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ABSTRACT

Non-parametric Bayesian methods have recently gained popularity
in several research areas dealing with unsupervised learning.
These models are capable of simultaneously learning the cluster
models as well as their number based on properties of a dataset.
The most commonly applied models are using Dirichlet process
priors and Gaussian models, called as Dirichlet process Gaussian
mixture models (DPGMMs). Recently, von Mises-Fisher mixture
models (VMMs) have also been gaining popularity in modelling
high-dimensional unit-normalized features such as text documents
and gene expression data. VMMs are potentially more efficient
in modeling certain speech representations such as i-vector data
when compared to the GMM-based models, as they work with
unit-normalized features based on cosine distance. The current
work investigates the applicability of Dirichlet process VMMs
(DPVMMs) for i-vector-based speaker clustering and verification,
showing that they indeed show superior performance in comparison
to DPGMMs in the tasks. In addition, we introduce an
implementation of the DPVMMs with variational inference that is
publicly available for use.

Index Terms— Non-parametric methods, speaker clustering,
unsupervised learning, variational inference, von Mises-Fisher
mixtures

1. INTRODUCTION

Dirichlet process mixture models (DPMM) [1] are nonparametric
Bayesian approaches [2] that can determine model size based on data
without explicit model comparison. Such approaches are applicable
when the number of clusters represented in the observed data is
not available as a priori information. For instance, zero-resource
speech processing systems [3, 4] and speaker diarisation systems
[5] use clustering methods to find structure in unlabelled data.
DPMM approaches are applicable to large datasets when the
posterior distribution over model parameters and cluster assignments
is calculated with methods based on variational inference [6]. The
approaches are also flexible as observation model can be chosen
based on the data to be clustered. The most common approaches are
Gaussian DPMMs, called DPGMMs. However, when observations
can be modelled as directional data, a von Mises–Fisher (VMF)
[7] distribution would be a more natural choice as it compares
observations based on cosine distance that is invariant to magnitude.

VMF mixture models (VMM) have been used to cluster
high-dimensional observations such as text documents [8, 9, 10] and
gene expression data [8, 11]. VMMs have also been used to find
speaker clusters based on utterances represented as speaker-adapted
GMM mean supervectors [12]. The previous works have studied
both maximum likelihood paremeter estimation [8] and approaches
that model VMM parameters and cluster assignments as unobserved
random variables [9, 10, 11, 13]. Furthermore, nonparametric
extensions have been proposed to model directional data with an

infinite mixture model as follows: Bangert et al. [14] proposed
a sampling method to estimate the posterior distribution over
DPVMM parameters on low-dimensional observation data, Straub
et al. [15] used small-variance analysis to derive a deterministic
method that can be interpreted as a nonparametric extension to
spherical k-means, and Batmanghelich et al. [16] proposed
stochastic variational inference (SVI) [17] to estimate a hierarchical
DPVMM.

The current work focusses on clustering of utterances that
are represented as i-vectors [18]. The representation corresponds
to a GMM mean supervector mapped into a lower-dimensional
factor domain and captures differences between speakers in the
vector direction. Hence applications like speaker diarisation use
cosine distance to compare i-vectors [19, 20]. The i-vector
representation is also common in speaker verification, where an
i-vector calculated based on test utterance is compared to a target
i-vector to determine whether it corresponds to the same speaker
[21]. While the comparison can be based on cosine distance
between test and target i-vectors, most speaker verification systems
utilise additional normalisation to model variation between sessions.
Examples include probabilistic linear discriminant analysis (PLDA)
[22] that partitions variation between i-vectors into within-speaker
and between-speaker variation. Here speaker-labelled data is needed
to estimate the within-speaker and between-speaker compensation
parameters, or when labelled data is not available, i-vectors can be
clustered in an unsupervised manner [23].

The experiments conducted in this work evaluate variational
DPVMM and DPGMM approaches on 600-dimensional i-vector
data that could aid PLDA parameter estimation. More specifically,
we investigate 1) whether the non-parametric methods can compete
with traditional methods (here: k-means with cosine distance; [19])
that divide observation into clusters based on a priori information
on the number of classes and 2) how DPVMM compares to the
more common DPGMM when evaluated on i-vector data. We
believe one reason GMM-based approaches have been favoured
in previous works are the computational difficulties related to
DPVMM estimation, since otherwise VMM-based approaches are
better suited to model directional data that arises in some speech
applications. Therefore, as a third contribution, we provide
a MATLAB implementation for variational DPGMM/DPVMM
estimation.

