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ABSTRACT

This study investigates emotion detection from noise-corrupted tele-

phone speech. A generic modulation filtering approach for audio

pattern recognition is proposed that utilizes inherent long-term prop-

erties of acoustic features in different classes. When applied to bi-

nary classification along the activation and valence dimensions, fil-

tering the baseline short-time timbral features in both the training

and detection phase leads to significant improvement especially in

noise robustness. Automatic selection of training data based on the

filter’s prediction residual further improves the results.

Index Terms— emotion detection, speech analysis, computa-

tional paralinguistics

1. INTRODUCTION

Many potential applications exist for robust automatic recognition of

emotions in speech. These include adapting speech recognizers to

the speaker’s emotional state, providing paralinguistic input to user

interfaces and monitoring the quality of call center service. The po-

tential applications are one reason for speech emotion recognition

becoming a topic of active research in recent years [1] [2] [3]. Auto-

matic emotion recognition is often studied in the sense of identifying

emotions among a fixed set of classes such as anger, joy, sadness or

surprise [1]. Some practically oriented studies target the detection

of individual emotions such as anger [4] [5] [6] [7]. In addition,

binary classifications are studied along various dimensions, such as

between different emotions [3] or along two central affective dimen-

sions, namely activation (arousal) and valence. These dimensions,

which can be characterized as distinguishing between calm/excited

and positive/negative emotions, respectively, are generally viewed

in psychology as the two most important ones to represent emotions,

although additional dimensions have been studied for more complete

low-dimensional representation [8] [9].

Relatively few studies still specifically target system robustness

in real-world conditions, but this aspect has gradually gained mo-

mentum [1] [10] [11] [12]. These previous studies on the robustness

aspect usually investigate the emotion-class identification problem.

On the other hand, especially anger detection systems have typically

been evaluated with real-world call center data [4] [5] [6]. However,

it can be argued that broader characterizations of the caller’s emo-

tional state could prove more useful in realistic call center applica-

tions, and this approach has indeed been investigated in some studies

[13] [14]. Emotion identification with multiple classes may be un-

necessarily complex and error-prone, while anger detection systems

may tend to focus on the easily detectable hot anger (high vocal ef-

fort is relatively easy to detect [15] [16]) but perform poorly with

cold anger.
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In order to address specifically the issue of recognizing, broadly,

the caller’s emotional state, this study focuses on activation and va-

lence analysis of telephone speech. In order to build a robust sys-

tem applicable in real-world conditions, the focus is on mismatched

acoustic conditions in the recognition phase, with changing types of

far-end ambient noise corruption. Concerning the study material,

with real telephone speech it would be difficult to relate the results

to other studies and to assess the proportional effects of the prob-

lem’s inherent difficulty, noise, bandwidth and channel on the system

performance. In addition, the spectrum of emotions in spontaneous

speech would be less diverse than in acted databases. Thus, to focus

on the telephone channel and its noise robustness issues in a quan-

titative manner, this study uses acted speech from the widely used

Berlin database of emotional speech [17] after processing it with a

simulated telephone transmission channel. However, the system is

also evaluated with the original, high-quality speech material in or-

der to more generally validate the proposed approach.

The approach chosen to tackle these issues is a general, cus-

tomizable method for modeling long-term modulation dynamics in

the speech signal on multiple time scales simultaneously. It is based

both on the known perceptual relevance of such temporal informa-

tion in auditory pattern recognition and the specific usefulness of this

information in emotion recognition from speech, which has been ob-

served in many previous studies. These considerations are discussed

in Section 2 before introducing the method in Section 3.

2. LONG-TERM TEMPORAL DYNAMICS IN SPEECH

AND AUDIO

2.1. Approaches to Modeling Long-Term Information

In speech and audio processing, the long-term modulation charac-

teristics of short-term acoustic parameters are typically utilized for

two purposes. One is to improve the system’s robustness by filtering

out temporal changes which are unlike the usual temporal dynam-

ics of the target signal and are thus more likely to be unpredictable,

noisy components. This is the case, for example, in the widely used

RASTA modulation filtering [18]. It employs an IIR band-pass fil-

ter H(z) = 0.1z4 2+z−1
−z−3

−2z−4

1−0.98z−1 separately on each spectral (or

more generally, timbral) feature across time (speech frames) and

captures the typical modulation frequencies of speech (with the typ-

ical frame interval of 10 ms). It has been used for improving channel

and noise robustness in automatic speech and speaker recognition.

