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 Abstract—Modeling and prediction of temporal sequences is 

central to many signal processing and machine learning 
applications. Prediction based on sequence history is typically 
performed using parametric models, such as fixed-order Markov 
chains (n-grams), approximations of high-order Markov 
processes, such as mixed-order Markov models or mixtures of 
lagged bi-gram models, or with other machine learning 
techniques. This paper presents a method for sequence prediction 
based on sparse hyperdimensional coding of the sequence 
structure and describes how higher-order temporal structures 
can be utilized in sparse coding in a balanced manner. The 
method is purely incremental, allowing real-time on-line learning 
and prediction with limited computational resources. 
Experiments with prediction of mobile phone use patterns, 
including the prediction of the next launched application, the 
next GPS location of the user, and the next artist played with the 
phone media player, reveal that the proposed method is able to 
capture the relevant variable-order structure from the sequences. 
A comparison with n-grams and mixed-order Markov models 
shows that the sparse hyperdimensional predictor clearly 
outperforms its peers in terms of unweighted average recall and 
achieves an equal level of weighted average recall as the mixed-
order Markov chain but without the batch training of the mixed-
order model.    
 
Index Terms—machine learning, real-time systems, prediction 
methods, sequences, time series analysis	

I. INTRODUCTION 
his work concentrates on the prediction of discrete 
(categorical) sequences on computational platforms where 

iterative training is not feasible due to limitations in data 
storage or computational power. For instance, prediction of 
user behavior from mobile phone sensors and states is a task 
with a large amount of potentially useful data, but with only 
limited possibilities for pre-training of the predictive models 
due to user-specific differences in the behavior. By using 
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incrementally learning predictive algorithms that scale up to 
potentially large and a priori unknown representational spaces 
while using finite pre-allocated computational resources, the 
models could be learned on the fly as more and more data is 
observed. Moreover, one-shot learning from individual 
episodic instances would be desirable if the amount of training 
data is very low. 

 In order to accomplish the prediction problem, this work 
proposes a method based on sparse hyperdimensional coding 
[1] of a sequence structure. The idea is to represent the 
previously observed history of each possible sequence state 
using a single vector of a very large dimensionality – a sort of 
rich prototype for the preceding context of the state. In this 
vector, the typical preceding states and their precise temporal 
ordering are represented in a compositional manner. The 
prediction of the next most likely state is achieved by building 
a similar compositional vector representation from the 
currently observed sequence and measuring the similarity of 
this vector to the previously learned context vectors of each 
possible future state. The state corresponding to the most 
similar context vector is then chosen as the hypothesis for the 
next sequence state.  

This type of compositional coding provides a natural means 
of representing variable order structure in the data, i.e., the 
prediction is based on the overall similarity of the situation at 
different distances in the sequence history instead of using 
fixed conditional probabilities based on precisely observed 
preceding states, as in standard Markov processes. If the 
current sequence has only partial similarity to the previously 
learned structure, only the similar parts are automatically used 
in the prediction process. In comparison to earlier work on 
hyperdimensional predictive methods [2,3], the current work 
describes a non-parametric mutual-information based method 
for weighting observations at different temporal distances in 
the compositional representation, leading to enhanced 
performance in the prediction process for sources that do not 
follow first-order Markov statistics. 

The proposed sparse distributed predictor (SDP) is 
evaluated by using it to predict real life mobile phone user 
data [4] including application launch logs, sequences of GPS 
locations, and music playback logs. The experiments show 
that the SDP clearly outperforms all studied Markov-process 
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baseline methods in the tasks when measured in terms of 
unweighted average recall, and obtains an equal level of 
performance with the mixed-order Markov model in weighted 
average recall but with purely incremental (non-iterative) 
training. However, in comparison to more powerful state-of-
the-art methods such as long short-term memory (LSTM) 
networks [5] or their deep variants [6], the present method is 
unable to efficiently solve some of the more complex long 
time lag problems (see [5] for examples). This is the cost 
associated with purely incremental training and the absence of 
sensitive hyperparameters that would have significant impact 
on the system performance across different prediction tasks.  

