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Abstract 
When infants learn words, they do not generally occur in isola-
tion but as parts of continuous utterances and with several pos-
sible related meanings. Details of the efficient learning 
techniques of infants remain unknown. In this paper we intro-
duce a dynamic concept matrix (DCM) algorithm that learns 
acoustic models for a set of keywords from given pairs of con-
tinuous utterances and related keyword labels. DCM is an in-
cremental, active online algorithm. Specifically, each training 
utterance is first recognized with the current word models, and 
the recognition result is used to guide training further. In low-
noise conditions DCM shows significant improvement in con-
vergence rate and final recognition scores to an earlier passive 
CM model on TIDIGITS and CAREGIVER UK Y2 datasets. 
The results suggest that in ambiguous learning situations it 
may be beneficial for the learner to observe the learning situa-
tion, make hard decisions if some known words/objects were 
recognized and update the models based on the decisions. 
Index Terms: weakly-supervised word learning, incremental 
model, online algorithm, cross-situational learning 

1. Introduction 
Infants learn meanings of words in their native language effi-
ciently without explicit supervised teaching. The details of 
human word-learning mechanisms still remain unknown – 
learning is complicated by vast amounts of variability in con-
tinuous speech utterances as well as lack of known robust 
cues, such as pauses, marking word boundaries. There is evi-
dence that infants learn basic word forms based on statistical 
dependencies between consecutive speech sounds [1], but au-
tomatic blind speech segmentation algorithms have had only 
limited success in word learning mainly due to speech varia-
bility, and tend to learn frequently occurring patterns that can 
also be parts of words or sequences of words (e.g. [2]). 

Since infants constantly interact with their environment 
and surrounding people, heard speech is often related to sur-
rounding objects or actions, thus providing information about 
their possible meanings. When a meaning co-occurs with a 
certain acoustic pattern in several learning situations, (e.g. 
acoustic sequences “lookatdaddy” and “daddyishere” occur 
with the visual percept of father), the infant can infer that the 
only consistently occurring acoustic pattern could refer to the 
seen object (“daddy” – father). This learning strategy is often 
called cross-situational learning (XLS, [3]) and is a widely 
studied phenomenon when learning word-meaning mappings  
(e.g. [4]) for example. However, most XSL studies focus on 
learning meanings for words that are already segmented out of 
continuous speech, thus avoiding the problems caused by 
acoustic variability faced by real infants. 

In this paper we improve an existing algorithm that learns 
word models from real acoustic speech streams using the XSL 
paradigm. Our goal is not to compete with supervised state-of-
the-art word or speech recognition algorithms. In engineering 
terms our algorithm can be considered a weakly supervised 
word discovery algorithm – an algorithm that learns from its 
surroundings independently when provided with continuous 
speech streams and unordered and possibly noisy sets of relat-
ed meanings at the time-scale of one or more utterances. 

1.1. XSL on acoustic speech data 

A few studies have contributed to performing XSL on record-
ed acoustic speech. Acoustic models for words are trained us-
ing a speech database, where each utterance comes with an 
unordered set of labels that correspond to some keywords in 
the utterance. After training, the algorithm should have con-
verged to acoustic models for every keyword, allowing accu-
rate recognition of the keywords in a novel test set. 

Non-negative matrix factorization (NMF) has been used in 
batch mode (all training data is available for the learner at 
once) [5] and in incremental mode (associations form gradual-
ly when new learning scenarios occur) (Adaptive NMF, [6], 
and its active adaptation in [7]) successfully in learning to de-
rive correct meanings for words in novel test utterances. Also 
adaptive Bayesian probabilistic latent semantic analysis [8] 
has succeeded in this task. However, the adaptive algorithms 
have been evaluated with CAREGIVER Y1 data [9] in learn-
ing scenarios where each training (testing) utterance has only 
one meaning to be learned (recognized). These scenarios lack 
the ambiguity present in normal XSL experiments where mul-
tiple candidate meanings per word are present. Word recogni-
tion using NMF also generally leads to a list of hypothesized 
words present in a complete utterance – speech is not seg-
mented and the ordering or locations of the words in the utter-
ances are thus not solved ([10], [5]). However, a sliding 
window decoder has been proposed to partially solve the or-
dering problem [5].  

