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Abstract 

Automatic detection of prominence in speech has attracted interest in recent years due to its 

multiple uses in spoken language applications. However, typical approaches require manual 

labeling of the data that is an expensive and time consuming process, also making the systems 

potentially specific to the language or speaking style in question. In this paper, we propose a 

novel unsupervised algorithm for the automatic detection of sentence prominence named 3PRO 

(Prominence from Prosodic Probabilities; “three-pro”) that is based on recent findings on human 

perception of prominence in speech. By combining syllable duration information to the level of 

surprisal observed in the acoustic prosodic features, the method is capable of estimating 

prominent words from continuous speech without labeled training data. The algorithm is 

evaluated by comparing model output to manually transcribed prominence labels on a Dutch and 

French speech corpus, showing performance levels close to supervised prominence classifiers 

operating on the same data. 
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1. Introduction 

 

Speech contains information that extends the content of a written message and includes 

characteristics such as the identity of the speaker, the emotional state, information status, and 

intonational patterns. Prosody is the defining organizational property of these characteristics and 

sentence prominence is one type of prosodic event that is most commonly used in order to refer to 

the perceptual salience of one or multiple words within a sentence (see, e.g., Cutler, 2005; 

Kohler, 2008; Wagner et al., 2015). For instance, in natural conversation, it is common for 

speakers to make some words more prominent in order to highlight information and draw the 

listeners’ attention to specific parts in an utterance. In general, speakers use prosody and prosodic 

phenomena in order to direct and control aspects of the listeners’ perception (Cutler, 1987). 

Therefore, methods of detecting prominence have potential use in spoken language systems such 

as in automatic speech recognition (ASR) and speech synthesis, not only to account for natural 

acoustic variability in the signal, but also to ensure that the intended meaning of the message is 

properly represented. 

 

In the present paper, we describe a new method for the automatic detection of sentence 

prominence in speech named 3PRO (Prominence from Prosodic Probabilities; “three-pro”). The 

method is based on unsupervised estimation of the statistical properties of prosodic features 

combined with duration estimation from syllabic rhythm, providing a labeling-, and potentially, 

language-independent approach for prominence detection. The method is also applicable with 

different temporal constraints in the prominence detection task, allowing either purely 
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unsupervised prominence detection, or detection in terms of externally provided temporal units 

(e.g., word boundaries from ASR). We first review the concepts of prominence and existing 

approaches for its detection from speech, also describing why stimulus predictability can be used 

as a basis for prominence detection. This is followed by a description of the proposed 3PRO-

algorithm and a set of computational experiments where the method is validated on a Dutch and 

French speech corpus. 

 

1.1. Background 

The role of prosody in speech production is to assist in the communicative function (Cutler, 1987) 

where a speaker may choose to employ certain prosodic coding in order to serve a particular, 

linguistic or paralinguistic, intent (Werner & Keller, 1994). Specifically, prosody refers to 

information that extends the segmental content of utterances (individual phonemes) and spans 

through longer structures such as those of syllables, words and phrases—therefore commonly 

referred to as suprasegmental information (Lehiste, 1970). As there are currently several 

definitions for prosody (see Shattuck-Hufnagel & Turk, 1996), here we use the term with 

reference to the phonetic characterization where prosody is defined as variation of the acoustic 

parameters in speech and is believed to signal constituent boundaries and prominence (Shattuck-

Hufnagel & Turk, 1996).  

 

Typical acoustic prosodic parameters are the fundamental frequency (F0), energy, duration, and 

spectral tilt. For prominence, several studies support the role of F0, energy and duration (see, e.g., 

Lieberman, 1960; Fry, 1955, 1958; Kochanski et al., 2005; Terken, 1991). Moreover, spectral tilt 

has been shown to be a good correlate of prominence in Dutch (Sluijter & van Heuven, 1996) 

with, however, fewer studies supporting its role across languages (see, e.g., Campbell, 1995; 

Campbell & Beckman, 1997, for studies in American English; see also Ortega-Llebaria & Prieto, 
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2010, for a discussion). As for its function, it has been well established that one of the primary 

functions of prominence in language production is to convey the information status of words (see, 

e.g., Calhoun, 2007, 2010a, 2010b). Speakers’ intent can therefore be directly reflected on the 

information status of each word through prosodic coding. On the listeners’ side, decoding of 

prominence-related information may translate into a change of the perceptual orientation or focus. 

This has important implications for language comprehension as it allows, for instance, rapid and 

efficient recognition of the word (see, e.g., Cutler, Dahan, & Van Donselaar, 1997) and faster 

sentence comprehension (see, e.g., Bock & Mazzella, 1983).  

 

Both acoustic (bottom-up) and structural components of the language (top-down) can be used to 

convey prominence (see, e.g., Wagner, Tamburini, & Windmann, 2012; see also Arnold & 

Wagner, 2008). Acoustic components refer to the articulatory changes that are possible without 

altering the literal meaning of the words. In contrast, structural cues to prominence correspond, 

for instance, to changes in the ordering of individual lexemes in free word order languages (Ladd, 

2008). The work of Luchkina and Cole (2014) with Russian suggests that word ordering is an 

optional resource for encoding prominence, and both acoustic and structural means can be 

utilized together in order to convey the desired information status of words. One particularly 

interesting direction in the research of sentence prominence is the investigation of cross-language 

differences in production and perception. Based on the findings thus far, it seems that languages 

share the same pool of acoustic-prosodic features for signaling prominence, where, however, the 

language specific realization may vary (see Koreman et al., 2009, for a study in Norwegian and 

German). This means that different languages may employ a combination of all or a subset of 

these features and also control the extent each feature is used in order to convey prominence (see 

also Andreeva, Barry, & Koreman, 2014, for a multi-language comparison; Endress & Hauser, 

2010). These differences may be attributed to the underlying distinctions coming from the 

dissimilar phonological structures of the languages, and also suggest that prominence perception 
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may depend on experience with the given language. For instance, languages may have different 

rhythm types (such as stress-timed, syllable-timed, and mora-timed) or use tones in order to 

distinguish words. Therefore, although the phonological structure of languages varies, the 

phonetic basis descriptive of prominence seems to be shared. Moreover, the perceptual outcome 

across all languages seem to be the same, that is, prominence results in the perceptual orientation 

of the listener to specific parts in the utterance (attentional shift). This suggests that there might 

be a cognitive mechanism that makes prominence perception possible across languages by 

combining the general acoustic features of prominence to some type of learning mechanism that 

is responsible for capturing the language-specific prosodic patterns.  

 

A number of studies have examined the plausibility of cross-language prominence detection. For 

instance, the study of Moniz et al. (2014) showed that it was possible to train a prominence 

detection model in American English using the AuToBI prosodic event detection system 

(Rosenberg, 2010) and apply the same model in a prominence detection task in European 

Portuguese with performance similar to state-of-the-art results (see, Moniz, Mata, Hirschberg, 

Batista, Rosenberg, & Trancoso, 2014; see also Rosenberg, Cooper, Levitan, & Hirschberg, 2012; 

Maier et al., 2009). Fewer studies have investigated the perceptual and cognitive mechanisms 

responsible for prominence perception. These studies have utilized cognitive-inspired approaches 

on the basis of modeling attention as the mechanism enabling the perceptual shift, as prominence 

perception has been associated with the function of attention (see, e.g., Cole, Mo, & Hasegawa-

Johnson, 2010; Kalinli & Narayanan, 2009; Kakouros & Räsänen, 2014a). For instance, Cole et 

al. (2010) concluded that attention and prominence might share a common basis where a word 

may attract the listener’s attention, either as a response to acoustic modulation (signal-based 

acoustic salience), or due to its relative unpredictability, thereby requiring extra processing 

resources (expectation-based salience). In their view, the link between prominence perception and 

attention explains how prominence generation on the speaker’s side maps to the perceptual 
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processing at the listener’s end. Another approach was proposed by Kakouros and Räsänen 

(2014a, 2015) who suggested using the low predictability (surprisal) of acoustic prosodic features 

in speech as a cue for attentional orientation and thereby prominence. They also showed that this 

correlates well with human perception of prominence in English infant directed speech (Kakouros 

& Räsänen, in press) and that listeners’ cues for prominent words can be altered simply by 

manipulating the statistical properties of F0 trajectories during a brief pre-test familiarization 

session (Kakouros & Räsänen, 2016).    

 

In general, stimulus-driven attention and prominence in speech seem to be connected. The most 

common approach in modeling perceptual attention is to look for unusual changes that take place 

in specific spatial or temporal contexts, therefore, covering methods that focus on looking for 

something rare, surprising, or novel (see, e.g., Itti & Baldi, 2009), looking for contrasts (see, e.g., 

Kakouros, Räsänen, & Laine, 2013), or maximizing the information gain from the input (see, e.g., 

Bruce & Tsotsos, 2009). Itti and Baldi (2009) have argued that surprisal exists only in the 

presence of uncertainty that can be described in a relative, subjective manner, based on the 

expectations of the observer (Itti & Baldi, 2009). Therefore, surprisal can be generally formalized 

within a probabilistic framework where attentional orientation can be defined as a process that 

focuses on low probability events given the perceiver’s existing probabilistic model of the data. 

In the context of prosodic prominence, an equivalent cue for attention would be a low probability 

feature value or feature trajectory in an otherwise predictable context (see also Kakouros & 

Räsänen, in press). 