The paper is organized as follows. First, a brief introduction 
to the standard solutions in sequence prediction is given in 
section I.A, followed by a review of previous research on 
sparse hyperdimensional coding in sequence modeling. 
Section II describes the SDP predictor. Section III describes 
the experimental setup, the baseline methods, and the results 
from the prediction experiments. Finally, a discussion and 
conclusions are given in the final section.   

A. Prior art  
Although numerous learning algorithms can be used for 

discrete categorical prediction, a comprehensive review of the 
existing work is way beyond the scope of this paper. Instead, 
the aim here is to provide a number of examples of how the 
dependencies at different temporal distances in sequences 
have been utilized in the prediction task in the context of 
Markov models and how sparse distributed coding has been 
applied so far to the coding of sequential structures.  

In discrete sequence prediction, the sequences may 
originate from a multivariate time series that are vector 
quantized into a discrete form through clustering or state-
space partitioning, or it may be categorical in nature (e.g., 
genomic sequences or words of a language). The basic 
problem is to infer the most likely next state wt+1 of a discrete 
sequence X = {w1, w2, …, wt}, where wt is the most recently 
observed state and all states belong to a finite set of A unique 
states (wi ∈ {1, 2, …, A}). Typical solutions assume that the 
next state is only dependent on m previous observations Xcontext 
= {wt-m+1, wt-m+2, …, wt}, corresponding to a Markov process 
of the same order. On this basis, the most straightforward 
approach is to model the next state as a discrete conditional 
distribution, or n-gram (with n = m+1), of the form 

P(wt+1 | wt, wt-1 , …, wt-m+1)  (1) 
A maximum-likelihood solution for the probabilities can be 

derived directly from the counts of state joint-occurrences in 
the data. Although efficient for many problems such as 
language models in speech recognition [7], the n-grams have 
two inherent problems: 1) the order of the n-gram should 
ideally correspond to the order of the process generating the 
data or otherwise information is lost and 2) the number of 
parameters in an n-gram model grows exponentially as a 
function of the n-gram order. In practice, the n-grams that can 
be reliably estimated from typical finite data sets are limited to 
relatively low orders. In addition, the underlying source 
generating the data may not be a truly fixed-order Markov 

process, but the optimal n-gram length may vary across 
sequence position, making fixed-order model an inaccurate 
descriptor of the process.  

In order to overcome the limitations of the standard n-
grams, numerous improvements have been proposed to 
capture the long-distance temporal dependencies in sequences. 
In the so-called back-off models [8], n-grams of various orders 
are first estimated from the training data. During the 
prediction (or sequence probability estimation), when faced 
with a rarely observed n-gram of a high order, the probability 
of the n-gram is interpolated from lower order n-grams whose 
probabilities are known more reliably. Although successful in 
combining information from n-grams of different orders, the 
smoothing process used in the back-off models may cause loss 
of information regarding the sequence structure [9].  

Mixed-order Markov chains [9] have been proposed to 
combat the problem of smoothing in the back-off models. In 
the mixed-order Markov model, the n-grams are replaced by a 
set of skip-k transition matrices (bigrams) M(wt-k, wt+1) so that 
the probability of a state wt+1 is computed as 

P(wt+1 |wt,...,wt−m+1) = λk (wt−k )
k=0

m−1

∑ Mk (wt−k,wt+1)...

[1−λ j
j=0

k−1

∏ (wt− j )]
 (2) 

i.e., as a set of predictions from a number of different 
temporal lags k, where the lag-specific predictions depend on 
the transition parameters Mk(w1, w2) and the mixing weights 
λk(w). Both the transition matrices and the mixing weights are 
iteratively estimated using the EM algorithm. The parameters 
Mk can be initialized from the raw frequency-based lagged 
bigrams that already provide a solid starting point for the 
model (see [9] for details). When performed in this manner, 
the prediction is no longer dependent on an exact match in the 
sequence history up to the specified model order, but partial 
similarity is sufficient to provide finite probability estimates 
for the next state. Saul & Pereira [9] show that the mixed-
order model clearly outperforms the standard back-off n-gram 
model [8] in the context of language models for speech 
recognition. This is mainly due to its ability to provide a finite 
probability for any n-gram whose one or more bi-gram 
components have occurred in the training data and due to the 
ability to utilize long-distance dependencies in the data when 
they exist. Also, the number of parameters in the mixed-order 
model increases only linearly as a function of model order in 
comparison to the exponential growth in the standard n-grams. 
The drawback of the mixed-order model is that the training 
has to be performed iteratively across the entire training data, 
requiring storage of the entire sequence history and making 
incremental updates to the model complicated. 