In this paper, the variational method used in DPVMM posterior
estimation is based on the method proposed in [6], but as the
variational lower bound does not have a closed-form solution, it is
approximated as proposed in [11]. In contrast, DPGMM posterior
is computed with the variational method introduced in [6], but
as GMMs are not well-suited to model i-vectors, the observations
are first mapped into low-dimensional features with principal
component analysis (PCA) as proposed in [24]. The evaluation
conducted in this work focusses on comparison between the
estimated cluster solutions and true speaker classes, but experiments



were also conducted with a PLDA-based speaker verification system
[25] to evaluate cluster solutions in an application context.

2. METHODS

2.1. Dirichlet process mixture models

A Dirichlet process (DP) is [26] uniquely defined by a base
distribution H and a concentration parameter α. DPs can be
combined with an observation model to construct Dirichlet process
mixture models [1] where the DP functions as a prior over the
model parameters. The current work studies DPMMs constructed
as follows. The cluster or mixture component that generated
observation xn is indicated with an unobserved variable zn. These
are modelled as samples from a multinomial distribution π that is
constructed based on the stick-breaking process [27]:

πk = vk

k−1∏
i=1

(1− vi), (1)

where vk are stick proportions with a beta distribution Beta(1, α).
This means that the assignment and observation probabilities
associated with observation n can be expressed as

p(zn = k|v) =

∞∏
k=1

(1− vk)1[zn>k]v
1[zn=k]
k , (2)

p(xn|zn,φ) =

∞∏
k=1

p(xn|φk)1[zn=k], (3)

where φk are parameter vectors with prior distribution H . The
parameter distributions used in this work are discussed in Sections
2.1.1–2.1.2.

2.1.1. DPVMM

The observations xn considered in this work are i-vectors which
can be modelled as directional data and compared based on cosine
distance [18, 19, 20]. The most common distribution model used
with directional data is the von Mises–Fisher (VMF) distribution [7].
The distribution parameters include mean direction µ (||µ|| = 1)
and concentration parameter λ ≥ 0. The observation probabilities
are calculated as

p(x|φ) =
κD/2−1

(2π)D/2ID/2−1(λ)
exp(λµTx) (4)

where Iν(u) denotes the modified Bessel function of the first kind
and order ν [28]. Iν(u) does not have a closed-form representation,
which makes VMF parameter estimation and moment calculation
complicated. Alternative parameter estimates are discussed in
[8, 29] and numerical issues in parameter estimation and likelihood
calculation due to Iν(u) are discussed in [30].

The current work studies VMF as an observation model in
DPMM. This means that the component-conditioned observation
probabilities p(xn|φk) in Equation (3) are modelled as VMF
distributions with mean direction µk and concentration parameter
λk. The parameters are modelled as unobserved random variables
with prior distribution p(φk) (distribution H). The most common
approach is to choose a distribution that is conjugate to the
likelihood function p(xn|φk). However, the distribution that could
be used as a prior to the concentration parameter has an unknown
normalisation term that makes calculations complicated [13]. Hence

we choose the alternative prior proposed in [11]. The parameter prior
p(φk) = p(µk|λk)p(λk), where p(µk|λk) is a VMF distribution
with mean direction m0 and concentration parameter β0λk, and
p(λk) is a gamma distribution with shape parameter a0 and inverse
scale parameter b0. The prior parameters are modelled as fixed
hyperparameters that encode expectations about the observation
model. The values utilised in this work are reported in Section 3.3.

2.1.2. DPGMM

When Gaussians are used as the observation model, the mixture
model distribution parameters are the mean µk and precision Λk

of the Gaussian, as φk = {µk,Λk}. The prior, H , is chosen
as the conjugate distribution: the normal Wishart distribution
(NW(µ0, κ0, ψ0, ν0)) [31].

2.2. Variational inference

The complete model derived in the previous section includes latent
variables vk and φk that are associated with mixture components k
and zn that are associated with observations n. Since the posterior
distribution over latent variables in DPMM cannot be determined
in closed form, inference relies on approximate methods. The
current work focusses on variational methods that approximate
the posterior distribution with a tractable distribution called the
variational distribution. The variational distribution is chosen so
that an evidence lower bound (ELBO) can be evaluated under the
variational model, and the variational distribution parameters are
determined as parameters that maximise the bound [32]. Hence
variational methods convert the intractable inference problem into
a conventional optimisation problem.