 

The probabilistic formulation for prominence also connects to a wider range of phenomena, as 

frequency and predictability effects have been known to play a fundamental role in models of 

language production and perception (Jurafsky, 1996; Jurafsky, Bell, Gregory, & Raymond, 2001; 

Baker & Bradlow, 2009; Bell, Brenier, Gregory, Girand, & Jurafsky, 2009; Watson, Arnold, & 
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Tanenhaus, 2008). Watson, Arnold, and Tanenhaus (2008), for instance, investigated the effects 

of predictability and importance on acoustic prominence in language production. Their results 

showed that both importance and predictability affect the acoustic realization of a word where 

duration is longer and pitch movement is greater for unpredictable words whereas intensity is 

greater for important words (Watson, Arnold, & Tanenhaus, 2008). In general, predictable, 

repeated words seem to be less acoustically prominent than unpredictable or new words (see, e.g., 

Lam & Watson, 2010). Similar phenomena are also observed in the segmental content of the 

utterances where, according to van Son and Pols (2003a, 2003b), there is a strong correlation 

between the redundancy (probability) of a phoneme and the level of acoustic reduction. The 

probabilistic effects correlating with prominence are not, however, limited only to the frequency 

of a word’s occurrence. Contextual effects from the probabilistic relations between words also 

affect language production. Therefore, words which are strongly related or predictable from their 

neighboring words are more likely to be phonologically reduced (Jurafsky, Bell, Gregory, & 

Raymond, 2001). On the other end, words that are least predictable based on their local context 

seem to be more likely to carry an accent, thereby being more prominent (Pan & Hirschberg, 

2000). Therefore, it seems that frequency, contextual probabilities and, in general, predictability 

all affect prosodic prominence. 

 

Several theoretical proposals have emerged from the apparent relationship between the 

predictability of the linguistic elements and their acoustic realization. The Probabilistic Reduction 

Hypothesis (PRH) states that word forms are reduced when they have a higher probability 

(Jurafsky, Bell, Gregory, & Raymond, 2001). In PRH, the probability of a word is conditioned on 

several aspects such as its context and its syntactic and lexical role. The Smooth Signal 

Redundancy Hypothesis (SSRH) proposed by Aylett and Turk (2004) is based on the relationship 

between syllable reduction (through durational shortening) and linguistic predictability (see also 

Turk, 2010, for SSRH over words). SSRH proposes that prosodic prominence is employed in 
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order to manage unpredictable elements in speech, thereby smoothing the information profile of a 

word. In this framework, language redundancy can be seen as the predictability of a syllable, 

word, or other linguistic units. Overall, the main claim in SSRH is that the information conveyed 

by speech should be evenly distributed over time (smooth signal), thereby making speech 

communication an efficient communication channel. A more recent information-theoretic account 

is the Uniform Information Density (UID) proposed by Jaeger (2006) and Jaeger and Levy 

(2007). In UID, the central argument is that speakers will plan how to structure a message so that 

elements with high information value are lengthened and elements with low information are 

shortened (Jaeger & Levy, 2007). The means to achieve this is through syntactic reduction where 

a speaker may choose to reduce less information-dense sentences by reducing the number of 

words (manipulating the lexical and syntactic options in the language).  

 

Overall, the link between predictability of the linguistic units in speech has been well established 

and formalized into several proposals, with a few accounts also attempting to explain the 

underlying cognitive processes. The existing studies (Kakouros & Räsänen, 2014a; in press) also 

suggest that predictability is reflected at the level of acoustic prosodic features with low-

probability prosodic events correlating with human perception of prominence. Given this 

background, the current work extends the earlier behavioral findings into an unsupervised 

algorithm for the automatic detection of sentence prominence in speech that makes use of the 

(un)predictability of prosodic features, and thereby provides a simple, potentially language-

independent approach for automatic prominence labeling. Our aim is not to argue that low-level 

feature predictability is the sole cue to prominence (see, e.g., Arvaniti, 2009, for discussion on 

rhythmic constraints on prominence), but to show that it can be used for efficient automatic 

prominence detection in speech, independently of any labeled training data. 
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1.2. Earlier work on automatic prominence detection 

Several previous efforts have focused on the development of systems for the automatic detection 

of prominence in speech. Prosodic phenomena, such as sentence prominence, encode higher-level 

information that is not available in segmental acoustics, thereby making their automatic detection 

particularly important. Application areas are diverse and include, but are not limited to, natural 

speech synthesis (see, e.g., Mehrabani, Mishra, & Conkie, 2013; Szaszák, Beke, Olaszy, and 

Tóth, 2015), automatic speech recognition (ASR) (see, e.g., Chen, Hasegawa-Johnson, Cohen, 

Borys, Kim, Cole, & Choi, 2006; Ananthakrishnan & Narayanan, 2007), and topics in ASR such 

as spoken content retrieval (see, e.g., Racca & Jones, 2015; Larson & Jones, 2011), video 

navigation (see, e.g., Patil, Arsikere, & Deshmukh, 2015), and topic tracking (Guinaudeau & 

Hirschberg, 2011). 

 

The development of algorithms for the automatic detection of prominence is described by a 

diverse set of approaches with one typological categorization being that between supervised (see, 

e.g., Kalinli & Narayanan, 2007), semi-supervised (see, e.g., Jeon & Liu, 2012), and unsupervised 

methods (see, e.g., Tamburini & Caini, 2005). Majority of the earlier work has focused on 

supervised methods for learning the statistics connecting typical prosodic features to manual 

markings of prominence in the data (see, e.g., Rosenberg, Fernandez, & Ramabhadran, 2015; 

Tamburini, Bertini, & Bertinetto, 2014; Sridhar, Bangalore, & Narayanan, 2008; see also 

Rosenberg & Hirschberg, 2009). As this requires manually annotated prominence labels, 

applicability, or at least initial training of such approaches is typically limited to highly resourced 

languages (see, e.g., Moniz et al., 2014; Rosenberg et al. 2012; Maier et al., 2009). Another 

limitation that has not been widely addressed is the reliability of the prominence markings. 

Specifically, it seems that inter-transcriber agreement rates on prominence annotations may vary 

greatly. Naïve subjects have been shown to have an average agreement rate of kappa of 
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approximately 0.46 (±0.16) (see, Mo, Cole, & Lee, 2008, for American English; Kakouros & 

Räsänen, 2014b, for British English; You, 2012, for Korean; Smith, 2011, for French; Baumann, 

2014, for German), which translates to fair to moderate agreement on the Landis and Koch scale 

(1977). Trained or expert transcribers following a formal annotation procedure such as a prosodic 

annotation system like ToBI (Tones and Break Indices) (Silverman et al., 1992) seem to have 

higher agreement rates with kappa values averaging at approximately 0.72 (±0.05), translating to 

moderate to substantial agreement (Landis and Koch, 1977) (see, Buhmann, Caspers, van 

Heuven, Hoekstra, Martens, & Swerts, 2002, for Dutch; Yoon, Chavarria, Cole, & Hasegawa-

Johnson, 2004; Breen, Dilley, Kraemer, & Gibson, 2012, for American English; Avanzi, Simon, 

Goldman, & Auchlin, 2010, for French), but still leaving room for ambiguity that can be 

problematic to many supervised machine learning algorithms. Therefore, one important concern 

and limitation in the development of supervised systems is the extent to which coders agree on 

the annotations they apply on speech since this will inevitably affect the ultimate performance the 

system can reach.  

 

Beyond their limitations, supervised learning approaches provide many options in modeling 

prominence. As prominence prediction can be posed as a standard machine learning problem 

involving feature extraction, labeling, training, and classification, various studies are available in 

the literature addressing the problem at different levels of analysis. Specifically, some approaches 

suggest the adoption of novel acoustic prosodic features that may be better able to represent and 

capture relative changes in the signal (see, e.g., Mishra, Sridhar, & Conkie, 2012) while others 

make use of different combinations of acoustic and lexical/syntactic information (see, e.g., 

Christodoulides & Avanzi, 2014; Obin, Lacheret-Dujour, & Rodet, 2008, for French; Sridhar, 

Bangalore, & Narayanan, 2008; Ananthakrishnan & Narayanan, 2008; Imoto, Tsubota, Raux, 

Kawahara, & Dantsuji, 2002; Minematsu, Kobashikawa, Hirose, & Erickson, 2002; Aylett & 

Bull, 1998, for English; Arnold, Wagner, & Baayen, 2013, for German; Cutugno, Leone, 
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Ludusan, & Origlia, 2012, for Italian and American English). Large part of the literature has 

focused on examining the performance of different machine learning algorithms on combinations 

of acoustic and linguistic feature sets. For instance, Wightman and Ostendorf (1994) used a 

combination of decision trees to map acoustic prosodic observations to probability distributions 

and a Markov sequence model of the prosodic labels. Their method achieved prominence 

detection accuracy at the syllable level of 83%. Wang and Narayanan (2007) used support vector 

machines also on combinations of acoustic features, reporting precision of 82.1% at the word 

level whereas Sridhar, Bangalore and Narayanan (2008) used combinations of acoustic and 

syntactic features in a maximum entropy framework with 86% accuracy at the word level (see 

also Ananthakrishnan & Narayanan, 2008, for an approach using Gaussian Mixture Models and 

Neural Networks). Recent approaches place more focus on machine learning methods that can 

provide better sequence modeling and context representation capabilities (modeling short- and 

long-term contextual factors). For instance, Rosenberg, Fernandez, and Ramabhadran (2015) used 

Bidirectional Recurrent Neural Networks (BiRNNs) based on acoustic and lexical features in 

order to model forward and backward dependencies in the data. They reported accuracy at the 

word level reaching 89.03%. Based on the same principle, Tamburini, Bertini, and Bertinetto 

(2014) used various types of probabilistic graphical models (PGMs) such as conditional random 

fields (CRFs) and conditional neural fields (CNFs) on acoustic features, reporting accuracy of 

87.5% at the syllable level (see also, Christodoulides & Avanzi, 2014; Chen, Liu, Yang, & Hu, 

2012; Cutugno, Leone, Ludusan, & Origlia, 2012; Obin, Rodet, Lacheret-Dujour, 2009). 

