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SUMMARY 

Huge amounts of data are constantly being produced and collected in the context of business 
analytics, industry processes, consumer products, robotics, scientific research, and, e.g., 
telecommunication networks. Making sense of massive amounts of parallel data streams and the 
contextual factors that contribute to the interpretation of the data is often extremely difficult. 
Automatic discovery of hidden patterns and the predictive dependencies between multiple data 
sources would therefore be extremely beneficial. An ability to represent original (e.g., sensory) data in 
terms of statistically significant patterns and their connections is also a necessary component in any 
cognitive computational system. Existing tools for associative or semantic data mining fail to address 
the discovery of important but a priori unknown patterns from sequential or spatially distributed data, 
but concentrate on the links between already known patterns such as words of the written language. 
Similarly, the majority of the pattern recognition applications concentrate on the classification of data 
into a finite number of pattern categories that are also known in advance. This limits the applicability 
of those methods to the domains where expert knowledge in the task is already available. In our 
research, we work towards an integrated cognitive architecture for unsupervised and hierarchical 
associative learning that can learn important patterns from multiple parallel data streams and how 
they are related to each other – we develop a system capable for automatic learning of a topology of 
associations (ALOTA). The goal is to perform intelligent data analysis with minimal human 
intervention and limited computational resources in any data domain with non-trivial temporally 
distributed patterns. 

1. INTRODUCTION 

Technological development has reached a point where countless devices such as phones, tablet-
computers, medical systems, process industry machines or even network hubs and server clusters 
are able to sense their environment using a large variety of built-in sensors. Simultaneously, these 
devices can collect massive amounts of data regarding the internal operation of the system and, 
e.g., user actions on the device. Typical goals of the data collection include monitoring of 
anomalous situations, adaptation of the device behavior to the current internal or external context, 
or to simply achieve better understanding of the data through semi-automatic or manual analysis. 
Also, there is a constantly increasing interest towards autonomous (cognitive) machines that 
would succeed in their dedicated tasks by sensing, decision-making and making appropriate 
actions despite constantly changing or unpredictable external conditions that cannot be accounted 
for in the pre-programming of the system. 
 
A major challenge in all the above applications is that the raw low-level data collected by the 
devices is typically too noisy and too variable to be used in high-level decision-making. It is not the 
instantaneous sensory readings, but how the instantaneous values combine over time or space to 
form larger patterns, that provides understanding of the data. Moreover, these patterns can 
depend on each other in similar manner that words that are connected to each other by the 
grammar and semantics of a language, forming higher-level patterns of patterns through 
compositional hierarchies (Pfleger, 2002). It is these higher-level representations that allow useful 
generalizations and thereby powerful predictions to be made on the basis of the input data 
(Hawkins, 2004; Haikonen, 2003).   
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Because relevant characteristics of the useful patterns are typically not known in advance, an 
intelligent system needs to be able to learn the patterns and their mutual dependencies in an 
unsupervised manner. This is also where the existing commercial data analysis solutions typically 
fail: they focus on modeling sets of individual data samples (e.g., SAS, SPSS etc.) or limit 
themselves to high-level data representations such as written text (Gavagai, Atigeo’s xPatterns, 
Alphasense), being unable to capture structure of temporally distributed complex patterns of any 
generic data streams. When the need for patterning of low-level sensory data becomes explicit, the 
existing approach is to tailor a specialized solution to the given task by utilizing supervised 
pattern recognition techniques such as artificial neural networks or hidden-Markov models. This 
requires that the relevant pattern categories are known in advance in order to do the laborious 
manual preparation of training sets that contain exemplars of these patterns, effectively limiting 
these approaches to well-understood signal domains and excluding exploratory data analysis.  
 
Another lately emerged approach is to use multilayered hierarchical artificial neural networks 
(ANNs) referred to as Deep Learning networks (see Bengio, 2009). Despite their recent success in 
many pattern recognition tasks, the ANN-based deep systems are not yet very well understood: 
they are difficult to optimize, their training to any specific sub-task requiring lots of time, manual 
effort, expertise, and iterative trial by error. Also, the logic behind the learned structures and the 
system decisions based on input data are difficult to analyze in deep networks, essentially making 
them black boxes with desired input/output characteristics. This makes their scalability to 
universal multimodal data analysis difficult as long as the theoretical considerations or practical 
rules of thumb in training of such networks are lacking. This is in contrast to our solution where 
we have explicit access to all processes in the learning system and thereby all decision made by the 
system can be traced back to the original data streams.  

 

 
Figure 1: An example of compositional multimodal structure in speech understanding for utterance “She gives 

a yellow banana”. 
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Finally, there is a central issue with the meaning of patterns. For any piece of data, be it a series 
of stock exchange values or a written word, the data itself carries no meaning. Instead, the 
meaning comes from way that the data is associated to some other entity in the mind of the agent 
making the interpretation (see Figure 1). In manual data analysis, it means that we use our 
subjective experience of the world to reflect on the importance of the patterns in the data. For 
autonomous computational systems, it means that the patterns in the data contain cues regarding 
desired functionality of the system. These cues can be based on correlations (things occur together) 
or causalities (things follow each other with a specific temporal order) between patterns. In 
cognitive systems, we call these links associations. In similar vein, information is data that is able 
to light up these associations when perceived. What is relevant is that given a piece of data in one 
domain (e.g., hearing a spoken word), we receive information about the current state of the other 
domains and also about the possible future states of the domains. Coupled to the understanding of 
how our own actions have consequences on the perceived environment, we are able to proactively 
manipulate our own behavior towards a desired state of being. This forms a so-called action-
perception-loop.  
 
Due to the nature of meaning as connectivity between patterns in different domains, multimodal 
associative learning becomes essential in autonomous understanding of any data. In fact, all 
traditional supervised learning schemes can be considered as a special case of associative learning 
where the learning simply takes place between the actual sensory signals and the manually 
prepared, artificial, label streams. In unsupervised associative learning, the meaning of the data 
emerges directly from the predictive associations between the patterns in the multiple input and 
output streams and there is no need for manual labelling. Value of the discovered dependencies is 
not dependent on human interpretation, but is an inherent outcome of the interplay between 
system’s internal criteria of successful behavior and the environment that the system is subjected 
to through its input and output capabilities. Every action of an intelligent system is based on the 
predictive knowledge that the action leads to something useful or to new knowledge, and this 
knowledge can be incredibly difficult to pre-program for complex environments. Naturally, manual 
human interpretation of the discovered patterns is possible if explicit summaries of the learned 
dependencies are useful outside the autonomous behaviour of the learning system. Figure 2 
illustrates how different sensory and motor modalities contribute to mental concepts such as 
objects, actions, or adjectives in the human mind.  