Räsänen and Laine [11] have proposed an incremental 
weakly-supervised pattern discovery algorithm (concept ma-
trix, CM), that learns words and their segmentation from 
weakly-labeled speech data incrementally. The algorithm is 
given speech utterances and an unordered set of keyword la-
bels (= concepts) per utterance. Accumulating information 
from several utterances, the algorithm learns acoustic models 
for words and is able to recognize words accurately from nov-
el test utterances. The algorithm has been tested with the 
TIDIGITS (from here on TI) corpus and the CAREGIVER Y2 
corpus (Y2), showing that the CM can learn robust acoustic 
models for words from ambiguous utterances and without ever 
being shown the words in isolation.  



1.2. Active vs. passive online algorithms 

The basic CM is an incremental, online algorithm in the sense 
that training data is processed utterance by utterance and word 
models are updated at every trial. However, the training algo-
rithm treats all training utterances equally, and thus for exam-
ple the ordering of the training utterances does not affect 
performance. The basic CM algorithm can thus be considered 
a passive online algorithm. In human XSL, ordering of the 
training data affects learning results (e.g. [12]) and humans use 
information acquired earlier to deduce further word meaning 
mappings (for example in mutual exclusivity, see e.g. [13]). 
Human learning thus is active – learning situations are actively 
analyzed and learning depends on earlier knowledge. 

Previous research has shown that in some tasks active 
online processing of training data can lead to better perfor-
mance than processing in batch mode. Online training of 
HMMs, so that the recognizer’s parameters are re-estimated 
based on the error between the decoded training utterances and 
the ground truth, has been shown to improve convergence rate 
and accuracy on a supervised phoneme recognition task [14]. 
Online processing and memory constraints have also improved 
the performance of Bayesian word segmentation based on pre-
syllabified speech data [15]. Similarly, an online implementa-
tion of EM algorithm has led to improvement in part-of-speech 
tagging, document classification, English word segmentation 
from phoneme sequences and word alignment [16]. Fazly et al. 
[17] have used an active training method when learning word-
meaning mappings from readily segmented speech. They up-
date word-meaning pairings based on the alignment probabili-
ties obtained in previous training trials and show efficient 
word learning and robustness towards noise. 

In this paper we propose an active version of the original 
CM algorithm, and call it Dynamic Concept Matrix (DCM). 
DCM uses information collected from previous utterances to 
infer locations of keywords in an utterance, and weight the 
training of corresponding word models to these locations. 
Each training utterance is thus recognized with the current 
models, and the recognition result affects the training of the 
utterance. The algorithm shows improved rate of learning as 
well as word recognition performance with real acoustic 
speech in Y2 and TI corpuses in low noise conditions. 

2. Method 

2.1. The concept matrix technique 

The CM algorithm constructs acoustic models for given con-
cepts (= keyword labels in this work) by approximating high-
order Markov structure of speech as a mixture of bi-gram sta-
tistics at different temporal lags, and then providing maxi-
mum-likelihood estimates for each referential context given 
the currently observed sequence of acoustic observation [11]. 
For example an acoustic utterance “Smiling daddy has the 
fish”, where keywords are bold and the rest are carrier words 
belonging to a carrier sentence, would be first transformed 
into a sequence of integers by vector quantization (VQ) of 
spectral slices. Then initially empty concept matrices for the 
keywords “daddy”, “to have” and “fish” would be updated by 
counting frequencies of transitions between these integers. 