Although the discussed approaches report accuracies in the range between 80% and 90% at word- 

or syllable-level, it is not possible to directly compare them as they make use of different speech 

corpora and potentially slightly different evaluation criteria. However, in general, it seems that 

the overall binary prominence classification accuracy of the supervised systems lies between 80% 

to 90%. 
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Instead of using a priori linguistic information (prominence labels), unsupervised methods 

typically extract acoustic features directly from the speech signal and compute, for instance, 

prominence scores using different feature combinations (see, e.g., Tamburini & Caini, 2005; 

Wang & Narayanan, 2007). For example, Tamburini and Caini (2005) proposed a function where 

individual acoustic feature values are summed, producing a continuous value of prominence for 

each syllable. Each syllable score is then compared to its two neighboring syllables and if the 

center-syllable prominence score is higher, it is marked as prominent. In their experiments, an 

accuracy of 80.61% was observed at the syllable level. Wang and Narayanan (2007) also 

proposed a method based on prominence scores using a fusion of acoustic features and reported a 

precision of 80.0% at the word level. Another unsupervised approach using clustering techniques 

was proposed by Ananthakrishnan and Narayanan (2006). Their method makes use of a clustering 

algorithm (such as k-means) to partition the acoustic feature space into two clusters (prominent 

and non prominent) where they report 77.8% accuracy at the syllable level. Other unsupervised 

approaches attempt to use biologically inspired methodologies based on the assumption that 

prominence and attention are connected. Kalinli and Narayanan (2007), for instance, proposed an 

auditory attention model that attempts to mimic the different processing stages in the central 

auditory system. Their method extracts a set of multiscale features (features analyzed at different 

scales, such as intensity and frequency contrast) that are combined into a master saliency map. 

Local maxima that are above a predefined threshold are then marked as prominent. Their model 

achieves 75.6% accuracy at the syllable and 78.1% at the word level. Finally, there is also limited 

research in semi-supervised methods where the overall aim is to use a small amount of labeled 

prominence data for bootstrapping and then use larger amount of unlabeled data to improve the 

prominence detection performance (see, e.g., Jeon & Liu, 2012). In all, it seems that unsupervised 

methods typically reach lower performance levels (75%–80% accuracy) when compared to 

supervised systems (80%–90%).  
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In this work, we extend our earlier behavioral findings in Kakouros and Räsänen (in press) to a 

fully unsupervised prominence detection system. The system is based on the hypothesis that 

prominence perception correlates with the unpredictability of the prosodic features in speech, and 

therefore we build an unsupervised model that is able to measure the predictability of the prosody 

using a simple n-gram based “language model” operating on the prosodic features. Although 

computationally straightforward, the proposed approach produces high agreement with the 

annotators’ prominence markings and allows flexibility with different types of temporal 

constraints or linguistic units available during the prominence detection task.  

 

2. 3PRO method for automatic prominence detection 

 

We model the prominence detection problem as a binary classification task. The underlying 

principle in the proposed computational model is to detect prominence in a manner hypothesized 

to be analogous to human prominence perception. Specifically, the algorithm models the acoustic 

prosodic feature values and their temporal combinations using n-gram statistics (see Fig. 1). 

Probabilities of the trajectories can be then evaluated on previously unseen utterances where the 

probabilities are integrated over a fixed-length sliding window or over externally provided 

linguistic elements (syllables or words), according to their availability. The core principle in 

determining prominence is then based on finding the points where the prosodic predictability is 

lowest. Details of the individual components of the algorithm are given below. 
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Fig. 1.  Overview of the prominence detection algorithm. 

 

2.1. Feature extraction and quantization 

Speech data are initially downsampled to 8 kHz. Three acoustic prosodic features, F0, spectral 

tilt, and energy, are then computed. F0 contours of the voiced segments are extracted from each 

utterance using the YAAPT algorithm (Zahorian & Hu, 2008) with a 25-ms window and 10-ms 

step size. The resulting pitch tracks are then linearly interpolated in order to preserve continuity 

during unvoiced sections. Mel frequency cepstral coefficients (MFCCs) are computed using the 

same window and step size and the first MFCC is used to represent spectral tilt (see Tsiakoulis, 

Potamianos, & Dimitriadis, 2010). Finally, signal energy is computed using the same parameters 

window length as follows: 

E(t) = x(t +τ ) 2

τ=−w/2

w/2−1

∑ ,          (1) 

where x is the speech input and w is the length of the analysis window (25 ms). 
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In order to ensure comparability of the features and reduce the effect of both inter-speaker and 

intra-speaker variation, energy, F0, and spectral tilt are min-max normalized across each 

utterance using Eq. (2). 

f '(t) = f (t)−min( f )
max( f )−min( f )

         (2) 

In the equation, f denotes the feature value at time t while max(f) and min(f) refer to the 

maximum and minimum values of the feature, respectively, during the given utterance (see, e.g., 

Imoto et al., 2002). Min-max normalization preserves the relationships between the original 

feature values but removes information regarding their absolute values, mapping the original 

feature space to a specific range: f(t) ∈ [min(f)  max(f)] à f’(t) ∈ [0, 1]. Effectively, this helps to 

account for differences in dynamics of the prosody across different talkers and speaking styles, 

enforcing a prosodic contour for each utterance independently of the absolute magnitude of the 

features.  

 

Finally, in order to enable discrete probability modeling of the extracted continuous feature 

values, the prosodic feature values are quantized into Q discrete amplitude levels, f’(t) à at ∈ [1, 

2, …, Q]. In the present study, Q ∈ [2, 4, 8, 16, 32] quantization levels were evaluated using the 

k-means Linde-Buzo-Gray (LBG) algorithm (Linde, Buzo, & Gray, 1980; see the experiments in 

section 4). 

 

2.2. Syllable segmentation 

The main durational feature in the method is based on syllables. In order to estimate the locations 

and durations of syllables in an utterance, a signal envelope-based segmentation algorithm 

proposed in Räsänen, Doyle and Frank (2015) is used as it was shown to compare favorably 

against other compared methods in a zero-resource speech processing task. The method is based 
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on a harmonic oscillator that is driven by the amplitude envelope of speech. The input envelope is 

first obtained by filtering the full-wave rectified signal waveform with a low-pass filter that 

approximates the temporal window of human hearing. The oscillator is then used to smooth this 

envelope further with time-constraints typical to syllable-rate amplitude modulations in speech. 

As a result, each sufficiently deep minimum in the oscillator amplitude is interpreted as a syllable 

boundary while oscillator maxima correspond to nuclei. In the present method, the oscillator was 

tuned to a center frequency of 4 Hz with a critical damping (Q-factor of 0.5) similarly to the 

original study (see Räsänen et al., 2015, for details).  

 

2.3. Modeling prosodic trajectories in terms of statistical unpredictability of the prosodic 

features 

The central principle of the 3PRO-algorithm is modeling of acoustic prosodic trajectories in order 

to capture unpredictable points within a given context. For this purpose, n-grams over quantized 

features are utilized. The probabilities for the n-grams are computed from the relative frequencies 

of different n-tuples in the training data according to Eq. (3) where C denotes the frequency 

counts of the discrete n-tuples and ψ the feature in question (e.g., ψ=F0). 

Pψ (at | at−1, ...,at−n+1) =
Cψ (at,at−1, ...,at−n+1)
Cψ (at−1, ...,at−n+1)

      (3) 

During prominence detection, features are extracted similarly to training and quantized to Q 

levels. The overall probabilities P’(t) for n-grams across all features are then computed according 

to Eq. (4) as a sum of feature-specific log-probabilities. The assumption of conditional 

independence of the studied prosodic features may not hold for all languages and feature 

combinations, but is the most general way of combining the information without making the 

approach specific to certain languages.   
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!P (t) = log10 Pψ (at | at−1, ...,at−n+1)( )
ψ

∑        (4) 

 

The overall surprisal of the features within a time-window is obtained by integrating them with a 

simple moving average filter of length L and changing the sign of the result, leading to the so-

called moving average contour (MAC) (Eq. (5)). Thus, each point in MAC reflects a 

representation of the overall predictability in the immediate surrounding context.  

MAC(t) = − "P (t +τ )
τ=−L/2

L/2−1

∑          (5) 

As duration is another important correlate of the perceived prominence in speech, with longer 

durations typically reflecting increased prominence, durational information from the automatic 

syllabification (section 2.2) is used to modulate the probability contours. More specifically, each 

time point in MAC is assigned to the syllable enclosing it and the value is modulated according to 

       

  Y (t) =MAC(t)× e
d (t ) ,        (6) 

       

where d(t) is the duration of the syllable enclosing the time-frame t (see Figs. 2 and 3).  
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Fig. 2.  Example output of the algorithm for a Dutch broadcast excerpt. Top panel: original 

feature signals. Middle panel: log probabilities for Q = 16, n = 2 (n-grams). Bottom panel: MAC 

signals for L = 200 ms. All signals are min-max normalized for consistency of presentation. 
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Fig. 3.  Example output of the algorithm for a Dutch broadcast excerpt. Top panel: original signal 

waveform. Middle panel: the syllable signal. Vertical dashed lines denote the word boundaries. 

Bottom panel: Y(t) for energy and F0, Q = 16, n = 1, L = 200 ms, where the thick red lines mark 

the word-level human annotated sentence prominence and green the algorithm hypotheses. 