 
Figure 2: Meaningful concepts. Instead of being platonic ideas, meaningful concepts are multimodal 
associations with numerous components that have varying importance depending on the nature of the concept. 
These connections are learned instead of being inherited.   
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1.1 Learning multimodal concepts as Automatic Learning of a Topology of 
Associations (ALOTA)  
From the perspective of mathematical theory, the general framework of modelling connectivity of 
patterns inside and across modalities can be formulated as a Topology of Associations (TOA). The 
goal of an intelligent learning system is then to derive such a topology, i.e., to perform Automatic 
Learning of a Topology of Associations in the data (ALOTA). 

 
In the basic topological framework, we define the following concepts: an element ai from a 
vocabulary of elements A ⊆ ℕ1 corresponding to input and output states of the system and/or 
patterns derived from them; an associative link r(ai,,aj) → ℕ1 from a set of all associations R and the 
related association strength P(ai,aj) → ℝ;  and finally a topology τR over the set of all associations R. 
Technically, τR is a topology when it is a family of subsets of all associations R so that 1) empty set 
and R are included in τR, 2) any union of elements of τR are included in τR, and 3) any intersection of 
finitely many elements of τR is included in τR. 
 
In ALOTA, the goal of the learning algorithm is to derive a topology τR of associations that 
maximizes the overall predictive capability of the system, i.e., maximizes association strengths 
P(ai,aj) across all i,j ⊆ ℕ1 hierarchically generated by associative links r(ai,,aj) when measured over 
all input and output modalities of the system. In other words, each association between two 
elements r(ai,,aj) generates a new element anew, that can be then used as a component for further 
associations. Naturally, the associative links are not mutually exclusive, but in a fully connected 
R, all elements ai are associated to all other elements aj, j ⊆ ℕ1. As each unique association maps to 
a new element anew in the same element space, there are infinitely many elements and 
associations. In learning of a useful topology, only the associations that have statistical 
significance are learned (P(ai,aj) > δ). Note that the elements ai can originate from one or more data 
streams (modalities), and therefore the associative links are learned inside and across modalities. 

1.2 Towards an integrated computational theory for ALOTA 
In our research, we work towards an integrated computational theory and a practical 
implementation of unsupervised hierarchical learning of association topologies that could 
accomplish the following tasks: 

 
1) Discovery of statistically significant patterns from sequential or multivariate 
data without a priori knowledge of the relevant pattern characteristics.  
 
2) Discovery and quantification of statistical dependencies between patterns in 
multiple parallel data streams. 

 
Also, in case of systems with the ability to act on the perceived environment 
 

3) Automatic prediction of appropriate actions (outputs) based on the input data. 
 

Moreover, we aim to achieve these goals with a computational implementation that   
 

4) Performs in real time using real sensory data. 
 
5) Can learn indefinite amount of data over time.  
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We will next review the basic advantages of ALOTA. The second section shortly reviews some 
neurobiological motivation and inspiration for our computational architecture, discussing Antonio 
Damasio’s theory of how human memory is organized to support multimodal associations (Damasio, 
1989; Meyer & Damasio, 2009). The third section gives an overview to the architectural principles 
in our work, and the fourth section provides demonstrations of computational experiments using 
the technology we have developed so far.  

1.3 Benefits of unsupervised learning of association topologies 
 

- ALOTA can be applied structure discovery in domains where a priori knowledge of the data 
patterns is not available or manual characterization of the patterns is difficult.  

 
- Structure discovery is not limited to raw-data level, but the system performs hierarchical 

data granulation (abstractions) based both on 1) bottom-up statistical analysis and 2) 
predictive structure across multiple data streams, allowing the system to discover direct 
and indirect links between high-level concepts that are responsible for generating the data. 

 
- ALOTA is a necessary component in cognitive computational systems that use sensing and 

data collection to infer appropriate actions in an autonomous manner. Structurally 
meaningful representation of the sensory domains forms the basis for action selection. 

 
- Despite being unsupervised in nature, all processing in the system can be supplemented 

with human labelling of the data as an additional input stream, allowing the discovery of 
dependencies between data structures and a priori human knowledge.  

2. NEUROBIOLOGICAL MOTIVATION: CONVERGENCE-
DIVERGENCE ZONE (CDZ) ARCHITECTURE 

The computational architecture for unsupervised hierarchical pattern discovery is inspired by the 
convergence-divergence zone (CDZ) architecture by Antonio Damasio (Damasio, 1989; Meyer & 
Damasio, 2009). The CDZ architecture provides a neurophysiologically valid description of how 
mammalian brain organizes sensory and motor patterns in its memory, how this organization 
enables associative learning between modalities, and how sensory and motor imagery are 
implemented in the human brain. The basic structure of the CDZ architecture is outlined in 
Figure 3. 
 
The CDZ architecture is motivated by the finding that human perception is essentially multimodal 
and perceptual processing and imagery are characterized by time-locked joint neural activity 
across early sensory and motor cortices. For example, visual perception of lip movements drives 
our speech perception whereas mental rotation of visual objects is dependent on intact motor 
cortex. In similar manner, our tactual ability to interpret orientation of grated surfaces is 
dependent on the neural activity at the visual cortex and conflicting visual information or 
transcranial magnetic stimulation of the visual cortex interferes with the ability to feel different 
orientations. Multimodality not only increases the signal-to-noise ratio of perception due to the 
complementary information in different modalities, but also directly enables the construction of 
integrated representations of the external world from the series of separated percepts in different 
sensory organs.  
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Figure 3: The CDZ architecture (adapted from Meyer & Damasio, 2009). All input and output modalities are 
reciprocally connected to each other through a hierarchical memory system. Representations at each 
intermediate layer are connected to integrative higher-level units through converging connections. Similarly, all 
units in the intermediate layers can reconstruct representations at the lower layer through the diverging 
connections. 
 
