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Kautz filters in a nutshell
Kautz filters [6] are a class of fixed-pole linear-in-parameter IIR filters
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� � ��� � � � �� �� , � � ��� � � � �� �� , composed of a transversal all-pass
backbone
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and all-pole tap-output filters, forced to produce orthonormal tap-output impulse
responses, and originating from rational orthonormal (basis) functions [10]
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defined by any set of points ����
�

��� in the unit disk. A particular Kautz filter is
thus determined by a set of (stable) poles ����

�
��� and somehow assigned filter

coefficients ����
�
���:

Some more or less familiar special cases:
� for �� � � it degenerates to an FIR filter

� for �� � 	��� 
 	 
 �, it is a Laguerre filter [7] where the tap-filters can be
replaced by a common pre-filter

� Generalized Orthonormal Basis Functions [5] associated with a recurrent se-
quence of poles

The real-valued Kautz filter
A Kautz filter produces real tap-output signals only in the case of real poles.
However, from a sequence of real or complex conjugate poles it is always pos-
sible to form modified real Kautz structures. For example, for purely complex
(conjugate) poles we may choose [2]

This solution is not unique, but it is simple and intuitive:
� second-order section outputs are orthogonal

� from which an orthogonal tap-output pair is formed

� and normalized using:

– �� �
�

��� ����� � �� � ����,

– �� �
�

��� ����� � �� � ����,

where � � �������� and �� � ����
� can be recognized as corresponding

second-order polynomial coefficients

We use an obvious mixture of first- and second-order sections for sets of both
real and complex conjugate poles.

The Kautz model for signals and systems
Kautz filters provide linear-in-parameter models for many types of system iden-
tification and approximation schemes. Here too, we have various interpreta-
tions, criteria, and methods for the model parametrization. The “prototype”
least-square approaches are implied by the signal space descriptions:

Approximation: A basis representation of any causal and finite-energy signal
is obtained as its Fourier series expansion with respect to functions (1)

Input-output-data identification: Tap-output signals span an “approximation
space” for any causal and stable system – normal equations assembled from
correlation terms provide least-square optimal model parametrizations

Furthermore, here we restrict to the approximation of a given target response
���� with truncated Fourier series expansions
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where functions ������� are impulse responses or inverse z-transforms of func-
tions (1). We choose these true orthonormal expansion coefficients, because:

� Fourier coefficients are easily obtained by feeding ����� to the Kautz filter
and reading the tap-outputs ����� � ��������� at � � �: �� � �����,

� which can be seen as a generalization of rectangular window FIR design,

� rendering a direct view to error evaluation and model reduction,

� coefficients being independent of ordering and approximation order,

� providing implicitly simultaneous time and frequency domain design,

� and powerful means to the Kautz filter pole position optimization.

Choosing of the Kautz filter poles
There are various strategies in search for suitable pole sets, for example:

� fixed pole distributions or repetitive use of a small subset of poles

� sophisticated guesses, and random or iterative search

� manual tuning of the poles to the target response resonances

� indirect means, such as all-pole or pole-zero modeling

� a relation between optimal model parameters and error energy surface sta-
tionary points [3] or a classification of systems [9]

� direct gradient [4] or iterative [8] optimization of the structure, based on the
complementary division of signal energy [11]

Related to the last-mentioned, we have adopted a method proposed originally
to pure FIR-to-IIR filter conversion [1], to the context of Kautz filter pole opti-
mization. It resembles the Steiglitz-McBride method of pole-zero modeling, but
it genuinely and effectively optimizes the pole positions of a real Kautz filter,
producing unconditionally stable and (theoretically globally) optimal pole sets
for a desired filter order. In the following we use this BU-method as such or
combined with, e.g., warped design or manual choosing and tuning of poles.

Audio oriented example 1: Loudspeaker equalization
Here we demonstrate the use of Kautz filters in pure magnitude equalization,
based on an inverted target response. Direct utilization of the BU-method pro-
vides, e.g., following results:
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Kautz equalizers, orders 38, 30, 15 and 9

The target

Equalization results, orders 9,15,30 and 38

The measured response

To improve the modeling at 1 kHz, we add 3–4 manually tuned pole pairs to the
BU-pole sets, omitting some undesired poles, producing
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Kautz equalizers, orders 34, 32 and 23
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Equalization results, orders 23, 32 and 34

The measured response

We may also tune all the poles manually, e.g., with 10 distinct pole pairs, chosen
and tuned to fit the magnitude response:
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Manually tuned 20th order Kautz equalizer and pole positions

The target

A comparison of FIR, Laguerre, and Kautz equalization results:
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FIR filter, order 200

Laguerre filter, order 100

Partly manually tuned Kautz, order 34 (26+8)

Partly manually tuned Kautz, order 23 (15+8)

Manually tuned 20th order Kautz

The measured response

Audio oriented example 2: Modeling of a guitar body response
As another example of Kautz modeling we approximate a measured acoustic
guitar body response. The BU-method is able to capture essentially the whole
resonance structure at filter order 102, obtained by pruning a 120th order BU-
pole set:
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Lines indicate pole pair positions. Especially in this case of a target response
dominated by the low-frequency part, we may compose very low order Kautz

models by applying the BU-method to the warped target response, and by map-
ping the produced poles back to the original frequency domain. Displayed with
offset from top to bottom, Kautz models of orders 10, 16, 20 and 40, and the
target magnitude response:
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The warped BU-method finds the five prominent resonances at filter order 10,
in contrast to the unwarped design, where the required order is about 100! Fi-
nally, we demonstrate that good fit to the five prominent resonances of the 10th
order Kautz filter means also good match in the time-domain to the measured
response:
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Further information and acknowledgements
A more thorough presentation of the underlying theory and the merely stated
results can be found in the Proceedings or in other related ˜/publications
at http://www.acoustics.hut.fi as well as MATLAB scripts and de-
mos in ˜/software/kautz. This work has been supported by the Academy
of Finland as a part of the project “Sound source modeling”.
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