Mixed-order temporal structure is also captured in the so-
called mixture transition distributions (MTD) [10], where the 
formulation in Eq. (1) is represented in the form 

P(wt+1 |wt,...,wt−m+1) = λk
k=0

m−1

∑ M (wt−k,wt+1)   (3) 
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with the constraint ∑λk = 1. In other words, there is only 
one transition matrix M(w1,w2) and a set of lag-specific 
weights λk, and these parameters are optimized using 
constrained non-linear optimization. Due to the parsimony of 
the MTD model (only m+A2 parameters in comparison to the 
(A-1)Am parameters of standard n-grams), the model is fitted to 
data with small number of training samples or high state-space 
dimensionality. Berchold & Raftery [11] show that the model 
can outperform standard Markov chains in modeling wind 
direction and epileptic seizure data. Prinzie & Van den Poel 
[12] show similar results for the modeling of consumer 
purchasing sequence patterns.  

In the generalized MTD (GMTD) [11], the requirement for 
a single transition matrix is relaxed by having a different 
transition matrix for each lag, leading to the form 

P(wt+1 |wt,...,wt−m+1) = λk
k=0

m−1

∑ Mk (wt−k,wt+1)  (4) 

in which estimation of λk and Mk(w1,w2) can be performed 
with the EM algorithm or other iterative optimization methods 
(see [11]). This additional degree of freedom leads to further 
improvements in the prediction power on complex data as 
long as there is a sufficient amount of training data available 
for reliable estimation of the model parameters.   

Finally, in variable length Markov chains (VLMC) [13,14] 
the assumption is that the order of the Markov process 
changes across position in the data. Therefore the model order 
itself can be modeled as a function of the sequence history m = 
f(wt, wt-1, wt-2,…), and the higher-order parameter estimates are 
grouped together when their predictions of the future state are 
equal, leading to increased accuracy of the parameters. In [14], 
an efficient algorithm to estimate the variable length model is 
given. The authors also show the usefulness of capturing the 
variable order structure with the VLMC in the analysis of 
recurring structures from DNA sequences.  

In the context of the present work, the main issue with the 
higher-order Markov chain approximations described above is 
that they typically require iterative estimation of the model 
parameters. In some domains such as the presently 
investigated prediction of mobile phone use patterns, storage 
of all relevant training data may not be feasible. Therefore a 
purely incremental system would be beneficial. 

B. Sequence prediction with hyperdimensional vectors 
Incremental sequence prediction has already been 

previously studied in the context of hyperdimensional 
computing (HC). The idea in HC is to represent processed 
entities (symbols, values, objects, states) as random sparse 
vectors having a huge dimensionality, typically counted in 
thousands (e.g., d = 10000). Each represented element, say, a 
sequence state wi (e.g., a word of a language or GPS location 
of a phone user), is coded by a unique randomly generated 
hyperdimensional vector vi, from now on referred to as a 
hypervector. The values of the vector can all be randomly 
assigned (e.g., being +1 or -1 for a binary vector), or the 
vectors can be ternary with only a small number of non-zero 
±1 elements (e.g., 5% of all values) at randomly assigned 