More formally, every keyword label c, from a set of possi-
ble labels C has a three dimensional frequency matrix Fc of 
size NU×NU×L, where NU is the number of possible VQ-indices 
and L is the total number of lags used from a pre-defined set l 

= {l1, l2, …,lL}. When a sequence of VQ-indices X = [u1, …, ut-

1, ut, ut+1, …, ut+m], and a set of related labels c ⊆ C are given, 
the frequency matrices for every given label c at every time 
instant t and every lag l are updated as  

Fc(ut, ut+l, l) = Fc(ut, ut+l, l) + a  (1) 
Where a = 1 always in the basic CM algorithm and the varia-
bles inside the brackets refer to the matrix elements. After 
training with all sequences and labels in the training set, the 
matrices are normalized first to represent transition probabili-
ties PT between elements (e.g. normalization over the second 
dimension of the matrices) 

PT uj ui, l,c( ) = Fc ui,uj, l( ) / Fc ui,uj, l( )
j=1

NU

∑
  (2) 

Next, the conditional probability of a certain label given a 
transition is obtained as 

PC c ui → uj, l( ) = PT uj ui, l,c( ) / PT uj ui, l,c( )
c=1

NC

∑ =Qc

 (3) 

and the result of the second normalization leads to an activa-
tion matrix Qc of the same dimensionality as Fc  
Recognition. When recognizing utterances, keyword activa-
tions are obtained as sums of those elements of Qc that are ac-
tivated by the lagged acoustic units in the test sequences: 

A c, t( ) = 1
L

Qc ut,ut+l, l( )
l∈l
∑    (4) 

where L is the total number of lags that was used on the time 
instant t (at the beginning and end of the sequence not all lags 
can be used). 

In this work (see also [11]), the keyword model activations 
are smoothed by using a moving average filter of the length of 
25 windows followed by a recursive decay with transfer func-
tion H = 1 / 1 − 1 − 1 / γ( ) z−1( )  where γ = 6. The resulting smoothed 

activation curves AS(c,t) show how much each word model is 
activated at each time instant in the recognized signal. The 
recognized word on each time instant is the model with the 
highest activation score (the winning model). Word segment 
boundaries are obtained from the locations where the winning 
word model changes. Figure 1. shows an example of a recog-
nized utterance and the discovered word boundaries. 

In order to measure model performance, we calculate how 
many of the N ground truth keywords are correctly detected 
for each test utterance. Finally we divide the number of cor-
rectly detected words by the number of all keywords over the 
whole test set. In this paper we select the recognized keywords 
as the models with the highest activation peaks. If we know 
that in the utterance there are N keywords to be recognized, 
the winning models from local maxima of the activation 
curves are searched, and the N highest unique models are se-
lected. The minimum allowed distance between two peaks is 
set to 10 windows. Note that in previous experiments consid-
ering the basic CM algorithm, word hypotheses are created by 
summing model activations over all time windows and select-
ing the models with the highest accumulated activations [11]. 
For DCM, it is crucial to keep track of the locations of win-
ning word models, and the recognition based on local maxima 
preserves them. 

In the conventional CM technique (e.g. [11]), word models 
are learned by associating all acoustic transitions in an utter-
ance to all present labels. In the above example, during the 
training utterance “Smiling daddy has the fish”, acoustic tran-



sitions corresponding to label “fish” are thus equally updated 
to the correct label fish, as well as incorrect labels daddy and 
to have. However, due to varying sets of labels across training 
utterances, word models converge towards the correct acoustic 
transitions (= cross-situational learning). 

2.2. Dynamic CM 

If the correct locations of keywords in the training utterances 
were known (as in supervised learning), intuitively, the 
amount of noise in learned acoustic models could be reduced 
by training concept matrices only around the approximate lo-
cations of the keywords. Since this information is not initially 
given to the learner, we investigate the hypothesis that when 
noisy word models are gradually learned, the learner can ap-
proximate keyword locations in the training utterances and 
weight learning on the corresponding acoustic features. 