Apart from improved focus on the target signal, another rea-

son for utilizing long-term temporal information is to distinguish

between broad classes. In speech processing, modeling class-

discriminative long-term characteristics has been found to be im-

portant in applications such as language identification [19], paralin-

guistic speaker state and trait classification [20], speaker recognition

[21] and speech emotion recognition. These applications get benefit



from long-term dynamic information which conventional short-time

features and delta features [22] can not accurately capture.

Classification of vocal emotions, the focus of this study, bene-

fits from long-term modeling, as different emotional speech classes

generally have quite different temporal dynamics [23]. Some of

the approaches proposed to modeling this temporal information in

speech emotion recognition are feature extraction explicitly utilizing

the modulation spectrum [2] [12], mel-cepstral analysis for low fre-

quencies [5], modeling F0 contours [3], autoregressive features [24]

and vector autoregressive classification models [25]. A common,

generic approach which is widely used in computational paralinguis-

tics (including emotion recognition) is to compute a large number of

long-term statistics and functionals of a comprehensive set of frame-

based short-time features and to utilize a machine learning approach

capable of handling high dimensionalities [1] [20] [26].

The current study proposes a generic, simple method for mod-

eling long-term temporal dynamics of different classes by multi-

scale autoregressions. The method is applied to emotion detection.

In contrast to the mentioned specialized approaches to capturing

this information in computational paralinguistics studies, the pro-

posed method is application-independent and utilizes intermediate,

class-specific modulation filtering of short-term features across sig-

nal frames. It is computationally light and can be straightforwardly

plugged in between the initial short-time feature extraction phase

and the final classification phase of a generic audio pattern recog-

nition system. To clarify, its place as an optional component in the

order of processing steps in such a system would be as follows:

• Training phase:

1. Feature extraction

2. The proposed method

3. Training of classification models

• Classification phase:

1. Feature extraction

2. The proposed method

3. Classification decisions

In addition to modeling class-discriminative information, the

proposed method also acts as a filter removing uncharacteristic

and potentially noisy dynamic components from the feature rep-

resentation, similarly to RASTA apart from being always tuned to

a particular class. Consequently, one of the primary goals of this

study is to investigate whether the proposed approach can improve

the classification system’s noise robustness in realistic, adverse con-

ditions such as far-end noise corruption over the telephone channel.

2.2. Perceptual Importance of Modulation in Speech Commu-

nication

In the auditory system, short-term acoustic characteristics are ana-

lyzed by the auditory periphery, in particular by the cochlea in the in-

ner ear. In general, the nuclei along the neural auditory pathway from

the cochlea towards the auditory cortex generate progressively more

sophisticated and longer-term representations of the auditory sensa-

tion while also acting as relay stations for lower-level representations

from the earlier stages [27] [28]. However, the exact functionality of

the different stages of the neural pathway is less well understood than

that of the inner ear. The first stage after the cochlea, the cochlear

nucleus contains neurons with different time responses: primary-

like, onset, chopper, pauser and buildup. Many different kinds of

abstractions of the original auditory stimulus are generated already

in specialized regions of the cochlear nucleus. These are passed on

through the superior olivary complex, the initial site of bilateral rep-

resentation of the acoustic environment, to the inferior colliculus,

believed to be specialized in the representation of pitch and in local-

izing sound sources consisting of complex temporal variations. The

cells of the inferior colliculus display modulation frequency selectiv-

ity and phase-lock to amplitude modulations of the stimulus. In the

medial geniculate nucleus (MGN), the final waystation on the way to

the auditory cortex, the cells also phase-lock to amplitude modula-

tion but with lower temporal resolution, i.e., with lower modulation

frequencies being represented. In addition to its role as a relay sta-

tion for an auditory pathway conveying all the information necessary

to characterize acoustic events, it has been suggested that the MGN

is also involved in a second pathway that allows the auditory cortex

to selectively label stimuli with perceptual qualities. Thus, it would

play an essential role in the perception of the acoustic environment.