The DPMM approaches evaluated in this work use the
variational distribution proposed in [6]. The latent variables
vk, φk, and zn are assumed independent and the stick-breaking
representation is truncated at truncation limit T so that the complete
variational distribution

q(z,v,φ) =

N∏
n=1

q(zn)

T−1∏
k=1

q(vk)

T∏
k=1

q(φk), (5)

where q(zn) are multinomial distributions, q(vk) are beta
distributions, and q(φk) have the same parametric form as prior
distributions p(φk). When observations are modelled as DPGMM,
the distribution parameters can be determined with a coordinate
ascent method as proposed in [6]. In practice, coordinate ascent
under the variational model in Equation (5) iterates between updates
to maximise ELBO with respect to q(zn) when q(v) and q(φ)
are fixed and updates to maximise ELBO with respect to the
component-conditioned variational distribution parameters when
q(zn) are fixed.

When the observations are modelled as a DPVMM,
direct optimisation is not possible because ELBO includes
E{ln ID/2−1(λk)} which does not have a closed-form expression
under the variational distribution q(λk). A common solution, used
for example in [9], is to include the concentration parameters λk as
hyperparameters so that the troublesome function f(x) = ln Iν(x)
is constant with respect to the variational model parameters and
E{f(x)} = f(x). The current work utilises the alternative solution
proposed in [11]. Here the function f(x) is substituted with upper
and lower bounds so that coordinate ascent can be used to derive
variational updates that optimise a lower bound to ELBO [11] (see
[33] for details). Alternative solutions also include sampling the
concentration parameter [10, 16].



3. EXPERIMENTAL SETUP

3.1. Evaluation

The speaker clustering experiments conducted in this work use
DPVMM, DPGMM and k-means with cosine distance to partition
i-vector data into clusters. The cluster solutions are evaluated (1)
based external measures that compare estimated partition to true
speaker classes and (2) based on application performance. The
external measures used in this work are adjusted Rand index (ARI)
[34] and an accuracy (ACC) measure calculated as geometric mean
between average cluster purity (ACP) and average speaker purity
(ASP) [5, Section 7.1]. In addition, cluster solutions are evaluated
as substitute to labelled parameter estimation data in PLDA-based
speaker verification [22]. The evaluation was conducted with
the standard PLDA and evaluation measures implemented in [25].
PLDA model trained based on labelled data is included in the
evaluation as reference. The evaluation measures include equal error
rate (EER) and minimum decision cost function (DCF). EER is
calculated at an operation point t where false acceptance and false
rejection errors occur at equal rate, whereas DCF emphasises false
acceptance errors, DCF(t) = FRR(t) + 100× FAR(t).

3.2. Data

The experiments were conducted on the NIST SRE 2014
development partition that contains 600-dimensional i-vector
features extracted from 4958 speakers [21]. Experiments
conducted with DPVMM and k-means used observations that were
normalised to unit length whereas experiments conducted with
DPGMM used observations that were compressed into D =
{50, 10} dimensions with PCA. The clustering methods were
evaluated on test datasets that included M = {10, 100, 500, 650}
speakers with most observations. The datasets included N =
{474, 2931, 10495, 12786} observations. The speaker verification
experiments were conducted on the complete dataset partitioned
as follows. The system parameters were determined based on the
dataset that included 650 speakers with most data. The enrolled
speaker set included 1031 speakers. The speakers included in this
set had recorded 10–15 utterances. 5 utterances were used to model
the speaker, as in [21, 23] and the rest were used test data. 3277
impostors with 1–10 utterances were also represented in the test
dataset.

3.3. Methods

The component-conditioned distribution parameters in DPVMM and
DPGMM were modelled as random variables with prior distributions
discussed in Section 2.1.1–2.1.2. The prior parameters in DPVMM
were set as follows. The mean direction in prior distribution
p(µk|λk) was set to the observed mean µ0 =

∑
n xn/||

∑
n xn||

while β0 was set to 0.01 to indicate a low trust on the prior mean
direction. The prior distribution for concentration parameter was
chosen to favour unconcentrated solutions: the gamma distribution
shape parameter was set to 1 and the inverse scale parameter was set
1/50. DPGMM component means and covariances were modelled
with prior distribution NW(µ0, κ0, ψ0, ν0) whose parameters were
set similar to those recommended in [31]: µ0 and ψ0 were set to
the dataset mean and precision, κ0 = 1, and ν0 = D + 2. The
concentration parameter α was fixed to 1.