The basic idea in CDZ is that each modality consists of feature detectors that are selective towards 
specific aspects of the incoming sensory stream. Signals such as parts of visual objects or 
individual acoustic features of spoken words embedded in the sensory stream activate a number of 
feature detectors (Figure 3). Each feature detector projects its activity to an integrative unit called 
convergence-divergence zone (CDZ) where the concurrent combinatorial activations of the low-
level detectors are analyzed and combined to form higher-level patterns. For all but the most high-
level association areas, each CDZ projects to a higher-level CDZ that integrates information across 
multiple CDZs. This allows a hierarchy of increasingly abstract representations, forming wholes 
from parts by learning what types of entities co-occur to build up larger entities. At the highest 
levels of the processing, the CDZs start to receive converging information from CDZs of other 
sensory and motor domains, leading to the emergence of multimodal concepts that link multiple 
aspects of the same entity into a unified representation. 
 
The connections between CDZs are reciprocal so that one integrative unit in a CDZ can activate all 
lower-level feature detectors associated with the unit in a top-down manner, allowing 
reconstruction of the original sensory or motor patterns. Due to these reciprocal associative 
connections, partial feature representation in one modality can first lead to object completion in 
the same modality (e.g., visual object completion from partially occluded image), but also activate 
the object related representations in other domains (e.g., what are the typical sounds and haptic 
properties of the object).  
 
In the CDZ architecture, the original sensory data as such is not transferred from the peripheral 
sensory systems to any kind of higher level memory units, but only the combinatorial 
arrangements between sensory features and links between higher-level links are learned and 
updated through experience. The memory does not reside in one specific point in the system, but 
the memory functions are served all over the system by the associative links between lower-level 
inputs. When memory recall is taking place, the original sensory activation is approximated by 
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activating the top-down connections related to the concept in question, activating the CDZs and 
ultimately the proper feature detectors in the descending path. In other words, the CDZs record 
information of how to reconstruct multimodal sensory experiences from partial external or internal 
cues. 
 
In ALOTA, the basic principles of memory organization follow the CDZ architecture. The essential 
idea is to process sensory data of each modality in an increasing hierarchy of abstraction, starting 
from low-level raw data and proceeding to features, typical feature combinations, and then typical 
temporal or spatial patterns of local features. These increasingly invariant representations of the 
modality specific patterns are then analyzed in the context of patterns in other modalities in order 
to learn multimodal associations. Also, the episodic memories can be stored as sequences of 
associations at the highest level of invariance, allowing the modeling of temporally sequenced 
combinatorial arrangement of events, objects, and actions perceived through the sensory and 
motor systems of the computational system. Our architecture also follows the generality principle 
of CDZ, namely that for everything else but the low-level sensors and actuators of the system, the 
processing principles are universal across modalities and signal representations are mediated 
using a universal coding scheme. 

3. IMPLEMENTING A HIERARCHICAL ASSOCIATIVE MEMORY 

 
Figure 4: A schematic view of hierarchical associative learning with three input channels (left) and an example 
of representational hierarchy that could be learned for vision, auditory perception and motor actions (right). 
All modalities are connected to each other at the same level of hierarchy and across different layers of 
hierarchy. The horizontal connections allow associative learning between visual percepts of an entire object 
(e.g., a lion) and the acoustic patterns that go with the object (a roar and the word “lion”), whereas the vertical 
connections across modalities (blue thin lines) allow learning based on cross-modal supervision that give rise to 
more abstract and general, higher-level, patterns. 

3.1 Basic specifications  
A successful architecture for hierarchical associative learning must be able to 1) sense its sensory 
environment, and optionally, to act upon the environment, 2) to learn patterns from data and 
later recognize these patterns even from partial cues, 3) to associate patterns across time and 
across modalities. In addition, in all active applications such as intelligent devices the system 
should perform on-line and scale up for indefinite amount of data. In practice, the system cannot 
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store every input seen in the past, but the size of the system memory must be fixed or grow in a 
sub-linear space with respect to time. Also, since sensory and motor representations required in 
different tasks vary in granularity and in detail, e.g., sets of patterns forming even larger patterns, 
it is most efficient to process patterns in a compositional hierarchy (see Figure 4) similarly to the 
CDZ architecture. As higher-level patterns are represented as combinations of lower level 
patterns, the system can flexibly encode a huge number of patterns using a finite number of 
computational units (see also Bengio, 2009). 
 
Sensing and acting operations are mainly defined by the domain in which the system is used and 
by the available input and output modalities in that domain. For example, a full-scale cognitive 
robot could sense its environment through cameras, microphones, tactile sensors and 
accelerometers, and act upon the environment using its actuators. In analogy, a mobile phone can 
sense through microphones, accelerometers, GPS sensors and user actions on the operating 
system, whereas the output modalities can correspond to different software activities and displays 
(e.g., user interface behavior), wireless communications, or even speech produced by a built-in 
speech synthesizer. The detailed implementations of the input and output modalities are not of 
interest to the actual learning system, but they simply provide an interface between the external 
world and the learning system. Inside the system, all modalities are represented using a universal 
code. This coding is achieved by quantification of input and output signals into a finite number of 
discrete states on a nominal scale. Typically, a sensory specific intermediate feature 
representation can used between the raw signal and a quantized version of the signal in order to 
achieve compression of redundancies and to discard non-relevant noise (e.g., FFT for audio or 
Gabor patches for images).  
 
Learning and recognition of patterns is the essence of the architecture. Patterning can be 
considered as an abstraction process where noisy and variable sensory time-series (realizations of 
patterns) are represented by occurrences of categorically perceived units, or patterns. Another 
viewpoint is that the sensory data is interpreted in terms of some contextual variable that links 
different physical patterns to each other. What is essential is that the system must be able to 
interpret the incoming data in a sufficiently invariant form that allows the generalization of 
learned dependencies between patterns to the whole group of functionally equivalent patterns. 
This is in contrast to the learning of dependencies between individual pattern realizations, which 
would be useless since the patterns will rarely if ever recur in the exactly same form. Recognition 
simply means that the system should be able to interpret new data in terms of the previously 
learned patterns whenever this type of generalization is beneficial and thereby to use the 
previously established associations to understand the current situation.   
 