 

2.4. Hypothesis generation without externally provided time-frames 

In order to generate prominence hypotheses from Y(t), two different approaches can be used: 1) 

fully unsupervised estimation of prominent signal regions in continuous time, or 2) determination 

of prominence within externally provided time windows such as word boundaries.  

 

In the case of the purely unsupervised approach, a simple maxima detection method is employed. 

First, the Y(t) signals are min-max normalized between [0, 1] (see Eq. (2)). Local maxima are 

then defined as peaks of Y(t) preceded by a valley with an amplitude smaller than δ of the peak 

amplitude. In the present study, the value of δ = 0.1 was selected after heuristically searching for 
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the optimal value in the data. All the temporal locations where local maxima occur are set as 

prominence hypotheses points, S(t) = 1, while all other are set to S(t) = 0.  

 

In order to generate word-level prominence hypotheses for the experimental evaluation of the 

system (section 4), each word occurring in the test set was checked for hypothesis points and 

marked as prominent if one or more prominence markings occur during the word, i.e., 

 

H (wij ) =
1, if S(t) ≥1

t∑ , tstart (i, j) ≤ t < tend (i, j)
0, otherwise

$
%
&

     (7) 

 

where tstart and tend denote the onset and offset times of word i, respectively. 

 

2.5. Hypothesis generation with external time-frames 

In scenarios where temporal frames, such as word boundaries, are available, the sliding window 

integration is replaced by integration of syllable-duration modulated probabilities over the units 

of interest (Eq. 8). Specifically, in the case of words, the prominence classification H(wi,j) for 

each word i in utterance j is determined based on whether the word-level score S(wi,j) falls below 

a threshold ri  (Eq. (9)) that is defined at the utterance level according to the mean µ and standard 

deviation σ of the scores across the entire utterance (Eq. (10)), and where hyperparameter λ 

controls the sensitivity of the prominence detector. Thus, for each word that falls below threshold 

ri the corresponding prominence hypothesis for that word H(wi,j) is set to 1. In the experiments, 

hyperparameter λ is varied between [-2,2] in order to evaluate algorithm performance for 

difference threshold levels. 
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S(wij ) = P '(t)
t=tstart

tend

∑ × ed (t )         (8) 

H (wij ) =
1, S(wij )< ri ,
0, S(wij ) ≥ ri

"
#
$

       (9) 

ri = µi −σ iλ           (10) 

 

2.6. Baseline systems 

In order to evaluate the performance of the proposed prominence detection method, the 3PRO 

output was compared to a number of baseline setups. Specifically, the first is a purely random 

baseline approach (RBA) that randomly selects N words as prominent in each utterance where N 

equals to the number of word hypotheses generated by the 3PRO-algorithm for the same signal. 

The second method uses raw feature maxima (RFM) in order to mark words as prominent. In 

particular, for each utterance, the N words with the highest absolute feature values are selected 

(e.g., the N words with the highest pitch), N again equaling to the number of word hypotheses 

generated by the 3PRO. 

 

In addition, in order to facilitate comparison to the ideal supervised case, standard supervised 

classification baselines were computed using the k-nearest-neighbor (kNN) classifier, support 

vector machines (SVMs), and conditional random fields (CRFs), using the manually labeled 

section of the data used in the experiments. The first two represent context-independent classifiers 

where prominence classification for a word is independent of the neighboring classification 

decisions (but see the features below), whereas CRFs take the entire chain of classifications into 

account in hypothesis generation.  
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All hyperparameters of kNN, SVMs, and CRFs were optimized for maximal performance on the 

test data of the CGN corpus. Classification performance for kNN was computed for all values of 

k and the best result was chosen as the reference. For SVMs, radial basis function kernel was 

used. The scaling factor σ and box-constraint C of the SVMs were optimized by first using a 

subsampling scheme to find an initial estimate σinit  and then using an exhaustive grid-search 

across σ = [0.001, 0.01, …, 1000]×σinit and C =  [0.001, 0.01, …, 1000].  Linear chain CRFs were 

trained using belief propagation and L2 regularization with maximum number of iterations set to 

100, as this was manually verified to lead to convergence of the training error. CRF regularization 

parameter of the regularization term –θ2/2σreg
2 was set to σreg = 1 after manually experimenting 

over a range of values.  

 

The basic features used in the supervised baselines were calculated separately for each word, 

including max, min, mean, variance, and difference (xonset-xoffset) of energy, tilt and pitch during 

the words, word log-duration, and the number of syllabic nuclei in the words extracted as 

envelope maxima from the method described in Räsänen et al. (2015). In addition, in order to 

account for the word context also in kNNs and SVMs, we followed Rosenberg et al. (2012) by 

including the number of syllabic nuclei, mean and max pitch, and mean and max energy of the 

two preceding and two following words in the set of features, leading to a total set of 37 unique 

features per word token. 

 

We also studied the inclusion of the features proposed for prominence classification by Mishra et 

al. (2012), including area under F0 curve (AFC), energy-F0-integral (EFI), voiced-to-unvoiced 

ratio (VUR), average difference between low and high frequency components (DLH), and F0 

peak/valley amplitude and location (FAMP & FLOC) (see Mishra et al., 2012, for details) to our 

feature set. However, these did not lead to further improvements with respect to the above 
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reported set of features and were therefore excluded from the final experiments. All features were 

mean and variance normalized across each recording before inclusion in the classification, as this 

was found to improve generalization across recording types especially on C-PROM where many 

different types of recordings are included.  

 

3. Data and evaluation 

3.1. Data 

3.1.1. Spoken Dutch Corpus 

The Spoken Dutch Corpus (Corpus Gesproken Nederlands; CGN) was used in order to evaluate 

the algorithm’s performance for Dutch continuous speech (Oostdijk et al., 2002). CGN is a 

database of contemporary standard Dutch as spoken by adults in The Netherlands and Flanders. It 

contains nearly 9 millions words (800 hours of speech), of which approximately two thirds 

originate from The Netherlands and one third from Flanders. The database contains several 

manually generated or verified annotations such as phonetic transcriptions, word level alignment, 

and prosodic annotations (see Duchateau, Ceyssens, & Van Hamme, 2004, for a more detailed 

description). In the present experiments, the Dutch news broadcast (“component k”) section of the 

corpus was used, consisting of 5088 news broadcasts (≈27.4 hours of speech data) spoken by 29 

speakers (22 male and 7 female) and containing a total of 285298 words. The prosodically 

annotated subset of the section consists of 134 news broadcasts spoken by 10 different speakers 

(9 male and 1 female) and contains a total of 7438 words (≈44.3 minutes of speech data). Each 

sentence in this subset was hand labeled by two trained annotators (see Buhmann, Caspers, van 

Heuven, Hoekstra, Martens, & Swerts, 2002, for a description of the annotation process). In the 

experiments, the full broadcast section plus nine talkers from the annotated section were always 

used for training of the system while the remaining talker from the annotated subset was used for 
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evaluation, leading to a 10-fold evaluation procedure. As for the supervised baselines, the same 

10-fold evaluation was used, but training only with the labeled data from nine speakers available 

for each fold. 

3.1.2. C-PROM 

We also evaluated our system on French speech by using the C-PROM corpus (Avanzi, Simon, 

Goldman, & Auchlin, 2010), a corpus specifically annotated for prominence studies. C-PROM 

contains different regional varieties of spoken French (Belgian, Swiss, and metropolitan French) 

as well as various discourse genres with multiple levels of annotations. The corpus includes 24 

recordings with 70 minutes of speech produced by 28 speakers (12 female and 16 male) and with 

7 different speaking styles (ranging from high to low degrees of formality), totaling to 13184 

words. The corpus contains phone, syllable, and word level transcriptions along with syllable-

level prominence labels annotated by two expert phoneticians. The prominence labeling is based 

on a consensual annotation where the two annotators discussed and resolved potential differences 

in the coding, resulting in a single set of prominence labels for the data (see Avanzi, Goldman, 

Lacheret-Dujour, Simon, & Auchlin, 2007, for more details). In the experiments, one recording is 

always used for testing while the remaining 23 recordings are used for training, resulting in a 24-

fold evaluation procedure. 

3.2. Evaluation 

Precision (PRC), recall (RCL), their harmonic mean (F-value), and accuracy (ACC) were used as 

the primary quality measures and were defined as: 

 

RCL = tp / (tp+ fn)          (11) 

PRC = tp / (tp+ fp)          (12) 

F = (2×PRC×RCL)/(PRC+RCL)        (13) 
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ACC = (tp+ tn)/(tp+ fp+ fn+ tn)        (14) 

 

where tp denotes the true positives, tn the true negatives, fp the false positives, and fn the false 

negatives. Fleiss kappa (Fleiss, 1971) was also used as a measure of the reliability of agreement 

between the algorithm and the annotators’ judgments as it allows direct comparison to the typical 

agreement between human annotators (see, e.g., Mo, Cole, & Lee, 2008; You, 2012). Overall, 

Fleiss kappa measures the degree of agreement between two or more annotators on a nominal 

scale of κ ∈ [-1,1] and yields κ = 0 if the number of agreements is equal to what is expected 

based on chance-level co-occurrences in the data and κ = 1 if all annotators fully agree. In this 

work, Fleiss kappa was measured at the word-level as also the data in CGN provided word-level 

annotations. Therefore, for each word occurring in the test set, a binary decision between non-

prominent and prominent was considered. For C-PROM, the syllable-level prominence labels 

were aligned with the word-level transcriptions in order to provide word-level binary prominence 

annotations. 