DPVMM and DPGMM posteriors were approximated with a
truncated variational model, and experiments were conducted with
truncation limit T = 5000 unless otherwise mentioned. The

Fig. 1. Speaker clustering performance with M = {10, 100, 500}
speakers, based on accuracy (bars) and ARI (-).

model parameters were initialised based on observations assigned
to clusters at random or based on k-means solution, and variational
updates were continued until the difference between evidence
lower bound in consecutive iterations did not exceed 0.001 per
observation or when 500 iterations were reached. For evaluation,
observations were assigned to clusters and labelled based on
variational distribution probabilities q(zn). Since optimisation can
converge to local maxima, experiments were repeated 20 times.

The experiments were conducted in MATLAB with variational
DPVMM and DPGMM implementations1 that are made available
under an open-source license. Related to the DPVMM
implementation, we note that while the first-order approximation
proposed in [11] (Section 2.2) makes the evidence lower
bound and parameter updates calculable, Iν(u) is still an issue
when calculations are implemented in finite precision. The
implementation evaluated in this work uses both MATLAB function
besseli and an approximation based on the simple bound
proposed in [35]. The bound is substituted when besseli does not
produce a finite value. The speaker verification experiments were
conducted with FASTPLDA MATLAB implementation [25]. PLDA
model was used with 300-dimensional speaker and channel latent
variables and 20 iterations were used in training.

4. RESULTS

The mean accuracy and ARI calculated based on 20 random
initialisations for 10, 100 and 500 speakers are reported in Figure 1.
DPVMM and k-means were evaluated on full i-vector features,
and DPGMM on features compressed to 50 and 10 dimensions
using PCA. The k-means solutions were estimated with K = M
to have a baseline that uses a priori information regarding the
data set. Evaluation based on accuracy indicates that DPVMM
solutions are comparable to k-means solutions, whereas DPGMM
solutions are less accurate than k-means and DPVMM solutions in
most conditions. The exception is with the 10 speaker case where
DPGMM with 10-dimensional features resulted in competitive
accuracies. The feature dimension better suited to DPGMM
depends on the dataset: 1) 10-dimensional features resulted in better
DPGMM clusters than 50-dimensional features in the 10-speaker
condition, 2) the 50-dimensional features resulted in better DPGMM
clusters in the conditions with 500 speakers and 3) their performance
very close in the 100 speaker case. ARI has a similar trend but
punishes DPMMs for excess clusters.

Table 1 shows the results for the speaker verification
experiments, where the methods were used to cluster a 650-speaker

1http://github.com/shreyas253/variational NP BMM/



Table 1. Speaker clustering and verification performance.
ACP ASP ACC ARI EER DCF

labelled 1.00 1.00 1.00 1.00 1.67 0.35
k-means 0.61 0.60 0.60 0.55 2.70 0.43
DPVMM 0.52 0.58 0.55 0.40 2.53 0.46
DPGMM 0.13 0.43 0.24 0.01 5.77 0.64

dataset that was used to train PLDA parameters. DPGMM results
are reported with PCA D = 50 which was better than D =
10 for large M . As expected, PLDA trained on clustered data
does not achieve as good performance as the labelled supervised
case. When unsupervised approaches are used, speaker verification
results improve when the cluster solution is improved, so that the
best results are achieved with k-means and DPVMM clustered
data. However, while k-means clusters are evaluated as better than
DPVMM clusters, DPVMM clustered data resulted in lower EER.

The previous experiments used DPVMM and DPGMM with
random initialisation and fixed truncation limit. Experiments with
DPVMM based on random and k-means initialisation at T =
{1000, 2000, 5000} are reported in Table 2. Experiments were
conducted on the 650-speaker dataset, and the truncation limit T
was also used as K in k-means initialisation. The results show
that DPVMM with k-means initialisation (Table 2 (c)) resulted in
better cluster solutions than DPVMM with random initialisation
(Table 2 (b)). However, k-means initialisation also makes DPVMM
results depend on T so that the best results are achieved when
T = 1000, while cluster solutions calculated based on random
initialisation are comparable across T . K-means initialisation was
also tested on DPGMM, but in this case the DPGMM did not update
the solution found by the k-means (Table 2 (a)).