Psychoacoustical studies have examined the temporal properties

of hearing by utilizing various approaches and concepts, including

temporal integration [29], temporal masking [30] and the ability of

listeners to detect sinusoidal amplitude modulation [31]. The latter

studies typically examine the temporal modulation transfer function

(TMTF), i.e., the sensitivity to amplitude modulation as a function

of frequency. Humans have been found to be most sensitive to am-

plitude modulation at modulation frequencies below roughly 10 Hz

(see, e.g., [31]). It has been suggested that spectral and temporal

integration characteristics of hearing may be the result of an opti-

mization mechanism (either innate, learned or some combination of

these) for detecting patterns in the typical acoustic input, such as

speech [32]. In speech, most of the modulation energy is concen-

trated between 2 and 8 Hz, especially near 4 Hz [33]. Energy in this

range is largely affected by phonemic and syllabic variation.

In summary, as the modulation energy in speech concentrates on

a certain modulation frequency range, which is also the area hearing

is the most sensitive to, perceptually important differences between

various speech classes probably also manifest themselves in this re-

gion. Systematic, generalizable approaches to modeling this infor-

mation are thus important topics for study. Moreover, given that

the auditory system generates modulation frequency representations

on varying temporal scales at different stages of the auditory path-

way, being able to separately model these different time scales in

automatic recognition of sound classes could potentially offer an ad-

vantage and should be specifically investigated. These observations

offer perceptual motivation for the particular modeling approach in-

vestigated in the present study.

3. THE EMOTION DETECTION SYSTEM

3.1. Feature Extraction

After pre-emphasis with Hp(z) = 1 − 0.97z−1, the input signal

is arranged into overlapping Hamming-windowed frames of 25 ms

with a shift interval of 10 ms. Using the standard processing chain

of 1) computation of the the squared magnitude spectrum by fast

Fourier transform (FFT), 2) mel-frequency filterbank (here, 40 tri-

angular filters spaced evenly on the mel scale), 3) logarithm and

4) discrete cosine transform, 12 mel-frequency cepstral coefficients

(MFCCs) are obtained after exclusion of the zeroth coefficient [22].

These are complemented with the logarithmic frame energy, whose

value is locally normalized for the mean and and variance over the

utterance, and delta and double-delta coefficients [22] to form a 39-

dimensional feature vector.



3.2. The Proposed Filtering Method

In a previous study on detection of angry speech [7], the following

method was used to model the long-term dynamics of each MFCC

feature. In the training phase, an autoregressive (AR) model is first

trained for each feature to represent its long-term behavior in the

target class according to the training data. These AR models are

then used, in both the training and the detection phase of the system,

as finite-impulse-response (FIR) filters to generate linear predictions

of the features xj,t based on their values over the preceding frames,

x̂j,t = cj +

r∑

k=1

bj,kxj,t−sk, (1)

where j is the index of the feature in the feature vector, t is the frame

index, cj are intercept terms and bj,k are the AR coefficients. Next,

the original features xt,j are replaced by the predictions x̂t,j.

In training the AR models (using least squares estimation) and

subsequently using them to generate predictions according to Eq. 1,

choosing the integer frame skip parameter as s = 1 leads to con-

ventional autoregressions. If s is chosen to be greater than 1, the

AR model only sees every sth frame in each prediction. The length

of the autoregression history is thereby increased without increasing

the number of parameters to be estimated. In the previous study, au-

toregression order r = 8 and frame skip s = 4 gave the overall best

results in the detection of anger in telephone speech [7]. This choice

of parameters corresponds to every prediction being based on frame

lags (4, 8, . . . , 32) and, with a frame shift interval of 10 ms, the total

duration of signal history utilized becomes 320 ms.

In the present study, we first attempted to apply this approach

to speech classification along the activation and valence dimensions.

However, determination of a suitable combination of order r and

frame skip s proved to be difficult in this more general case, even

though the combination found in the previous study works well for

the special case of detecting anger in speech.

These preliminary results motivated the idea of using multiple

autoregressive filters, with different time scales (different frame skip

parameters in Eq. 1), to accomplish variable focus on different mod-

ulation frequencies in different contexts. For each feature j at each

time instant t, the filter resulting in the most accurate prediction

would be used to generate the final prediction. That is, the predic-

tion of the jth feature in the tth frame according to the nth filter is,

analogously to Eq. 1, given by

x̂j,t,n = cj,n +
r∑

k=1

bj,k,nxj,t−snk, (2)

where bj,k,n are the autoregressive parameters of the nth filter, sn
is the nth filter’s frame skip parameter and cj,n its intercept. The

predicted value for the jth feature in the tth frame is then chosen as

x̂j,t = arg min
x̂j,t,n

(xj,t − x̂j,t,n)
2
, (3)

i.e., as the output of the filter that results in the lowest squared pre-

diction error. This prediction x̂j,t then replaces xj,t.

