 15], can also be a part of future research.

As the method has been found to be robust even in the
order of a thousand, it might be applicable for room re-
sponse modeling. While not as efficient as fast convo-
lution algorithms [4], it gives larger flexibility, since all
the parameters of the late reverberation could be changed
as outlined in Sec. 5.1. Room modeling requires signif-
icantly higher filter orders compared to instrument body
modeling. Therefore, combining the approach with multi-
rate techniques could be favorable.

6. CONCLUSION

In this paper, a simple and robust method has been pro-
posed for the direct design of a parallel set of second-order
filters. While the idea of using such a filter structure is
not new, the proposed direct design method makes it pos-
sible to use the parallel structure in an auditory (or log-
arithmic) frequency scale, which is better suited for au-
dio applications. Design examples have been presented
for the case of piano soundboard modeling. The method
produces comparable results to warped and Kautz filters,
while does not require the implementation of special struc-
tures. Compared to traditional IIR design, around four
times lower filter orders are obtained for the same sound
quality. Moreover, the parallel structure is well suited
for DSP implementation and produces lower quantization
noise compared to cascade or direct structures. A signif-
icant benefit for physics-based sound synthesis is that the
parameters of the parallel filter can be changed in a mean-
ingful way, leading to the real-time variability of body size
and decay, or to the morphing of different responses. The
method can not only find applications in instrument body
modeling, but also in other applications where nonuni-
form frequency resolution is preferable.

Sound examples and MATLAB functions can be found
at the webpagehttp://www.acoustics.hut.fi/
go/icmc07-parfilt.
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