 

For CGN, results were computed by taking the mean pairwise agreement between the algorithm 

and the annotators (kappa) or the mean accuracy and F-score with respect to the two different 

annotations. This scenario is referred to as true human (TH) reference. In addition, results were 

also computed using a reference where all words that either or both of the annotators had labeled 

as prominent were marked as prominent. This scenario is referred to as broad annotation (BA) 

reference. For C-PROM corpus, since there was only one set of reference labels for the data (see 

section 3.1.2.), the agreement between the algorithm and the word-level labels was measured 

directly. 
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3.3. Annotation data analysis 

In order to understand the characteristics of the reference annotation, we computed basic 

summary statistics from the data. First, for the CGN corpus, the overall word-level agreement 

between the two annotators on the presence or absence of prominence was found to be κ = 0.68. 

Both of the annotators marked, on average, 35.4% of the words as prominent (from the total set of 

7438 words) while they both agree on the presence or absence of prominence on 85.5% of the 

words. In the case of the BA reference, a total of 42.6% of the words are marked as prominent 

where the mean agreement between the annotators and combined BA reference is 92.7% (κ = 

0.85), providing an approximate value for the performance ceiling achievable by any automatic 

system. Overall, the inter-annotator agreement rates are typical for prominence annotation. For 

instance, Bushmann et al. (2002) report inter-annotator agreements ranging between 0.58 and 

0.72 for a similar prominence labeling task in a subset of CGN. Similarly, in another experiment 

carried out by Streefkerk et al. (1997) on the Dutch polyphone corpus, kappa values across naïve 

annotators were found to range between 0.45 and 0.6. As for the C-PROM corpus, the authors of 

the corpus report inter-annotator agreement between the two transcribers to be κ = 0.77 (Avanzi 

et al., 2010). In C-PROM, 29% of the words are marked as prominent (3825 words) – see also 

Rosenberg et al. (2012) for a similar study on C-PROM on word-level prominence. 

 

4. Experiments 

The prominence detection algorithm was tested in two basic experiments on Dutch and French: 

The first experiment investigates the performance and optimal parameters for the purely 

unsupervised approach when the underlying linguistic units are not known. The second 

experiment tests the performance of the system when word boundaries are available during 

prominence detection (e.g., originating from a parallel ASR system or manual word-level 

transcription). 
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4.1. 3PRO without externally provided time-frames 

4.1.1. Spoken Dutch Corpus 

The first experiment for CGN corpus was run in a cross-validation setup where data from 28 

speakers were used for training and 1 for testing. The analysis was limited to n-gram orders of n = 

1, 2, 3, 4, and 5 as modeling with higher orders would result in very sparse statistics. The 

experiment was repeated for Q ∈ {2, 4, 8, 16, 32} and separately for the three features (energy, 

F0, spectral tilt) and their combinations. After feature extraction and quantization of the test data, 

the probabilities of all possible feature combinations were evaluated over temporally varying 

windows of L ∈ [10, 1000] ms with steps of 10 ms in order to investigate the optimal value of L 

in the task. Table 1 summarizes all the features and their combinations used in the experiments.  

 

Table 1. Features and feature combinations used in the experiments. 

Feature Description 

EN Energy 

F0 Fundamental frequency 

ST Spectral tilt 

EN+F0 Energy and fundamental frequency 

EN+ST Energy and spectral tilt 

F0+ST Fundamental frequency and spectral tilt 

EN+F0+ST Energy, fundamental frequency and spectral tilt 

 

Fig. 4 presents the results for Q = 16 and n = 1 for all individual features and the best feature 

combination of energy with F0. The quantization level was selected as a compromise between too 
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coarse and too fine clustering for an initial analysis of the effect of the temporal integration 

window size. Similarly, n = 1 is the simplest expectation estimation that reflects the marginal 

probabilities of the discrete amplitude levels. Based on the results, it seems that temporal 

integration windows at or around 200-ms give the best overall performance for all individual 

features and their combinations. All other combinations were also tested with performance 

inferior to that of energy with F0. Specifically, for L = 200 ms, the mean pairwise agreement for 

energy, F0, ST, and EN+F0, was 0.47, 0.53, 0.3, and 0.56, respectively. In the case of the BA 

reference, the results for the same features were kappa of 0.56, 0.50, 0.34, and 0.62 respectively. 

We also found that the maximum peak for energy took place at 260 ms (κTH = 0.48, κBA = 0.56) 

while the peak for F0 was located at 130 ms (κTH = 0.56, κBA = 0.56). For ST and EN+F0 the 

maximum peaks took place exactly at 200 ms. 
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Fig. 4. Effect of temporal integration window size (ms) on algorithm performance for Q = 16 and 

n = 1. Blue solid line represents the mean pairwise agreement between the algorithm and the 

annotators while the red dashed line represents the agreement between the BA reference and the 

algorithm. 

 

Next, the impact of the number of quantization levels on algorithm performance was evaluated on 

CGN. In this case, Q = 8 and 16 were found to be the optimal with performance being almost 

equal between the two and deteriorating for codebooks smaller than 8 and larger than 16 levels 

(see also Table 2). Specifically, for n = 1 and Q = 8, κBA,EN+F0 = 0.64 (ACCBA,EN+F0 = 82.3% and 

FBA,EN+F0 = 79.9%) and κTH,EN+F0 = 0.58 (ACCTH,EN+F0 = 80.2% and FTH,EN+F0 = 74.9%), whereas 

for n = 1 and Q = 16, κBA,EN+F0 = 0.62 (ACCBA,EN+F0 = 81.2% and FBA,EN+F0 = 79.1%) and κTH,EN+F0 

= 0.57 (ACCTH,EN+F0 = 79.7% and FTH,EN+F0 = 73.9%). Therefore, Q = 8 was used in the remaining 

experiments. Finally, in terms of the n-gram order, n = 1 was found to be the optimal with 

increasing orders slightly deteriorating overall performance (Table 2). It was also observed that 

with orders of n > 1, the optimal integration window size L was approximately at 400 ms for most 

features and feature combinations. 

 

Fig. 5 presents the results for Q = 8, averaged across n-gram orders from 1 to 5 for the best 

performing features and their combination using the BA reference and plotted together with the 

RFM and RBA baselines. In particular, raw feature maxima values at the word level for energy 

seem to provide a good cue for prominence reaching agreement levels up to κBA,RFM,EN = 0.47. 

However, algorithm performance is substantially higher reaching kappa values up to 0.56. 

Random selection of words in the RBA baseline leads to negative kappa values (κBA,RBA,EN < 0) 

indicating that there is no agreement with the reference annotation. F0 RFM reaches only 

κBA,RFM,F0 = 0.32 at best, showing that purely picking F0 word-level maxima may not be as 
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indicative of prominence as opposed to κBA, F0 = 0.53 from the algorithm. Finally, the RFM 

combination of energy together with F0 reaches only κBA,RFM,EN+F0 = 0.33 indicating that 

combining the raw feature values for maxima picking is not an effective strategy as it deteriorates 

the overall agreement when compared to energy alone. 

 

In all, the fully unsupervised system performs the best for Q = 8, n = 1, for window integration 

length of 200 ms, and for the feature combination of energy together with F0. With this 

combination, the system can reach high agreement with κBA = 0.64 and accuracy of 82.3% 

providing good overall performance, adding to that of existing unsupervised systems. For 

instance, Kalinli and Narayanan (2007) report accuracy of 78.1% at the word level and 

Ananthakrishnan and Narayanan (2008) 77.8% accuracy at the syllable level. Even though the 

results are not directly comparable due to the use of different speech corpora, they are indicative 

of the overall classification performance. 
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Fig. 5. Fleiss kappa for energy, F0 and their combination pooled over n-gram orders of 1 to 5, for 

Q = 8, and using the BA reference (blue solid line). Black dashed-dotted line represents the 

feature maxima baseline (RFM) whereas the red dashed line represents the random baseline 

(RBA). Vertical bars denote one standard deviation across n-gram orders. 
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Table 2. N-gram performance for n = 1, 2, and 3, Q = 8, for the best integration window size, for 

the BA and TH reference. Values in bold indicate the best results for each measure.  

Features κ ACC PRC RCL F 
n = 1, 
L = 200 ms 

BA TH BA TH BA TH BA TH BA TH 

EN 0.56 0.45 0.78 0.73 0.68 0.57 0.90 0.91 0.78 0.71 
F0 0.53 0.55 0.78 0.80 0.80 0.72 0.64 0.70 0.71 0.71 
ST 0.33 0.29 0.67 0.65 0.59 0.51 0.69 0.71 0.64 0.59 
EN+F0 0.64 0.58 0.82 0.80 0.77 0.67 0.83 0.86 0.80 0.75 
EN+ST 0.48 0.40 0.74 0.71 0.65 0.57 0.82 0.84 0.73 0.67 
ST+F0 0.46 0.44 0.74 0.73 0.68 0.60 0.71 0.74 0.70 0.66 
EN+F0+ST 0.55 0.51 0.78 0.76 0.72 0.63 0.77 0.81 0.75 0.71 
n = 2, 
L = 400 ms 

          

EN 0.50 0.44 0.75 0.72 0.68 0.58 0.79 0.81 0.73 0.68 
F0 0.36 0.32 0.68 0.67 0.61 0.52 0.71 0.73 0.66 0.61 
ST 0.35 0.29 0.68 0.65 0.60 0.51 0.73 0.74 0.66 0.60 
EN+F0 0.50 0.43 0.75 0.72 0.68 0.58 0.77 0.79 0.72 0.67 
EN+ST 0.44 0.39 0.73 0.71 0.66 0.57 0.72 0.74 0.69 0.64 
ST+F0 0.37 0.32 0.69 0.67 0.62 0.52 0.70 0.72 0.66 0.60 
EN+F0+ST 0.44 0.39 0.73 0.71 0.67 0.57 0.71 0.73 0.69 0.64 
n = 3, 
L = 400 ms 