Associative learning of patterns refers to the discovery of mutual dependencies between 
patterns that can be used to construct an internal representation of how the external context is 
organized. To be precise, the pattern discovery process is also a form of associative learning 
between signal states in single- or multi-stream conditions. However, here we specifically refer to 
the learning of predictive dependencies between high-level patterns. These dependencies can either 
reside inside a single data stream (such as the grammar of a language or typical arrangements of 
physical objects), but more often they span across multiple streams, forming multimodal concepts 
(such as words acts as signs for some external referents). Ultimately, the whole idea of cognitive 
systems crystallizes to the ability to infer useful actions (motor patterns) from the sensed input 
(sensory patterns). In all but in the most trivial domains, the predictions of the appropriate actions 
in given circumstances must be based on the previously learned associations and the ability to 
choose the actions with highest expected rewards.  
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3.2 On the theory of patterns  
The goal of learning meaningful patterns from sensory data without a priori knowledge of the 
actual patterns already poses two difficult questions: 1) what is a pattern and 2) where does the 
meaning emerge from? According to our view, these questions can be approached from two 
different perspectives (see also Figure 5).  
 
According to the first (traditional) view, and assuming a finite state space representation for a 
sensory signal, a pattern can be considered as a probabilistic construct of elementary events (or 
observations) that are dependent on each other in time or space. The dependency does not have to 
be deterministic, but above chance level probability of observing two or more elementary events in 
a specific configuration can already be considered as a pattern. For example, an acoustic signal 
corresponding to a spoken word can be interpreted as a specific distribution of signal energy in 
time and frequency, analyzed up to a desired resolution. However, patterns discovered from a 
single data stream alone do not carry any meaning. According to the first view, the meaning of the 
pattern only emerges when the observed pattern is associated (grounded) to a jointly occurring 
contextual variable perceived through another modality or a variable representing an internal 
state of the system (e.g., active concepts in memory or current emotional state).  For a spoken word 
such as “a ball”, the contextual variable could correspond to the visual or haptic percept of a ball. 
In other words, the pattern as such can be defined without the grounding component, but the 
meaning emerges only through the grounding process.  
 
The inherent problem with the first viewpoint is that even though the quantification of statistical 
dependencies in time and frequency is possible, it is not possible to derive an “optimal” and finite 
set of distinct patterns (or categories) for a data set without imposing some sort of a priori model 
for the data (this is true for maximum-likelihood, minimum description length and minimum 
entropy approaches). The goodness of a representation is always measured with respect to the task 
or context against which the patterns are reflected. 

 

 
Figure 5: Bottom-up, top-down and cross-modal constraints in pattern discovery and recognition. Bottom-up 
learning is purely based on the statistical structure of the input signal, whereas top-down predictions may 
impose biases to the bottom-up processing through some prior knowledge or dynamic, task-related, factors. 
Importantly, information exchange between input and output modalities allows the system to learn 
dependencies across modalities, all modalities effectively supervising each other’s learning processes. 



 12 

 
 
 
The second viewpoint argues that the patterns and their meanings are inherently intertwined so 
that there is no other without the other. According to this view, any processing beyond the 
learning of low-level sensory receptive fields always takes place in the context of multiple 
temporally proximate perceptions and mental states (memory, emotions) of the perceiver, and that 
this context affects the way how incoming sensory information from each modality is interpreted. 
This automatically attaches a set of multimodal associations to each percept and the elementary 
sensory events become bound together not only by their mutual co-occurrences but also by their 
shared context. In this case, the learning of pattern categories is no longer a question of bottom-up 
statistical clustering, but the categories are actually a function of the context: the sensory inputs 
belonging to the same pattern category are those that have equivalent predictions of the state of 
the world in other modalities, or equivalently, the current context defines the boundaries of a 
pattern category. In a sense, the idea of non-chance level dependency of elementary events in the 
first viewpoint is expanded to allow these elementary events or states to occur across multiple 
input- and output modalities of the system.  
 
The obvious challenge with the latter viewpoint is that the estimation of all cross-modal 
dependencies through, e.g., normal joint probabilities is not possible due to the high 
dimensionality of the problem. Also, the direct associations between low-level sensory events (e.g., 
spectral features and visual receptive fields) may not be meaningful, but the useful dependency 
structure only emerges when at least one of the signal representations is sufficiently invariant to 
act as “labeling” for the remaining modalities. Therefore both unsupervised and weakly supervised 
learning are needed in a successful architecture: the unsupervised learning process provides initial 
pattern representations based purely on the statistical dependencies in the input data. These 
initial patterns can then act as labels that supervise learning in other modalities, allowing 
learning and representation of patterns that are based on their multimodal links instead of 
bottom-up statistics.  

 3.3 Technological solutions for ALOTA 
 

 
Figure 6: Types of learning processes required in hierarchical associative learning. The relationships between 
different modalities and layers of hierarchy are emphasized with red color for different learning processes. 
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As motivated in the previous sections, the learning processes in ALOTA require both 
unsupervised and weakly supervised learning in order to perform pattern discovery and 
recognition from complex temporally distributed data, and to find compositional hierarchies of 
patterns (Figure 6). In addition, methods for robust cross-modal associative learning with 
different data qualities are needed, and all the different methods should integrate with each other. 
Finally, the ability to process and learn infinite amounts of training data within a finite memory is 
a desired property for the system.  