positions [15, 16]. Moreover, distances between the vectors 
can be measured using a variety of metrics, typical metrics 
being either Hamming distance (for binary data) or dot 
product of the vectors. In all variants, the large dimensionality 
of such vectors leads to a number of interesting properties: 
First, the representations are highly robust against distortions 
and noise in the coding process due to the distribution of 
information across the entire vector length. Secondly, the 
distribution of the mutual distances between all possible 
random vectors is tightly packed around the mean of the 
distances. This means that the probability that a distance 
between any two randomly drawn vectors is notably smaller 
than the average distance in the vector space is extremely 
small1. This property of near orthogonality of random vectors 
leads to the practical property that the sparse coding can be 
used to represent sets of items as vector addition of the 
hypervectors of the items in each set (i.e., vset = vstate1+vstate2) 
without an increase in the dimensionality of the representation. 
Importantly, the combined set representation is similar to its 
components in the hyperspace, and therefore the individual 
items can still be recovered from the holistic representation 
(see [1]). Moreover, the similarity metrics of the vectors are 
maintained so that two sets with similar sub-components are 
similar to each other if their components are similar to each 
other. This applies even if the overall number of sub-
components differs between the vectors, providing a 
continuous measure of similarity (e.g., in terms of the dot 
product) that takes into account only those parts of the 
representation that are present in both vectors (so-called 
partial matching). Naturally, sets containing qualitatively 
different types of tokens (e.g., spoken words and visual 
objects) and sets of sets can all be combined into new 
hypervectors in a similar manner and the chosen metric is 
always applicable between the representations. Also, if 
required by the computational architecture, the sum vector can 
be rounded back to a binary or ternary vector without losing 
the basic functionality of the sum coding, although at the cost 
of coding efficiency. Since the early work of Kanerva [17], 
HC has been applied to numerous domains including, e.g., 
visual character recognition [18], cognitive software agents 
[19], speech recognition [20,21], robotics [22], pattern 
denoising [23], and naturally, sequence prediction [2,3,17]. 

In the earliest work on sequence modeling utilizing HC, 
Kanerva proposed a special memory architecture named 
sparse distributed memory (SDM) for learning of associations 
between hyperdimensional representations [17,24]. The basic 
idea in SDM is to use one input vector vi as a memory address 
that activates a small fraction of M hard-coded memory 
locations in the hyperspace sufficiently close to the given 
address (typically M >> 10000 when using pre-allocated 
addresses). Another input vector (content vector) vj is then 
                                                
1 Kanerva [1] gives an example with 10000–dimensional binary vectors: 
given any data point in the 10000–dimensional binary space, all other possible 
data points are, on average, 5000 bits away in the Hamming space. However, 
less than a thousand-millionth of the data points are closer than 4700 bits. 
This means that a vector with almost half of its bits randomized is still 
distinct, in practice, from any randomly drawn vector.   
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stored to each of these locations by using the vector addition 
principle. During recall, an address vector again activates a 
number of nearby memory slots and the memory output is 
obtained by taking the averaged result across all the activated 
slots. The motivation for SDM, together with the general 
benefits of HC discussed above, is its content addressability: 
representations can be retrieved from the memory based on 
only partial similarity, providing an inherent mechanism for 
generalization towards similar but not identical situations.   

In order to learn a sequential structure using the SDM, the 
memory can be operated in a heteroassociative learning mode 
where hypervectors corresponding to the preceding sequence 
states are associated to the currently observed state. For 
example, in order to learn a first-order sequential structure, the 
input vector vt+1 can correspond to a sequence state wt+1 while 
the address vector vt is derived from the previous state wt. In 
so-called k-folded learning, a separate SDM is trained for 
associations at each temporal lag vt-k à vt in order to utilize 
higher-order temporal information in the prediction [17]. This 
type of learning has been studied, e.g., in the modeling of 
service robot movement trajectories [22,26].  

Due to the additivity principle of the vectors, the context of 
multiple preceding states can also be coded as a single vector 
vcontext = vt + vt-1 +… + vt-m+1, possibly with each vt-k uniquely 
determined not only by the state identity, but also by the 
relative position (lag) of the state with respect to current time 
(e.g., as in a shift register; see [2]). However, the problem in 
both k-folded learning and in the single combined context 
vector is that the preceding states are not all equally important 
in the prediction task since the predictive value of a state 
typically diminishes as the distance between the states in the 
sequence increases. When the distance metrics are applied 
between sparse representations, the overall scale of the codes 
from the different lags will determine how much weight is 
given to each sub-component in the combined context vector. 
The problem is to a find a weighted representation of the 
history that can be associated with the next state vt+1 so that 
the prediction accuracy becomes maximal (see also Fig. 1): 

vcontext = λ0vt+ λ1vt-1 + … + λmvt-m+1  (5) 
Bose et al. [2] attempted to solve the weighting problem in 