          

EN 0.49 0.43 0.75 0.72 0.68 0.58 0.77 0.79 0.72 0.67 
F0 0.36 0.32 0.68 0.67 0.62 0.53 0.66 0.68 0.64 0.60 
ST 0.34 0.30 0.67 0.66 0.60 0.51 0.69 0.70 0.64 0.59 
EN+F0 0.46 0.40 0.73 0.71 0.67 0.57 0.74 0.76 0.70 0.65 
EN+ST 0.43 0.38 0.72 0.70 0.66 0.56 0.70 0.72 0.68 0.63 
ST+F0 0.35 0.31 0.68 0.66 0.61 0.52 0.66 0.68 0.64 0.59 
EN+F0+ST 0.42 0.38 0.72 0.70 0.66 0.56 0.69 0.71 0.67 0.63 
 

4.1.2. C-PROM 

For C-PROM corpus, the first experiment was run in a cross-validation setup where data from 23 

recordings (26–27 speakers) were used for training and 1 for testing (1–2 speakers), leading to a 

total of 24 folds. The procedure was otherwise the same with CGN (section 4.1.1.) using the 

features and feature combinations listed on Table 1 for the C-PROM data and where the 

probabilities of all possible feature combinations were computed over temporally varying 

windows of L ∈ [10, 1000] ms with steps of 10 ms. Fig. 6 presents the results for Q = 16 and n = 

1 for all individual features and the best feature combination of energy with F0. The best overall 
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performance for the individual features of energy and ST was attained for temporal integration 

windows of 150-ms, wheras, for F0, the optimal window size was 50 ms. For the combined 

features’ performance, the best result was achieved with energy and F0 using an integration 

window of 150 ms. Specifically, for L = 150 ms, the agreements for energy, F0, ST, and EN+F0, 

were 0.43, 0.38, 0.32, and 0.49, respectively. All other feature combinations were also tested with 

the performance being inferior to that of energy with F0. 
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Fig. 6. Effect of temporal integration window size (ms) on fully unsupervised algorithm 

performance for Q = 16 and n = 1. Blue solid line represents the agreement between the algorithm 

and the C-PROM annotation reference. 

 

Next, the effect of the number of discrete amplitude levels Q on the algorithm’s performance was 

evaluated. Similar to the results for CGN, Q = 8 and 16 were found to be the optimal partitions, 
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with Q < 8 producing poor performance while Q > 16 led to slightly deteriorating performance, 

where, for instance, for n = 1 and Q = 8, κEN+F0 = 0.49 (ACCEN+F0 = 77.5% and FEN+F0 = 66.02%) 

and n = 1 and Q = 16, κEN+F0 = 0.48 (ACCEN+F0 = 77.5% and FEN+F0 = 63.88%). Thus, Q = 8 was 

used in the remaining experiments. Finally, the effect of different n-gram orders was investigated 

and n = 1 was found to produce the best performance with n > 1 generating slightly deteriorating 

performance – see also Table 3.  

 

Fig. 7 presents the results for Q = 8, averaged across n-gram orders and for the best performing 

features and their combination plotted together with the RFM and RBA baselines. Raw feature 

maxima values produced lower overall performance when compared to the individual and 

combined features’ of the proposed probabilistic approach. In particular, raw feature maxima at 

the word level for energy, F0, and their combination reached, at best, a performance of κ = 0.39, 

0.26, and 0.37 respectively, while, the corresponding probabilistic frame-based integration 

reached κ = 0.44, 0.44, and 0.49. Additionally, a random selection of words in the RBA baseline 

led to negative kappa values (κ<0), indicating no agreement with the reference annotation. 

Therefore, even though the absolute feature values seem to give an indication of the prominent 

words, the performance is substantially lower when compared to the probabilistic approach. Also, 

as can be seen in Fig. 7, the best overall integration window size seems to be at approximately 

200 ms, as was observed also in Fig. 5 for the CGN corpus. 

 

In all, the results for the fully unsupervised system for the C-PROM corpus are in line with those 

for CGN. The best performance was achieved for Q = 8, n = 1, for an integration window of 150 

ms, and for the feature combination of energy together with F0. Based on this setup, the system 

was able to reach good overall performance with κ = 0.49 and accuracy of 77.5%, a result close to 

that of other unsupervised approaches (78.1%, Kalinli and Narayanan, 2007). 
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Fig. 7. Fleiss kappa for energy, F0 and their combination pooled over n-gram orders of 1 to 4, for 

Q = 8 for C-PROM. Black dashed-dotted line represents the feature maxima baseline (RFM) 

whereas the red dashed line represents the random baseline (RBA). Vertical bars denote one 

standard deviation across n-gram orders. 

 

Table 3. N-gram performance for n = 1, 2, and 3, Q = 8, for the best integration window size, for 

C-PROM. Values in bold indicate the best results for each measure.  

Features κ ACC PRC RCL F 
n = 1, 
L = 150 ms 

     

EN 0.42 0.73 0.52 0.81 0.63 
F0 0.38 0.77 0.66 0.44 0.53 
ST 0.32 0.70 0.49 0.59 0.54 
EN+F0 0.49 0.78 0.60 0.76 0.66 
EN+ST 0.38 0.73 0.52 0.68 0.59 
ST+F0 0.39 0.74 0.55 0.60 0.57 
EN+F0+ST 0.44 0.75 0.56 0.68 0.62 
n = 2, 
L = 400 ms 

     

EN 0.36 0.73 0.53 0.60 0.56 
F0 0.39 0.75 0.56 0.59 0.57 
ST 0.28 0.69 0.47 0.53 0.50 
EN+F0 0.41 0.75 0.56 0.61 0.58 
EN+ST 0.34 0.72 0.52 0.55 0.53 
ST+F0 0.34 0.72 0.52 0.58 0.55 
EN+F0+ST 0.37 0.74 0.54 0.57 0.56 
n = 3, 
L = 400 ms 

     

EN 0.37 0.73 0.53 0.62 0.57 
F0 0.39 0.74 0.54 0.61 0.58 
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ST 0.28 0.69 0.47 0.54 0.50 
EN+F0 0.40 0.75 0.56 0.62 0.59 
EN+ST 0.33 0.72 0.51 0.56 0.53 
ST+F0 0.34 0.72 0.51 0.58 0.54 
EN+F0+ST 0.37 0.74 0.54 0.58 0.56 
 

4.2. 3PRO with word-based time frames 

4.2.1. Spoken Dutch Corpus 

The second experiment for CGN was run similarly to experiment 1 (section 4.1.1.) using a 10-

fold evaluation procedure utilizing the same statistical models for n-grams for energy, F0, and 

spectral tilt. During testing, after feature extraction and quantization, the instantaneous 

probabilities for each utterance and for all feature combinations were computed (see Table 1). 

Scores were then calculated for each word in each utterance by integrating the prosodic feature 

probabilities over the word durations (see section 2.5) and prominence hypotheses were generated 

by thresholding the word-specific score values. In order to evaluate performance for different 

threshold levels, hyperparameter λ was varied between [-2,2] with steps of 0.05. Fig. 8 presents 

the results for the three individual features and the best performing feature combination of energy 

together with F0 for the optimal parameterization. Specifically, for Q = 16, n = 2, λ = -0.15 and 

for the BA reference EN+F0 reached κBA = 0.72, ACC = 85.5% and F = 83.6%. The 

corresponding results for the TH reference were κTH = 0.63, ACC = 82.5% and F = 77.4%. 

Individual features seem to perform also well, with κBA,EN = 0.68, κBA,F0 = 0.62, and κBA,ST = 0.65 

(see also Table 4). All possible parameterizations for Q and n were also tested with performance 

being worse for the lowest quantization level (Q = 2) while using unigrams. Overall, the 

performance keeps increasing with an increasing number of amplitude levels up to Q = 32 with Q 

= 16 and 32 being the best and approximately equally performing codebooks. As for the n-gram 

order, n = 2 and 3 seem to provide the best performance. Higher orders also produce good results 

with, however, decreasing performance due to the increasing sparsity of the probability space (see 
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also Table 4). Therefore, Q = 16 and n = 2 can be seen as the best parameters for the 

unsupervised word duration-based system in the present dataset. 
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Fig. 8. Performance based on probability integration over word durations for individual features 

and their best combination for the BA reference, for Q = 16 and n = 2, and as a function of the 

detection threshold λ. Blue dashed line represents accuracy, red dash-dotted line represents F-

score, and black solid line represents the Fleiss kappa agreement.  

 

Since all features seem to perform relatively well in the word-level decoding, a duration-based 

baseline model was also evaluated using the same dynamic thresholding as in Eq. (9) but 

operating on word durations instead of word scores. Word duration is known to be a very 

important correlate of prominence (see, e.g., Moubayed, Ananthakrishnan, & Enflo, 2010) and 

this is also seen in the present results, where, for λ = -0.15, κBA = 0.64 and κTH = 0.57 are 
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obtained. Overall, when integrating probabilities at the word level, performance is substantially 

higher when compared to the integration over fixed-length windows, and this is largely supported 

by the access to lexically-constrained durational information. 

 

Table 4. Performance of the word-level integration tests for n = 1, 2, and 3, Q = 16, λ = -0.15, for 

the BA and TH reference. Values in bold indicate the best results for each measure.   