 
In our studies, we have already developed basic understanding and methodology to address all 
these learning problems. In addition to using standard pre-processing; feature extraction, and 
vector quantization techniques, we have developed Self-Learning Vector Quantization (SLVQ; 
Räsänen et al., 2009) that allows incremental quantization of any multivariate time-series into a 
finite state space without a priori knowledge of the relevant number of state space partitions. In 
addition, the Concept Matrix (CM; Räsänen & Laine, 2012) algorithm and its purely 
unsupervised variant Self-Learning Concept Matrix (SLCM; Räsänen, 2011) are especially 
designed for modelling statistical structure in sequential data. Whereas CM accomplishes the 
weakly supervised learning problem and discriminative pattern recognition effectively with a 
minimal number of assumptions regarding the signal structure, the SLCM allows the discovery of 
recurring patterns from data without any supervising data streams, making it effective for 
bootstrapping of multimodal learning in cases where all available modalities correspond to low-
level highly variable data streams. Both algorithms are computationally light and can be used in 
real-time implementations for multiple parallel data streams even in environments with very 
limited computational power. In addition, the Hybrid Model Learner (HML) –algorithm (Laine, 
2011) allows the inference of hierarchical compositional structure (grammar) of sequential data 
using information theoretic criteria, allowing the learning of generative models for the data.  

 
Since originally learned pattern category boundaries should not be hard-coded, but can depend 
dynamically on the current context and task of the system, we utilize the ideas from Latent 
Semantic Analysis (Landauer & Dumais, 1997) and Random Indexing (Kanerva et al., 2000; 
Sahlgren, 2005) to measure pattern synonymy in different contexts in different modalities in time-
variant manner.    
 
In order to solve scalability problems and to obtain generalizing high-level associative links that 
can be activated by partial cues, we can apply Sparse Distributed Coding as a universal code for 
the system, enabling learning in a fixed memory space (see Kanerva, 2009 for further details). This 
representation also directly enables the use of Sparse Distributed Memory (SDM; Kanerva, 
1993) architecture for episodic learning at the topic of the abstraction hierarchy. Whereas the 
earlier problems with SDM-like memory systems have been that they are poor in accounting for 
temporally evolving structure (see Jockel, 2009), our tools for pattern discovery and recognition 
allow representation of time-varying data as more invariant abstract patterns for which SDM-like 
memory structures are designed.  
 
Figure 7 shows a putative overview of a multimodal pattern discovery system along the lines of the 
CDZ framework. In this system, each modality is first processed separately to discover recurring 
pattern and code them in an invariant form. These patterns are then represented with sparse 
coding, and time-dependent random indexing is used to discover associative connections and 
synonymous patterns across different modalities. Finally, SDM is used as a heteroassociative 
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memory for multimodal episodes, allowing storage and retrieval of holistic representations of 
previously experienced situations.  

   

 
Figure 7: A putative computational implementation of ALOTA following the structural organization of the 
neural CDZ architecture. Top: a schematic view of one sensory channel with feature detectors and bottom-up 
organization of CDZs. Features of the sensory stream are first quantized into a finite state space, from which 
recurring pattern are discovered. These patterns are then coded with random sparse vectors, allowing a 
flexible compositional representation of the active patterns in the modality as a single point in the 
hyperdimensional space. Bottom: a schematic view of associative learning between modalities mediated by 
sparse coding. Combinations of patterns from different modalities can be effectively represented in the sparse 
hyperdimensional space. Synonymy of patterns and pattern combinations can be estimated dynamically using 
the principles of random indexing. Sparse distributed memory allows episodic coding of sequential 
representations that integrate information from all modalities.  
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4. TECHNOLOGY DEMONSTRATIONS 

3.1 Unsupervised learning 

3.1.1 Unsupervised learning of words from continuous speech 
Word segmentation from continuous speech is a difficult task that is faced by human infants when 
they start to learn their native language. The difficulty is due to the fact that spoken words are 
rarely separated by pauses or any other universal cues that would signify word boundaries equally 
in all languages.  
 
In our experiments (as reported in Räsänen, 2011), we applied our SLCM pattern discovery 
algorithm to word discovery from continuous speech. Instead of using any a priori linguistic 
knowledge of phones, syllables or words, our method analyzes the statistical dependencies between 
atomic acoustic events in a bottom-up manner. As a result, the method builds a collection of 
pattern recognizers that become selective to recurring structures in the data. In the case of 
continuous speech, the recognizers became selective towards specific spoken words or 
combinations of often co-occurring short words (Figure 8). As a result, we were the first ones to 
show that it is possible to find recurring word-like units from real speech in an unsupervised 
manner without storing the entire history of perceived signals to the system memory, but by 
simply storing statistical models of the encountered patterns in an incremental manner.  

 
 

 
Figure 8: A recognition example for the utterance “Do you see the square toy?”. Spectrogram of the 
utterance is shown at top and activation of all models are shown in the middle. At the bottom, only the 
winning model for each moment in time is chosen, leading to a segmentation of the input. Manually annotated 
segment boundaries (the references) are indicated by dashed lines. 
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3.2 Weakly-supervised and supervised learning 

3.2.1 Audiovisual keyword recognition 
Many learning tasks can be perceived as weakly supervised pattern discovery problems in the 
absence of explicit teaching. Weak supervision refers here to learning conditions where the 
training samples are not explicitly segmented and aligned to pinpoint their belongingness to a 
specific target category. Instead, a number of possible contextual variables (target classes) are 
presented in parallel with the input, but it is not known whether all these classes are present in 
the data and, if they are, where they are. The task of the learning algorithm is then to discover 
those patterns from the data that are relevant for each contextual variable. 
 
In order to solve the task, our CM algorithm combines information from two input streams and 
finds co-occurrence relations between them. It learns recurring structures in similar contexts and 
recognizes them from new input. Contrary to the hidden Markov models (HMMs) that are the 
state-of-the-art in speech recognition and widely used in many other pattern recognition tasks, our 
approach does not make the Markov property assumption regarding independence of the 
subsequent states. This makes it capable of finding structures between non-adjacent events and 
robust against temporally local distortions. 
 
We have evaluated the CM algorithm in the discovery and recognition of keywords from 
continuous speech when the spoken utterances are paired with visual (unaligned and unordered) 
labels simulating visual input attended by the learner. This simulates the word learning process of 
a human infant. The results show that the method is successful in acquiring high quality 
recognizers for all of the 50 keywords in the vocabulary without being explicitly taught any of the 
words (Figure 9). Also, we have evaluated the same system in spoken digit learning and 
recognition, leading to 96.11 % recognition rate with one-pass incremental training, and showing 
notable robustness against increasing levels of additive noise (see Räsänen & Laine, 2012 for more 
details).  An example of digit recognition process is shown in Figure 10.  
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Figure 9: Recognition rates for 50–keyword vocabulary as a function of the amount of training data used to 
train the recognizers. Left: learning with data from 4 different talkers, right: data from only one talker.  
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Figure 10: Left: cumulative activation curves of 11 digit recognizers in recognition of the utterance “three-
four-one-two-six”. Right: activation of the recognizers after temporal smoothing and inhibition.  
 