3.3. Decision Rule

For each emotion class, after learning the filter described by Eqs. 2

and 3 to represent that emotion’s typical temporal characteristics, the

filter is applied to all the training data before training the detector for

that emotion. Each such detector uses one diagonal-covariance, 64-

component Gaussian mixture model (GMM) to represent the target

emotion and another such GMM to represent all other emotions.

In the detection phase, each class detector first again applies the

modulation filter optimized for its target class (emotion)X and com-

putes a detection statistic LX that is the difference of frame-average

log likelihoods of the two GMMs over an utterance [7].

The emotions are subsequently combined into larger classes de-

fined by high/low activation and positive/negative valence. The de-

cision statistic for high activation, for instance, is then the maximum

of detection statistics LX among high-activation emotion detectors

minus the maximum value of LX among low-activation detectors.

3.4. Selection of Training Data Using the Filters

Because classifications are made based on the outputs of filters op-

timized for each class, for congruency it makes sense to consider

selecting “typical” training vectors that are well predicted by those

same filters. That is, after extracting features in the training phase,

estimating the filter parameters to represent a particular class and

using them to filter the training data, we can choose to keep only

those feature vectors which were predicted well, according to some

criterion. Only these vectors will be used in training the GMMs.

In the present work, we investigate an unsupervised criterion

for selecting training vectors according to the filtering result. Let

ej,t = xj,t − x̂j,t be the prediction residual of the jth feature in

the tth frame (x̂j,t given by Eq. 3). We cluster the values
∑

j
e2j,t

within a block of 10 s (1000 frames) using k-means into two clusters

initialized with mint(
∑

j
e2j,t) and maxt(

∑
j
e2j,t) and keep only

the former cluster, i.e., the feature vectors with low prediction error.

4. EXPERIMENTAL EVALUATION

4.1. Speech Material

The test material in this study is the Berlin database of emotional

speech [17]. The database is used both as is and by simulating speak-

ing on a telephone in a noisy environment. There are 535 German

sentences in the database, spoken by five male and five female ac-

tors. The emotion categories are (hot) anger, boredom, disgust, fear,

happiness, sadness and neutral. We consider the emotions anger, fear

and happiness to represent high activation (arousal) and the other cat-

egories to be low activation [8] [9]. This gives 267 and 268 instances

of high and low activation, respectively. Similarly, we consider the

emotions anger, disgust, fear and sadness to represent negative va-

lence and boredom, happiness and neutral to represent positive or

approximately neutral valence [9]. This gives 304 and 231 instances

of negative and positive/neutral valence, respectively.

4.2. Simulation of Noisy Telephone Speech

Additive noise from the NOISEX-92 database was first added to the

signal in order to simulate noise at the location of a mobile station.

Three noise types were used: volvo (recorded inside a moving car),

factory1 (mechanical factory noise with frequent transient/impulsive

sounds) and babble (a large number of people talking simultane-

ously). The noise corruption was done at 16 kHz sampling rate with

a controlled segmental signal-to-noise ratio (SNR), i.e., the average

over 25-ms frames. As in [15], noise-corrupted speech signals sam-

pled at 16 kHz were then high-pass filtered with the mobile station

input (MSIN) filter, which approximates the input characteristics of

a mobile terminal [34], and decimated to the sampling rate of 8 kHz.

The speech level was normalized to 26 dB below overload point. Fi-

nally, the signals were processed with the adaptive multi-rate (AMR)

codec [35], which is commonly used for speech coding in the GSM



cellular system, at a bit rate of 12.2 kbps. Fig. 1 shows an example

of processed speech and results of applying the filtering method.

Fig. 1. Top panel: mel-scale spectrogram, with 40 bins, transformed

back from MFCCs for a neutral telephone utterance (original label

03a01Nc) corrupted by car interior noise (SNR 0 dB). Lower panels:

mel-scale spectrograms for the same utterance after filtering the orig-

inal MFCCs with multi-scale autoregressive predictors for classes

“anger”, “neutral” and “happiness”.