5. DISCUSSION AND CONCLUSIONS

This paper compared variational DPVMM and DPGMM in speaker
clustering and verification task using i-vector features. The
comparison indicates that despite the approximations required to
make variational inference tractable, DPVMM can produce more
accurate speaker clusters than DPGMM. Moreover, while the
DPMM approaches had no information on how many speakers
are represented in the data, DPVMM solutions were able to
compete with the k-means -based reference solutions calculated
using information on the correct number of speakers. While
DPVMM generally performed well, DPGMM solutions were also
comparable to k-means solutions in the 10-speaker condition when
10-dimensional features were used. However in the other conditions,
DPGMM could not model the data properly, and better results
were achieved with DPVMM and k-means. We also observed that
DPVMM performance can be improved with k-means initialisation,
especially when K is close to M .

DPVMMs are expected to model i-vector data better than
DPGMMs since i-vectors are directional (see also [12]), but the
experiments show that this is not the case in the 10-speaker condition
when DPGMM is applied on 10-dimensional data. This indicates
that DPGMMs can model speaker clusters when i-vectors can be
mapped to low-dimensional features without too much information
loss. The observation is in line with previous work, as Shum
et al. [24] also described that GMM-based solutions were better
than or comparable to VMM-based solutions in i-vector-based
speaker-diarisation task with 3-dimensional features and less than
10 speakers. However, low-dimensional features cannot capture

Table 2. Speaker clustering performance of (a) k-means, and
DPVMM with (b) random and (c) k-means initialisation when the
number of k-means clusters equals to the truncation limit (K = T .)

K/T ACP ASP ACC ARI EER DCF
1000 0.75 0.55 0.64 0.60 2.63 0.40

(a) 2000 0.82 0.38 0.55 0.46 2.76 0.38
5000 0.91 0.17 0.39 0.20 2.95 0.36
1000 0.55 0.55 0.55 0.41 2.72 0.46

(b) 2000 0.54 0.58 0.56 0.43 2.57 0.45
5000 0.52 0.58 0.55 0.40 2.54 0.47
1000 0.60 0.66 0.63 0.58 2.47 0.41

(c) 2000 0.53 0.64 0.58 0.51 2.42 0.41
5000 0.50 0.61 0.55 0.43 2.38 0.44

differences between speakers in larger datasets such as datasets
needed to train PLDA parameters. GMM-based models are not
well-suited to model high-dimensional data, unlike VMMs which
handle this well since they work on cosine distance.

Related to comparison between DPGMM and DPVMM
approaches, the DPGMM experiments reported here used full
covariance matrices as proposed in [24]. To evaluate whether
this is a problem when less data is available per speaker, we also
experimented with more constrained covariances. While diagonal
or spherical covariances did not improve the performance, DPGMM
with task-optimised covariance parameters was able to outperform
DPVMM. A fixed concentration parameter could also be used in
the DPVMM, in which case there would be no need to use an
approximation on the variational lower bound. However, it is not
clear how the covariance or concentration parameter should be
optimised, especially in case cluster sizes could be expected to vary.
The current work thus focussed on more flexible solutions.

While evaluation focussed on comparison between estimated
clusters and speaker classes, cluster solutions were also evaluated
in a speaker verification task. These results indicated that when
labelled data is not available, speaker models can be reasonably
estimated based on the k-means or DPVMM solutions. However,
we also observed that EER and DCF cannot be predicted based on
cluster evaluation measures and that the same clustering solution
is not guaranteed to optimise both measures. For example, we
observed the best minimum DCF when the 650-speaker parameter
estimation data was partitioned into K = 5000 clusters with
k-means. This is potentially because DCF emphasises false
acceptance rate which could be easier to minimise when the
observations are oversegmented so that the estimated within-speaker
variation is small. Oversegmentation does not occur with DPVMM
since the number of clusters is inferred based on the observed data.

The current experiments focussed on i-vector data, but
the variational DPVMM updates and MATLAB implementation
presented in this work are expected to handle any high-dimensional
data that can be unit normalised and clustered based on cosine
distance. The variational method can also be easily adapted to work
with very large datasets using SVI [17]. DPVMMs should therefore
make a potential candidate also for other speech clustering tasks such
as the zero-resource systems for under-resourced languages [4].
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