Features κ ACC PRC RCL F 
n = 1 BA TH BA TH BA TH BA TH BA TH 
EN 0.68 0.59 0.84 0.80 0.80 0.67 0.84 0.86 0.82 0.75 
F0 0.47 0.48 0.74 0.75 0.73 0.65 0.65 0.69 0.68 0.67 
ST 0.55 0.49 0.78 0.75 0.73 0.62 0.77 0.79 0.75 0.69 
EN+F0 0.66 0.60 0.83 0.81 0.80 0.68 0.81 0.84 0.80 0.75 
EN+ST 0.67 0.58 0.84 0.80 0.80 0.67 0.84 0.86 0.82 0.75 
ST+F0 0.62 0.57 0.81 0.79 0.78 0.67 0.78 0.82 0.78 0.74 
EN+F0+ST 0.68 0.61 0.84 0.81 0.80 0.69 0.84 0.86 0.82 0.76 
n = 2           
EN 0.69 0.60 0.85 0.81 0.80 0.69 0.85 0.84 0.83 0.76 
F0 0.67 0.58 0.82 0.80 0.77 0.68 0.82 0.80 0.79 0.73 
ST 0.60 0.58 0.84 0.80 0.79 0.68 0.85 0.82 0.82 0.74 
EN+F0 0.72 0.63 0.86 0.83 0.80 0.71 0.86 0.85 0.84 0.77 
EN+ST 0.69 0.61 0.85 0.81 0.80 0.70 0.85 0.84 0.83 0.76 
ST+F0 0.68 0.60 0.84 0.81 0.80 0.69 0.85 0.83 0.82 0.76 
EN+F0+ST 0.70 0.62 0.85 0.82 0.80 0.70 0.86 0.85 0.83 0.77 
n = 3           
EN 0.69 0.60 0.85 0.81 0.80 0.68 0.85 0.87 0.83 0.76 
F0 0.59 0.52 0.80 0.77 0.75 0.64 0.79 0.81 0.77 0.72 
ST 0.66 0.58 0.83 0.80 0.79 0.67 0.84 0.86 0.81 0.75 
EN+F0 0.70 0.61 0.85 0.81 0.81 0.69 0.85 0.88 0.83 0.77 
EN+ST 0.69 0.61 0.85 0.81 0.81 0.68 0.85 0.87 0.83 0.76 
ST+F0 0.67 0.59 0.84 0.80 0.79 0.67 0.84 0.86 0.81 0.75 
EN+F0+ST 0.70 0.61 0.85 0.81 0.81 0.68 0.85 0.87 0.83 0.77 
 

4.2.2. C-PROM 

The second experiment for C-PROM corpus was run based on the same procedure as for the CGN 

corpus (see section 4.2.1.) but using a 24-fold evaluation process utilizing the same statistical n-

grams models for energy, F0, and spectral tilt as in experiment 1 (section 4.1.2.). Similarly to 

CGN, the performance for different thresholds λ was evaluated in the range [-2, 2] with steps of 
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0.05. Fig. 9 presents the results for the individual features as well as for the best feature 

combination of energy and F0. Specifically, for Q = 16, n = 2, and λ = 0.25, EN+F0 reached κ = 

0.58, ACC = 82.3% and F = 70.7%. Individual features performed also well with κEN = 0.52, κF0 

= 0.55, and κST = 0.50 (see also Table 5). All possible parameterizations for Q and n were also 

tested and the best performing partitions were found to be for Q = 16 and 32 while the worst for 

Q = 2 and 4. As for the n-gram order, n = 1 was the worst performing length for the feature 

sequences whereas for n > 2 performance was gradually deteriorating with increasing n-gram 

orders. Thus, as in the case of CGN, the best performing parameterizations for the unsupervised 

word duration-based system are for Q = 16 and n = 2. Finally, we evaluated a duration-based 

baseline model using the same dynamic thresholding but operating on word durations instead of 

word scores where for λ = 0.25 the performance reached κ = 0.47. In all, the findings for C-

PROM are similar to those of CGN, indicating that integration of probabilities over word 

durations leads to substantially better performance than integration over fixed-length windows. 
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Fig. 9. Performance based on probability integration over word durations for individual features 

and their best combination for the C-PROM reference, for Q = 16 and n = 2, and as a function of 

the detection threshold λ. Blue dashed line represents accuracy, red dash-dotted line represents F-

score, and black solid line represents the Fleiss kappa agreement.  

 

Table 5. Performance of the word-level integration tests for n = 1, 2, and 3, Q = 16, λ = 0.25. 

Values in bold indicate the best results for each measure.   

Features κ ACC PRC RCL F 
n = 1      
EN 0.50 0.80 0.65 0.64 0.65 
F0 0.39 0.77 0.64 0.47 0.54 
ST 0.47 0.79 0.63 0.61 0.62 
EN+F0 0.52 0.81 0.68 0.64 0.65 
EN+ST 0.53 0.81 0.66 0.67 0.67 
ST+F0 0.51 0.80 0.66 0.64 0.65 
EN+F0+ST 0.54 0.81 0.68 0.68 0.68 
n = 2      
EN 0.52 0.80 0.65 0.68 0.66 
F0 0.55 0.81 0.67 0.70 0.69 
ST 0.50 0.79 0.63 0.66 0.65 
EN+F0 0.58 0.82 0.69 0.72 0.71 
EN+ST 0.54 0.81 0.65 0.70 0.68 
ST+F0 0.55 0.81 0.66 0.71 0.68 
EN+F0+ST 0.56 0.82 0.67 0.72 0.70 
n = 3      
EN 0.52 0.80 0.65 0.68 0.67 
F0 0.56 0.82 0.67 0.70 0.69 
ST 0.50 0.79 0.63 0.67 0.65 
EN+F0 0.57 0.82 0.68 0.72 0.70 
EN+ST 0.54 0.80 0.65 0.70 0.68 
ST+F0 0.54 0.81 0.66 0.70 0.68 
EN+F0+ST 0.56 0.81 0.67 0.72 0.69 
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Fig. 10. Comparison of the optimal lambda values for the CGN (blue solid line) and C-PROM 

(red dashed line) corpora. X-axis: detection threshold λ. Y-axis: Fleiss-kappa performance on 

both corpora. Horizontal bars denote the optimal performance (higher) and performance at λ = 0 

(lower) that is a compromise between the two corpora. 

 

Since the optimal λ is somewhat different for the Dutch and French corpora (Tables 4 and 5), it 

was of interest whether a proper λ value is critical to the system performance. To this end, Fig. 10 

shows the performance for both corpora as a function of λ (EN+F0, n = 2, Q = 16), separately 

indicating the threshold λ  = 0 that provides a reasonable compromise between the two corpora. 

In case of λ  = 0, kappa for CGN is 0.70 and for C-PROM it is 0.55, corresponding to a κ drop of 

0.02–0.03 from the corpus-specific optimal value for λ. Although statistically significant, this 

difference is not qualitatively very large when considering the overall performance level of the 

system.  

 

The difference in the optimal threshold likely reflects the difference in prominence distributions 

in the two corpora: CGN is very dense with prominent words, 42.6% of the words being marked 

as prominent. In contrast, in C-PROM, only 29% of all words are prominent. Since the detection 

threshold is dynamically determined according to the other words in the same utterance, a more 

stringent criterion (larger λ) is expected to lead to a smaller number of hypotheses per utterance, 
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thereby fitting better to the C-PROM data. It appears that the current detection mechanism is not 

intelligent enough to account for such underlying distributional differences. Still, the performance 

is not greatly dependent on the exact value of the threshold, suggesting that the 3PRO is 

applicable to new languages without further tuning of λ. Although beyond the scope of the 

present study, further validation of the method with additional languages and/or speaking styles 

would help to determine the optimal cross-linguistic value for the threshold.  

4.3. Comparison to supervised baselines 

In order to compare the 3PRO performance to a situation where manual labeling of prominence is 

available, results for the supervised kNN, SVMs and CRFs were also computed for the same task. 

Table 6 shows the results for both CGN (top) and C-PROM (bottom) for all three systems with 

the best performing 3PRO results (word-level decoding) also shown as a reference.  

 

Table 6. Performance of the supervised systems for CGN (top half) and C-PROM (bottom half). 

As a reference, the corresponding measures for the feature combination of EN+F0 with Q = 16, n 

= 2, λ = -0.15 for CGN and λ = 0.25 for C-PROM, are shown for the unsupervised word-level 

decoded 3PRO.  

CGN kNN SVM CRF 3PRO EN+F0 
PRC 0.87 0.85 0.86 0.80 
RCL 0.79 0.87 0.87 0.86 

F 0.82 0.86 0.86 0.84 
κ 0.70 0.75 0.76 0.72 

ACC 0.85 0.88 0.88 0.86 
C-PROM kNN SVM CRF 3PRO EN+F0 

PRC 0.78 0.78 0.77 0.69 
RCL 0.60 0.71 0.70 0.72 

F 0.67 0.74 0.73 0.71 
κ 0.55 0.63 0.62 0.58 

ACC 0.82 0.84 0.84 0.82 
 

The supervised results are in line with previous findings on supervised prominence detection. For 
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instance, Christodoulides and Avanzi (2014) report F-score of 78.4% for SVMs and F = 84.9% 

for a fusion of conditional random fields and random forests in prominence detection on French 

speech from the PFC corpus that contains both read and conversational speech (Durand et al., 

2009). Similarly, Tamburini et al. (2014) report the best F-score of 77.0% for Italian using 

conditional neural fields, whereas Moubayed et al. (2010) report ACC = 72.55% for Swedish 

using SVMs in a ternary prominence classification task (no/maybe/yes manual labeling for 

prominence). To further ensure that our supervised baselines are valid, we evaluated C-PROM 

performance using the same division to training and test data as is described in Rosenberg et al. 