SDM by setting geometrically diminishing weights to the 
history state codes. In their approach, the most recent state 
was represented with weight λ0 = 1 and the preceding states as 
λk = bk, where b is a constant weight. Their results with 
artificial symbol sequences showed that the use of lag-
dependent (shift register) coding of the previous states 
together with diminishing history weights leads to a better 
sequence prediction performance than using either of them 
alone. Snaider & Franklin [3] have also proposed the use of 
SDM for sequence prediction with geometrically diminishing 
weighting of the preceding states so that the weight coefficient 
is defined manually. The problem in both of these approaches 
is that the assumption of a geometric decay is arbitrary with 
respect to the real dependency of states at different temporal  

wt!1#
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vt#vt!1#vt!2#vt!3#

wt&wt!2#...# wt!3#wt!m+1& wt+1&

?#

...#

###vcontext=#λm!1vt!m+1###+##...##+"λ3vt!3##+#λ2vt!2##+""λ1vt!1##+###λ0vt#
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vector#

...#

 
Fig. 1. An example of the sparse coding process. Each history state wt-k of a 
discrete sequence X (bottom) is mapped onto a hyperdimensional sparse 
vector vt-k that is orthogonal with all the other sparse codes used. The overall 
history up to m previous elements is represented as a weighted sum vcontext of 
the corresponding sparse codes.  

 
distances and can only apply to the first-order Markov 
processes if the parameter b is properly set. Neither Bose et al. 
[2] or Snaider & Franklin [3] tested their systems with non-
artificial data of an unknown Markov order, and therefore the 
scalability of the approaches remains unclear. 

In addition to the absence of a satisfactory solution to the 
problem of history weighting, a major challenge in the 
practical application of the standard SDM is its computational 
complexity (O{NM} for accessing hard locations) and the 
problem of generating an optimal set of hard locations to the 
address matrix A if the data is not uniformly and randomly 
distributed across the entire space (see, e.g., [27,28] for 
possible solutions to the address problem). These challenges 
make the application of full-scale SDM non-trivial even with 
modern computers, not to mention mobile platforms with 
limited computational resources. 

However, SDM is not the only architecture that can utilize 
the benefits of HC. Random indexing (RI) [15,16] uses HC-
based representations to estimate the degree synonymy 
between words in text (Fig. 2). For a sequence of words X = 
{w1, w2, …, wL} (e.g., a text corpus), the left context of each 
word wt is defined as {wt-m, …, wt-1} and the right context as 
{wt+1,…,wt+m}. For each unique word wi in the sequence, there 
is a sparse hyperdimensional random vector vi associated with 
the word. Therefore, the left and right contexts of each word 
can be described as vcontext = vleft + vright = vw(t-m)+…+ vw(t-1) + 
vw(t+1)+…+ vw(t+m) (cf. Eq. (5)). The core of the RI is a memory 
matrix HAxd with a unique row for each possible word wi and 
the number of columns equal to the dimensionality of the 
hyperspace. In the beginning, H is initialized with all entries 
zero. For each occurrence of word wi in the training data, the 
corresponding context vector vcontext is computed and summed 
to the with row of H. As a result, the rows of H become 
descriptions of the typical contexts in which each word wj 
occurs. By normalizing the rows of H into unit vectors and 
computing S = HHT, a measure of the pair-wise synonymy of 
words S(wi ,wj) is obtained since the words with a similar 
meaning occur in similar contexts [15]. In comparison to 
latent semantic analysis (LSA) [29], RI allows fast word 
synonymy estimation without having to compute the singular 
value decomposition of a huge co-occurrence matrix. In the 
standard synonymy estimation with LSA, the word-context 
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Fig. 2. Schematic view of the standard RI [15]. The temporal context of each 
word wt is coded with a hypervector vcontext that represents the neighboring 
states wt-m…wt-1 and wt+1…wt+m . For all wt in the data set (t ∈ [m, L-m]), the 
corresponding context vectors are accumulated in the rows of H 
corresponding to each wt. As a result, each row represents the sum of contexts 
in which each possible word wi occurs. Contextual similarity (synonymy) of a 
word pair {wi, wj} is derived by normalizing the rows of H and computing the 
distance between the rows i and j using a chosen metric. In the web browsing 
predictor of [30], the context vector is formed from a set of contextual 
variables such as time, location, and previous web pages whereas each row 
represents a web page URL wi.  
 