In these experiments, on every training trial, we first rec-
ognize the training utterance (equations 2-4). From the 
smoothed activation curves, we get a list of winning models - 
for each time window winner(t) = argmaxc(AS(c,t)). If any of 
the labels c, known to exist in the utterance, are found in the 
set of winners, the acoustic models of these labels are updated 
more strongly (here by experimentally promising double acti-
vation) surrounding their winning time windows. Mathemati-
cally, in DCM the term a in the update equation (1) becomes: 

 
a =

2, if c ∈ {winner(t − s), ..., winner(t + s)}
1, otherwise

#
$
%

&%

 (5) 

where s is a spreading parameter defining how far the 
strengthening effect of a winning label spreads in time. If s = 
0, the double update occurs only at the locations where the 
model to be updated wins. With larger values of s the update 
rule starts to also weight the transitions towards and away 
from the winning models. Figure 1 Illustrates the updating 
procedure of DCM as well as the spreading parameter s. 

3. Experiments 

3.1. Data preparation 

The keyword recognition performance of CM and DCM are 
compared on Y2 and TI datasets. Y2 consists of a total of 50 
keywords of which one to four occurred in each sentence. We 

randomly selected 2000 sentences of each of the four speakers 
in the training set and the remaining 397 sentences in the test 
set, resulting in 8000 training utterances and 1588 test utter-
ances. TI consist of 8623 training utterances, each with one to 
seven spoken digits from a set of 11 digits in total (“oh”, “ze-
ro”, “one”, “two”, …). The original test set of 8700 utterances 
is reduced to 5455 by deleting utterances that have any digit 
occurring more than once in order to simplify the keyword 
recognition. Without this simplification, we should allow the 
detection algorithm to accept several local maxima of a single 
model’s activation, possibly leading to more than one detec-
tion of a keyword on its only occurrence. 

All utterances are downsampled to 16 kHz, and trans-
formed to MFCC-features with a window length of 32 ms and 
step size of 10 ms. Following the procedure in [11], in Y2 we 
use 12 MFCC coefficients plus log energy of each window as 
a feature vector. The weights of the energy and the first coeffi-
cient are attenuated by factor 0.3. In TI, only the 12 MFCC 
coefficients are used, with the same attenuation on the first 
coefficient. Additionally, on TI only, cepstral mean and vari-
ance normalization was performed on the MFCC vectors. 

Both datasets were individually vector quantized into se-
quences of integers. VQ codebooks were obtained by random-
ly taking 15,000 MFCC vectors from the training dataset and 
clustering them into 128 (Y2) or 150 (TI) clusters using k-
means clustering. In both experiments we used lags l = {-15,  
-14, …, 14, 15} and an experimentally found, non-optimized 
spreading parameter of 8. In each experiment the algorithm 
was run 10 times so that vector quantization and randomiza-
tion of training data ordering were reapplied with every run. 
Additionally, in Y2, training and test sets were randomized for 
each run following the description above. 

3.2. Experimental conditions 

The performance of the two models is tested with the noiseless 
original datasets as well as with added ambiguity (“noise”) 
either in the keyword labels given per utterance (noisy labels) 
or in the utterances themselves (noisy utterances).  

Noisy labels. For each utterance the learner is given extra 
labels, of which none corresponds to any keyword in the utter-
ance. This is done in order to test the algorithm’s robustness to 
learn word models in situations where additional labels (mean-
ings) not related to heard speech are present. In Y2 dataset we 
add three (low noise, LaL) and 15 (high noise, LaH) additional 
labels to the set of given labels c. In TI, in the low noise condi-
tion we add three additional labels and in the high noise condi-
tion we add so many labels that the total number of labels per 
training utterance becomes 10 (i.e. only the lack of one label 
from the total set of 11 brings necessary ambiguity to make 
models converge). 

Noisy utterances. Extra acoustic information is added to 
each training utterance, keeping the original set of labels un-
changed. For both Y2 and TI, extra speech is selected for each 
training utterance by randomly selecting a number of utteranc-
es from the training data, not including any words correspond-
ing to the labels given for the current training utterance, and 
concatenating the VQ sequence of the training utterance with 
VQ sequences of the additional data until a desired sequence 
length is reached. In TI data, in the low noise condition (UtL), 
we add a noise sequence of length 170 VQ indices (≈1.7 se-
conds), roughly duplicating the length of the training sequence 
(mean training sequence length = 172.6, SD = 78). In the high 
noise condition (UtH) we use a noise sequence length of 510 

 
Figure 1. Model activations for the recognized sentence “She 
sees a blue eagle” after training with 2000 training utteranc-
es. The range inside the dashed lines shows the time range 
where the word model “blue” wins. The larger range shows 
the winning area spread with parameter s, where the model 
“blue” is trained with double activation. 



indices. In Y2 data, following the average length, in the low 
noise condition we use a noise sequence of length 275, and in 
the high noise condition a length of 825 windows.  