(2012), replicating their findings (Rosenberg et al. report ACC = 86.11% using similar features 

and L2-regularized logistic regression while our present CRF system achieved 85.73% on the 

same data using the CGN-optimized L2-regularization parameter).   

 

In general, the 3PRO system compares well against the supervised systems even though it does 

not have access to prominence markings at any stage of the processing. The fully word-agnostic 

version achieves κ = 0.64 on CGN which is a reasonably high value considering the lack of the 

highly relevant word duration information (c.f., Table 2). When word boundaries are available 

during prominence decoding, 3PRO outperforms the kNN on both CGN and C-PROM with κ = 

0.72 and κ = 0.58, respectively, and performs only slightly worse than the results obtained with 

the SVMs (κ = 0.75 / κ = 0.63) and CRFs (κ = 0.75 / κ = 0.62). All differences between the 

supervised baselines and the corresponding 3PRO performances are highly significant (χ2 (1, 

NCGN = 7438, NCPROM = 13184) > 28 and p << 0.001 for all comparisons with McNemar’s paired 

chi-square test). 
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5. Discussion and conclusions 

 

Prominence has been widely studied with respect to its acoustic correlates that make its 

production and perception possible (see, e.g., Fry, 1955, 1958; Lieberman, 1960; Zhang, Nissen, 

& Francis, 2008). In addition, the connection between predictability of linguistic units in speech 

and perceptual prominence of these units has been documented earlier (see, e.g., Pan & 

Hirschberg, 2000). In the present work, we proposed an algorithm called 3PRO for the 

unsupervised detection of sentence prominence from speech, making use of the idea of the 

connection between prominence and predictability at the level of acoustic prosodic features. The 

algorithm is based on the idea that the short-term unexpected acoustic prosodic trajectories in 

speech will draw the listeners’ attention and will therefore be perceived as prominent. This 

transforms the traditional approach of detecting certain value combinations of prominence-related 

acoustic cues to modeling of the probabilities of these cues given certain a priori experience with 

the language, suggesting that a system for prominence detection can be learned from data without 

access to prominence labels. Our current findings seem to support this assumption, with 3PRO 

performance reaching Fleiss kappa agreement of 0.64 with accuracy of 82.3% for the Dutch data 

and kappa of 0.49 with accuracy of 77.5% for the French data for the purely unsupervised system. 

When word boundaries are known during detection, the algorithm reaches kappa of 0.72 and 

accuracy of 85.5% for the Dutch data and kappa of 0.58 with accuracy of 82.3% for the French 

data, both measured with respect to human perception of sentence prominence in the same data. 

The result for both the Dutch and French data is superior to the classification performance of a 

supervised kNN-based system and close to SVMs and CRFs on the same data when the 

hyperparameters of the supervised systems are optimized for maximal performance on the 

prominence detection task.  
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The results also suggest that the proposed algorithm offers comparable or even improved 

performance over existing unsupervised approaches in prominence detection. For instance, in the 

study of Kalinli and Narayanan (2007), 78.1% accuracy is reported at the word level whereas 

Wang and Narayanan (2007) report 80% precision also at the word level (see also Tamburini, 

2003). Moreover, 3PRO seems to also compare well with results obtained from other studies in 

supervised prominence detection. For instance, Rosenberg et al. (2015) report an accuracy of 

89.03% using BiRNNs, Sridhar et al. (2008) report 86% accuracy using combinations of acoustic 

and syntactic features, and Wang and Narayanan (2007) report precision of 82.1% using SVMs, 

all studies evaluating prominence at the word level. Additionally, there is a study from Streefkerk 

et al. (1997) on the Dutch Polyphone corpus using artificial neural networks (ANNs) on a 

prominence detection task, reporting 82.1% accuracy at the word level. In general, these results 

suggest that 3PRO can be useful in, e.g., under-resourced languages where labeled training data 

for supervised systems do not exist, providing a principled way to detect words that stand out 

from their context in terms of their prosodic characteristics.  

 

However, direct comparison of the results is difficult due to the differences in evaluation metrics 

and in the corpora and languages used in the experiments. An obvious source of disparity 

between studies with different datasets is the style and consistency of prominence annotations 

utilized on the data, with naïve listeners showing notably different prominence transcription 

patterns from trained annotators (see, e.g., Mo, Cole, & Lee, 2008; Breen, Dilley, Kraemer, & 

Gibson, 2012). There is no commonly agreed standard corpus for prominence evaluation, and 

access to the potentially most widely used Boston University Radio Speech Corpus (Ostendorf, 

Price, & Shattuck-Hufnagel, 1995) is greatly limited by the high price of the corpus. In addition, 

our present experiments show that the performance measures are highly dependent on the 

question of how the annotations from multiple independent transcribers are used as a reference. 

Here the best agreement between the current algorithm and the reference was obtained when it 
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was sufficient for only one of the two annotators to mark a word as a prominent target (the BA 

reference). In contrast, the mean agreement with respect to each annotator separately is notably 

lower (the TH reference). In general, the less the annotators agree with each other, the larger the 

difference between the TH and BA metrics can potentially become. However, no commonly 

agreed method for creating a single reference from multiple annotations exists. 

 

An additional practical aspect of the proposed method is the flexibility over the choice of 

integration frames. If needed, the method can operate in a purely unsupervised manner, however, 

the decoding stage can be also constrained by using information regarding the underlying 

linguistic units, leading to improved performance. The importance of linguistic grounding, at 

least at the level of words, became evident in the second experiment where acoustic prosodic 

expectations were integrated over word durations. In this case, prominence agreement increased 

from the purely unsupervised kappa of 0.64 to 0.72 for Dutch and from 0.49 to 0.58 for French, 

confirming that word duration is an important cue for the perception of prominence (see also the 

study of Moubayed et al., 2010).  

 

In terms of the performance of the individual features, energy and F0 were the strongest cues for 

prominence, with their combination producing the best performance in both languages (κEN+F0 

=0.64 and 0.72 for CGN and 0.58 for C-PROM). In the case of spectral tilt, the overall 

contribution in predicting prominence was low in experiment 1 (κST,CGN=0.33, κST,C-PROM=0.32) 

whereas in experiment 2 its contribution was higher (κST,CGN=0.60, κST,C-PROM=0.50) due to the 

inherent inclusion of durational cues during the integration process, but still not showing 

complementary information with respect to F0 and energy. Although spectral tilt is suggested to 

be a correlate of prominence in Dutch (see, e.g., the study of Sluijter & van Heuven), we could 

not verify its contribution in the current experimental setup. In a similar manner, the study of 

Streefkerk, Pols, and ten Bosch (1999) on the Dutch Polyphone corpus did not find spectral tilt as 
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a highly predictive feature for prominence. In all, the most predictive features for prominence in 

the current study seem to be duration, energy, and F0, a finding that is in accordance with the 

existing literature on prominence in other languages (see, e.g., Cutler, 2005; Werner & Keller, 

1994; Fry, 1955, 1958).  

 

Another interesting aspect in the present study was the temporal scale of the integration window 

used in the non-linguistically grounded decoding. It was found that the best average performance 

(Fig. 5 and 7) in both Dutch and French was obtained using window length of approximately 200 

ms. Temporal integration windows of 200 ms (similar also to typical syllable duration) are also 

suggested in the literature to be the way how perceptual information is analyzed (see, e.g., 

Zwislocki, 1960; see also Sussman, Winkler, Kreuzer, Saher, Näätänen, & Ritter, 2002). Thus, 

this finding may also suggest a connection between how acoustic prosodic information is 

analyzed in temporal chunks in the absence of any type of linguistic or paralinguistic information. 

However, based on the current data, it is not possible to make any further inference beyond 

position this statement as a point for further investigation.  

 

One potential limitation of the present work is that it focuses on local short-term dependencies at 

the acoustic feature-level. Recent studies using Latent-Dynamic CRFs (LDCRFs) have shown 

that hidden dynamics might exist in the sequences of non-prominent and prominent syllables (see, 

e.g., Tamburini et al., 2014; Cutugno et al., 2012), indicating that there might be a recurring 

rhythmic grouping of the prominent units across time. This is also discussed in the work of 

Arvaniti (2009) where it is argued that the rhythmic categorization of all languages should be 

based on one universal principle that could rest on the grouping and patterns of prominence (see 

also Dilley and McAuley, 2008, for an example; see also Fraisse, 1982). Future work should 

therefore extend 3PRO towards this direction. For instance, rhythmic regularities in prominence 

could be used to create another level of anticipatory organization that would be also modeled in a 
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probabilistic manner, thus predicting the temporal positions of upcoming prominent words or 

syllables given the preceding detection outcomes. This information could be then used to 

modulate the detection threshold in a manner analogous to having prior probabilities for 

prominence on syllabic or word units.  

 

In all, 3PRO is a computationally simple and therefore easy-to-use algorithm for prominence 

detection, operating in a manner similar to how prominence perception in humans is hypothesized 

to take place (see Kakouros & Räsänen, in press). The results indicate that it can achieve high 

agreement with annotator’s markings, reaching a performance level close to what supervised 

approaches on the same data can attain. Furthermore, the findings suggest that the low-level 

(acoustic) short-term expectations appear to be one useful cue to prominence and therefore a 

potentially suitable first approximation in purely unsupervised approaches. As our current 

findings are based on two corpora of Dutch and French speech, more languages should be tested 

in future in order to verify that the algorithm generalizes well to other languages and speaking 

styles.  
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