4.3. Evaluation Method

The evaluation is performed as leave-one-speaker-out cross valida-

tion, where one of the ten speakers in turn becomes the test speaker

and the speech material of the other nine speakers is used for train-

ing. Detection statistics are obtained separately for each utterance

for both tasks (activation and valence). They are used to compute

equal error rates (EER), a widely used performance measure in eval-

uating detection and binary classification systems. The EER is the

misclassification rate when the detection threshold is set in such a

way that it becomes equal in both classes. The differences between

the filtering methods and the baseline are statistically analyzed using

a significance test appropriate for detection systems [36]. As all the

detections use the same analysis block division and original speech

material, the “dependent-case” version of this test is employed.

4.4. Results

Tables 1 and 2 show EER scores in various conditions for the base-

line (standard MFCCs with energy and deltas) and two class-specific

temporal filtering approaches applied to the MFCC features: basic

autoregressive (AR) filtering (similar to [7]) and the proposed multi-

scale AR filtering. For analyzing the original, clean speech material,

the system has been trained with original data. For testing in the tele-

phone conditions with far-end noise corruption, the system has been

trained using telephone speech with high-SNR (30 dB) car noise.

We encounter the known phenomenon that valence is more dif-

ficult to detect than activation [37]. The class-specific multi-scale

filtering outperforms class-specific simple AR filtering (which in [7]

outperformed baseline MFCCs with and without RASTA in detect-

ing angry speech) as well as the baseline in both tasks, indicating

that it succeeds in capturing class characteristics that are helpful for

robustness. In particular, the method improves the robustness of acti-

vation detection. When combined with training data selection (Sec-

tion 3.4), however, it notably also achieves statistically significant

improvement in valence detection in the clean speech case.

Table 1. EER scores (%) for the detection of high-activation emo-

tions anger, fear and happiness. The scores that are statistically

significantly better than the baseline in the corresponding noise and

channel conditions are indicated in boldface. The maximum predic-

tion lag (determined by maximum sn) is varied between 400 and 600

ms in order to investigate the effect of low modulation frequencies.

Channel and noise condition

Original Telephone (SNR 0 dB)

clean car factory babble

baseline MFCCs 7.1 12.7 34.0 22.1

AR: r = 50, sn = 1 9.0 12.7 32.5 23.9

r = 10, 1 ≤ sn ≤ 4 7.5 12.3 21.7 17.9

r = 10, 1 ≤ sn ≤ 6 6.7 10.5 24.3 17.9

r = 10, 1 ≤ sn ≤ 5 7.1 10.5 22.1 17.9

+ training data selection 7.1 8.2 20.2 16.5

Table 2. EER scores (%) for the detection of negative-valence emo-

tions anger, disgust, fear and sadness. The scores that are statisti-

cally significantly better than the baseline in the corresponding noise

and channel conditions are indicated in boldface.

Channel and noise condition

Original Telephone (SNR 0 dB)

clean car factory babble

baseline MFCCs 22.2 27.8 45.2 36.4

AR: r = 50, sn = 1 23.5 29.5 41.7 34.8

r = 10, 1 ≤ sn ≤ 5 21.3 27.8 40.0 32.1

+ training data selection 20.0 25.2 39.4 34.2

5. CONCLUSIONS

A simple, generalizable, customizable and domain-independent

modulation filtering method was introduced in this study and applied

to detecting emotions in adverse conditions, i.e., noise-corrupted

telephone-channel speech. The method significantly improved upon

the baseline MFCC features in terms of robustness by filtering

them in a way that emphasizes class-specific long-term temporal

dynamics. Automatic selection of training data for training the

GMM-based detection system led to further improvement.

In light of the results, the filtering appears to both remove un-

characteristic, likely noisy temporal components and may also offer

improvement in clean speech by providing more accurate model-

ing of vocal emotional classes. The results obtained hold promises

for future studies in related applications in the field of computa-

tional paralinguistics and, for example, in automatic detection of the

speaker’s mental or physical state from telephone speech.

Subsequently, the filtering method has also been applied to

noise reduction in speech enhancement. An implementation of the

filter algorithm and speech enhancement examples are available at

http://www.acoustics.hut.fi/research/robustness/.
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