3.2.2 Combination of input streams in supervised context recognition 
The CM algorithm can be also used for easy decision-stage combination of multiple data streams 
for enhanced pattern classification (Räsänen et al., 2011). The probabilistic formulation behind 
CM guarantees that the inclusion of additional input streams to the classification stage does not 
bias the process towards erroneous classifications. Instead, if the additional data streams contain 
complementary information, the classification performance is increased.  
 
Figure 11 shows an example of input stream combination. In this case, audio and accelerometer 
data measured from a mobile phone were used as input to the CM classifier, and the task was to 
find the most likely physical activity and environment of the mobile phone user. As can be 
observed, our CM classifier outperforms the other compared classifiers, namely discrete Hidden-
Markov models (dHMM), minimum distance classifier (MDC), and k-nearest neighbors (kNN), in 
the combination. Also, the optimal combination of the input streams is achieved by simply taking 
the average of audio and acceleration classifier outputs. Finally, the CM classifier is 
computationally very light, and both training and classification can be easily done real-time in a 
standard smart phone.  
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Figure 11: Mean recognition accuracies of physical contexts (left) and auditory environments (right) of 
mobile phone users using different classifiers. Results are shown as a function of weighting between 
acceleration and audio data (α = 0 corresponds to pure acceleration whereas α = 1 stands for pure audio). 
The CM algorithm performs outperforms other classifiers in combined classification, always providing optimal 
performance with α = 0.5 (unweighted) combination of the input streams.  



 18 

3.3 Cross-modal associative learning  
Normal bottom-up statistical pattern discovery can be used to discover recurring structures from a 
single data stream, allowing the representation of the data in terms of higher-level patterns that 
have a temporal or spatial extent (Figure 12). However, the patterns discovered in this manner 
have no intrinsic meaning, but the meaning emerges from the predictive associations between the 
patterns and some other states, or patterns, of the world. Therefore, cross-modal associative 
learning is required to learn these dependencies, enabling predictive modeling of multimodal data. 
In the general case, one does not know in advance which levels of representation (level 1 low-level 
features, level 2 patterns, level 3 or patterns of patterns) are most important in learning of the 
predictive dependencies, especially when different modalities can contain qualitatively different 
signals. Therefore it is beneficial to study the dependencies across modalities also across different 
levels of representational hierarchy (Figure 13).  

 
Figure 12: Unsupervised learning of recurring patterns in one data stream. The original frame-by-frame 

representation of the signal (level 1) can be replaced with a series of higher-level patterns (level 2)  
 

 
Figure 13: Unsupervised learning of level 2 patterns combined with cross-modal associative learning across 
multiple data streams and across levels of hierarchy. 

3.3.1 Prediction of EEG-activity across electrodes 
We have applied unsupervised pattern discovery and cross-modal associative prediction to the 
analysis of pre-term infant EEG signals. The goal was to estimate the activity in an EEG electrode 
given the signal in another electrode. In this process, the SLCM algorithm was first used discover 
patterns from sequences of EEG features (cf. Figure 12), and then the temporal dependencies 
between the patterns in different electrodes were modeled using our associative learning scheme. 
Given only 4.5 minutes of training data, the system was already able to predict EEG patterns in 
another electrode with 38% accuracy (4% chance level), whereas prediction at the feature level was 
only slightly above chance. This further supports the idea that hierarchical abstraction from 
sensory details is inevitable in order to learn stable connections between multiple input streams. 
Figure 14 shows an example of prediction output when activity of F4 electrode (in right 
hemisphere) is being predicted from F3 electrode (in left hemisphere).  
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Figure 14: Prediction of EEG activity patterns in right hemisphere given the signal activity in left hemisphere. 

3.3.2 Prediction of articulatory gestures from acoustic data 
Another example of cross-modal associative learning is the interpretation of spoken language in 
terms of the articulatory gestures that were used to produce the perceived utterance (a so called 
speech inversion problem). In our experiments, we have created a learning agent that is equipped 
with auditory perceptual capabilities and the ability to produce speech with the help of an 
articulatory speech synthesizer. In the synthesizer, speech signals are created by modeling the 
locations and movements of different articulators (jaws, lips, tongue, etc.) in the vocal tract 
similarly to the speech production system in humans. Each speech sound, or phone, is defined in 
terms of the target positions of each articulator during the production of the sound. The 
parameters corresponding to the movement between these targets are then computed dynamically 
according to minimum-jerk principle. Finally, in order to allow learning, the system is equipped 
with the ability to discover recurring patterns from the auditory stream with the SLCM algorithm, 
and the ability to associate different representations (articulatory targets, articulatory 
parameters, audio features, and audio patterns) to each other using a so-called sparse distributed 
associative network. Figure 15 shows a schematic overview of the system.  
 

 
Figure 15: Learning scheme (left) and prediction scheme (right). During learning, randomly generated 
articulatory target sequences and corresponding articulatory parameters are associated to audio features and 
patterns discovered automatically from the sequences of audio features. 
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During the learning stage, the system spoke randomly generated phone sequences and the 
articulatory and acoustic consequences of these productions were analyzed by the associative 
model. During prediction stage, the system was only given an acoustic word form and its task was 
to find the most likely sequence of articulatory gestures from the acoustic features and the acoustic 
patterns extracted from these features. As a result, the system was able to recognize articulatory 
targets (phone categories) with an accuracy of 88.24 % correct recognitions. Figure 16 shows an 
example of articulatory target recognition from purely acoustic signal.  
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Figure 16: Example of articulatory target prediction from synthesized speech signal “yuyyeeieoaiuuaa”. 
Correct targets can be seen as clear peaks in the activation curves.  
 