3.3. Results 

The simulation results are presented in Table 1, and in Figures 
2 (noiseless conditions) and 3 (noisy conditions). DCM is seen 
to significantly outperform CM in both noiseless datasets after 
the full training data. Importantly, DCM is seen to converge 
towards the correct word models faster than the original CM 
algorithm. With low amounts of noise either in the given set of 
meanings or utterances, DCM generally keeps on outperform-
ing CM. Interestingly, on Y2, three additional labels for each 
training utterance improves the keyword recognition accuracy 
significantly for both CM (Wilcoxon rank sum test, W = 55, p 
< 0.01) and DCM (W = 55, p < 0.01) when compared to the 
normal training labels. A possible explanation is that giving a 
few extra labels helps to train background noise and carrier 
words more evenly into all models and later average out their 
effect in test utterances. 

With high amount of noise in either the utterances or the 
sets of keywords, CM starts to outperform DCM. Inspection of 
activation curves of recognized utterances provides a possible 
explanation. In CM, carrier sentence information is better av-
eraged on all word models, suggesting that when the amount 
of noise in the utterances increases it becomes more likely that 
DCM starts to update some of the given word models more 
strongly towards often occurring noisy, non-meaningful parts 
of speech. Using a threshold on activation strength or duration 
when selecting the winners of equation (5) might help to solve 
these problems, and is left for future research. 

Experimenting with the technique shows that the best per-
formance is achieved when extra weighting applies to a model 
only surrounding the model’s winning location and the extra 
weight is a fairly large coefficient that is not proportional to 
the model’s activation score or its probability at those mo-
ments. For comparison, if all given models per utterance are 
updated with an addition corresponding to activation scores at 
every time instance (a = 1 + AS(c,t) in (5), cf. [17]) the model 
does not reach even normal CM accuracy (one run, Figure 3, 
dashed line). It thus seems beneficial for the learner to make a 
hard decision if the heard acoustic segment corresponds to any 
of the given labels, and update the model accordingly. Also, 
during training it is important that the winning models to be 
weighted win the competition between all possible labels C 
and not only between the given utterance-related labels c.  
Table 1. Keyword recognition accuracies (%) and their stand-
ard deviations over 10 runs. * shows where the model’s per-
formance is significantly better (Wilcoxon rank sum test, p < 
0.05) than the other model’s. 

4. Conclusions 
This paper introduces an active training method for incremen-
tal weakly supervised learning, improving an existing passive 
learning algorithm (CM [11]). The new model, DCM, is eval-
uated in a keyword recognition task using real acoustic utter-
ances. In active training, every training utterance is recognized 
with the word models learned thus far, and model update is 
affected by the recognition result, weighting the update on the 
regions where the given keywords are detected. Our results 
indicate that cognitively plausible, active online processing of 
training data, may lead to better word recognition performance 
as well as faster convergence than when training data passive-
ly or in batch mode. 

Our simulations suggest that active update proportional to 
the model’s activations (as with segmented speech in [17]) 
does not improve the passive CM model when using real 
speech signals (see Figure 3). Instead, detection of winning 
words and non-linear update is needed to improve perfor-
mance. This suggests that cognitively plausible learners may 
benefit from making hard decisions about possible detection of 
objects/events, and in the case of positive detection focus on 
the details of the event in order to refine the recognizers. 
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Data Model Norm LnL LnH UnL UnH 
TI DCM 94.77* 

(0.23) 
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49.06 
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Figure 2. Keyword recognition accuracy for the original 
Y2 database (left) and TI database (right). 
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Figure 3. Keyword recognition accuracy for the noisy da-
tasets. 
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