One of the advantages in multimodal associative learning is also that it is possible to learn 
associative links between patterns that are never observed at the same time. This is called indirect 
prediction. For example, visual information may provide partial cues regarding the articulatory 
gestures of another speaker, but the visual information does not reveal the hidden phone targets of 
the speaker, just the superficial and reduced gestures. However, the listener may be able to map 
speech signals into articulatory parameters, and these articulatory parameters then into the 
hidden articulatory target based on listener’s own articulatory experience. In terms of a 
computational implementation, the system must first estimate the likelihood of different 
articulatory parameters as a function of time, given a speech signal, and then estimate the 
likelihood of articulatory targets given the estimated articulatory parameters.   
 
In order to test indirect prediction, a test setup was created where the learning agent was able to 
perceive articulatory targets, articulatory parameters (gestures), and the audio signals created by 
the articulations. However, the learner never received information about both articulatory targets 
and audio at the same time (Figure 17), making learning of direct associations between audio to 
articulatory targets impossible (Figure 18, left panel). Instead, the articulatory targets or audio 
signals were always paired with an intermediate representation of the articulatory parameters 
(Figure 17), enabling indirect mapping of audio to articulatory targets via this representation. 
After a period of learning, the system was successful in estimating first articulatory parameters 
from audio, and then estimating the articulatory targets from the articulatory parameters (Figure 
18; middle and right panels, respectively).  
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Figure 17: A schematic view of the interleaving of randomized sections of data in the experiment. 
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Figure 18: Articulatory targets estimated from audio (left), articulatory gestures estimated from audio 
(middle) and articulatory targets estimated from the obtained gesture estimate (right). Direct mapping from 
audio to targets is not possible since they never co-occur in the data. However, indirect prediction through 
gestures provides articulatory targets even when the gestures themselves are not perceived.   
 
Finally, an autonomous system for cross-modal associative learning inherently utilizes predictive 
cues from all modalities that carry such information. This was demonstrated by running a speech 
inversion experiment in which the learner not only received acoustic speech signals, but also saw 
the lip and jaw movements of the speaker. It is well known that seeing the articulatory gestures of 
a speaker has a notable impact on speech understandability, increasing the signal-to-noise ratio of 
speech in noisy conditions. This is also what happened in our experiments (Figure 19), where the 
combination of audio and visual information led to increased phone recognition accuracy in 
adverse noise conditions. Note that the complementarity of auditory and visual data was not hard-
coded to the system, nor was there any manually optimized weighting of the two modalities. The 
system simply combined the predictive information from the both streams according to the 
strengths of the predictive associations, automatically leading to a balanced representation of the 
hypothesized phone target.    
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Figure 19: Phone recognition accuracy from CVCVCV structures with audio, visual, and audiovisual 
information. Results from varying levels of additive factory noise are shown.  

3.4 Experiments with integrated architectures 

3.4.1 Unsupervised learning of high-level contexts from low-level sensory data 
One of the aims in context-aware computing is to infer higher-level abstract representations of the 
surrounding context from the sensory data that would provide useful information regarding the 
current use situation of the device (e.g., location such as shop or home or activity such as walking). 
Majority of the previous work in user context recognition has used supervised methods to train 
separate classifiers for different physical activities and auditory contexts of interest. The general 
finding of the studies is that the context recognition performance achieves relatively good levels 
when the training data has close correspondence to the actual testing conditions. When controlled 
in-lab data sets are evaluated in unconstrained situations, performance drops significantly. This 
calls for unsupervised methods that do not come with a priori assumptions regarding the relevant 
contexts but adapt themselves to the context patterns experienced by the system.  
 
In our work (Räsänen, 2012), we have described a novel approach for unsupervised learning of 
high-level user contexts from any generic sensory data (Figure 20, left). The system combines 
unsupervised discovery of short-term sensory patterns to unsupervised acquisition of high-level 
context models in a hierarchical framework that is computationally feasible for platforms with low 
computational resources. The basic idea is to first discover statistically significant recurring 
structures in sensory streams and then to analyze the presence of these structures at a larger 
time-scale in order to find internally coherent segments of sensory activity. These segments are 
then clustered into context categories and on-line recognizers are trained for the categories using 
the discovered segments as the training data. We have shown that the system is able to 1) 
segment mobile sensory readings into segments corresponding to different physical and 
environmental contexts (Figure 20, right), and 2) to train selective recognizers for these contexts 
for on-line detection of the contexts directly from low-level sensory data (Table 1).  
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Figure 20: Left: a schematic view of the unsupervised context learning system. Long-term statistical analysis 
of pattern motifs and VQ indices is used to discover high-level context classes, for which on-line classifiers can 
be then trained. Right: unsupervised context segmentation based on audio data. Blue line denotes the current 
context and red dashed lines show detected activity segment boundaries.  

 
 
Table 1: Contents of discovered context segments (left) and selectivity of learned on-line classifiers (right). 
Only 1-2 best matching classes are shown per token. 

SEGMENTS CLASSIFIER SELECTIVITY 
S % ID M % ID % ID 
1 95.8% office 1 95.6% street 4.4% shop 
2 93.2% street 2 73.6% shop 23.4% street 
3 99.7% street 3 88.4% street 8.5% library 
4 100.0% bus 4 96.3% street 3.7% shop 
5 96.0% street 5 41.1% shop 40.9% street 
6 70.5% shop 6 100% library     
7 95.2% restaur. 7 93.2% street 6.8% office 
8 100.0% restaur. 8 97.0% office 3.0% street 
9 100.0% restaur. 9 50.8% park 49.2% street 

10 96.8% restaur. 10 89.7% restaur. 10.3% street 
11 100.0% shop 11 90.6% park 9.4% street 
12 91.7% street 12 100% restaur.     
13 100.0% library 13 100% shop     
14 49.5% shop 14 100% office     
15 100.0% shop 15 82.6% bus 12.9% street 
16 75.1% street 16 95.0% shop 5.0% restaur. 
17 94.0% street 17 89.5% office 10.5% street 
18 100.0% office 18 95.6% street 4.5% shop 
19 98.8% street 19 100% restaur.     
20 84.4% park      
21 100.0% park      
22 86.5% street      
23 100.0% office      
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4. POSSIBLE APPLICATION AREAS OF ALOTA 

In general, we consider ALOTA as a step towards the concept of machine understanding: the 
ability of artificial computational systems to derive meaning from raw data. Machine 
understanding acts as a fundamental enabler for a new generation of artificial intelligence 
solutions, and therefore there are numerous application areas that can greatly benefit from it. 
Here, we simply give a number of examples to illuminate the variety of these opportunities. With 
the given state of the technology, some of the proposed application areas are closer to the practice 
than some others. However, we believe that all of them are achievable in near future with 
sufficient research effort and resourcing. 

4.1 Adaptive UI  
Understanding input data also means context awareness as long as the input data is somehow 
related to the current context of the computational device. In human-computer interaction (HCI), 
one long-term goal is to build computational devices that can adapt their behaviour to the current 
use context of the device. Since different contexts can have different use patterns or different 
desired input/output characteristics of the system, adapting the user interface to these conditions 
would allow easier and more fluid user experience with the device.  

 
One of the central challenges in normal context recognition is that the different contexts of interest 
are difficult to anticipate for. The computational device, especially if mobile, may be used in an 
endless variety of sensory environments with an endless variety of use patterns, making supervised 
pre-training of context classifiers impractical for all but the most limited definitions of a context. 
With ALOTA, the system is able to derive useful abstractions of context from low-level sensory data 
without a priori assumptions regarding relevant context classes. In addition, the very same 
mechanism can be used to discover the different use patterns of the device and how the discovered 
high-level sensory contexts are related to these use patterns, allowing prediction of user needs 
based on sensory input and current state of the device. After that, it is simply up to the software 
and OS developers to decide how they like to utilize this predictive information in their 
programming.  

4.2 Autonomous industry process control and medical diagnostics 
The capability to learn the typical sensory patterns and their relationships across multiple sensors 
is useful in both process industry and in medical care. A system with ALOTA –like capabilities 
enables autonomous monitoring and control of complicated processes where a large number of 
parallel information sources are related to proper actions in different situations. The proper 
control behaviour in these situations can be learned by ALOTA if internal criteria for successful 
process behaviour are provided to the system. The autonomous learning can be complemented 
with learning from the actions of an expert in the given task, allowing automatic codification of 
implicit expert knowledge in many industrial and medical environments.  

4.3 New generation speech recognition 
One of the early inspirations for self-learning data analysis architectures comes from the field of 
speech recognition. The existing state-of-the-art methods, namely Hidden-Markov Model (HMM) 
based speech recognizers, clearly fall behind human speech perception performance outside highly 
controlled conditions. This is due to the fact that the existing speech recognizers simply do not 
understand speech or the context in which the speech takes place, but simply consist of statistical 
mapping of speech acoustics into text. These recognizers can only process input (e.g., acoustic 
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characteristics of speech, vocabulary, tempo, grammar) that has been explicitly trained to the 
system in advance. This in contrast to human-like performance where communication takes place 
in a context and new language knowledge is accumulated on a daily basis. If a system could learn 
language similarly to a human infant by understanding how acoustic patterns make up words, and 
how these words connect to the objects, events, and actors in the surrounding environment, the 
system would naturally evolve to understand speech. If the system is also equipped with an ability 
to produce speech articulations, the system would be also able to learn how its own speech 
production can have an effect on other actors in the environment. This type of learning process is 
specifically what ALOTA is designed for: making sense of the sensory and motor environment in 
the absence of explicit teaching.  

4.4 Robotics and AI 
Cognitive machines, advanced robotics, artificial intelligence – all these concepts are related to the 
idea of an artificial system with the ability to sense its environment, make decisions regarding 
proper actions in the current situation, and to put these decisions into action. As motivated in the 
introduction, intelligent and generalized decision-making requires effective organization of the 
sensory inputs and the motor outputs. The system must be able to represent its previously learned 
experience at a sufficiently general level that it is applicable to unseen situations, but with 
sufficient detail so that the situations with different affordances and desired actions are properly 
recognized. Motor planning in complex environments also requires high-level abstract 
representation of the motor actions since there are infinite many combinations of possible percepts 
and motor commands to be learned from a finite experience. This all calls for ALOTA like 
organization of multimodal data streams, where the data is organized according to its intra- and 
cross-modal statistical connections, allowing prediction of proper actions from partially observed 
sensory state of the world. 

4.5 Organizing the Big Data 
The final application area that has been lately given increasing amounts of visibility is the so-
called Big Data problem (see The Economist, 2010). Information technology society is producing 
and collecting massive amounts of data from all aspects of modern life, including, but not limited 
to, consumer behaviour, economics, logistics, internet and telecommunication, traffic, intelligent 
cities, weather, etc. A major problem is that there is simply too much data to be analyzed 
manually or even with data analysis tools that require indirect manual operation. Although many 
sophisticated data- and association-mining techniques already exist, they are typically dedicated 
to either time-invariant data (multivariate analysis), data on ordinal scale (time-series analysis), 
or pattern discovery from data streams with well-defined and stable elementary units (such as 
semantic analysis of text documents). Finally, the interpretation of the discovered patterns in a 
larger context is still left to the domain experts, requiring manual work. In contrast, the ALOTA is 
designed to discover statistically significant structures from data when they are distributed or 
interleaved in the data across time or space, when the elementary data points as such do not carry 
any meaning, and without assuming strong constraints to the nature of patterns that may exist in 
the data. Moreover, ALOTA discovers and thereby interprets the patterns in a context of other 
information sources, making meaning aspect of the discovered patterns an inherent part of the 
system.    



 26 

5. CONCLUSIONS 

Automatic analysis and understanding of multimodal data plays increasingly important role in the 
modern societies where massive amounts of data are being collected on a continuous basis. 
Discovering meaningful structure from the big data is essential for making use of the data, 
allowing computational devices to act autonomously or humans to understand the processes 
behind the data. In our work, we attempt to develop an architecture for unsupervised hierarchical 
associative learning (ALOTA) that could be used to solve the data analysis problem in any domain 
with continuous streams of poorly understood data. This document has reviewed the basic 
concepts and principles behind such a system, and we have also presented a number of 
technological demonstrations that have already been taken towards a fully functional integrated 
system. Meanwhile, the work is being continued. 
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