co-occurrence matrix grows exponentially as a function of 
vocabulary size as the context of each word is defined in terms 
of other words. In RI, on the other hand, dimension of the 
context representation never increases from the original value. 

In [30], the RI-based computation is used to predict the 
most likely web page that a mobile phone browser user wants 
to visit next. Instead of explicitly modeling browsing as 
sequential behavior, the predictor simply combines different 
sources of information (e.g., current location, time, previous 
pages, and calendar) into a single hypervector vcontext without 
any weighting procedure (a bag-of-words representation) and 
models the occurrence of these context vectors during each 
visited URL by assigning a unique row wi in the H matrix for 
each URL. Similarly to the predictive work with the SDM, the 
major shortcoming of approach in [30] is the lack of a suitable 
weighting scheme that accounts for the varying importance of 
different information sources, and therefore effective 
utilization of the fine-grained temporal information from the 
preceding system states is not possible.  

In the current work, we extend the basic idea of 
hypervectors and RI in order to predict variable-order 
sequential data. More specifically, we use RI to model the 
history of preceding contexts of each possible state wi in a 
sequence and provide an information-theoretically motivated 
weighting scheme for the optimal usage of information in the 
preceding signal states. The proposed method is described in 
the following section in more detail. 

II. SPARSE DISTRIBUTED PREDICTOR 

A. Coding temporal context with mutual information 
weighted hypervectors 

In order to represent and predict the varying-order structure 
of sequences, hyperdimensional coding of states with mutual 
information-based weighting is utilized. The benefit of using 
hyperdimensional codes is that typical processed data is likely 
to be sparse, i.e., only a small fraction of all possible  
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Fig. 3. A schematic view of the SDP. Top: All preceding contexts of each 
sequence state wi are coded into hyperdimensional context vectors vcontext and 
accumulated in the corresponding rows of H during training. Bottom: During 
prediction, the current context vcontext is compared to the normalized memory 
matrix Hnorm and the best matching state wi is chosen as a hypothesis for the 
next sequence state.  

 
sequences will be observed in the data. In this case, d-
dimensional distributed vectors can approximate joint 
distributions of larger state spaces and longer temporal lags 
than the trivial use of strictly orthogonal codes (m x A >> d), 
making the approach scalable for potentially huge state spaces 
(e.g., language modeling) using a fixed amount of memory 
resources.  We use the basic idea of RI memory matrix to store 
the preceding context wt-m,…, wt of each state wt+1 and retrieve 
the most likely next state during prediction by comparing the 
current context and the previously learned context 
representations. For this to work, the context vectors vcontext 
must capture the structural information of the typical 
preceding states, including the state identities, their temporal 
ordering, and the relative importance of the states at different 
temporal distances in the history. Also, the vector 
representation should be robust so that it can generalize to 
only partially familiar sequences, and ideally, the quality of 
the representation should not critically dependent on the 
length of the temporal history included in the representation 
(the model order).  

The proposed method is also much faster than any SDM-
based approach for sequential prediction since the time-
consuming distance computations with a huge address matrix 
are not required. Prediction and training in SDM require 
O{Md} distance computations whereas training in RI does not 
require computation of distances between hypervectors at all, 
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and prediction requires only O{Ad} computations with A << 
M for any typical data set with alphabet size A.  

First, a mapping from each sequence state wt-k to a sparse 
hyperdimensional vector vt-k is defined so that vt-k = f(wt-k, k). 
Unlike the standard RI, a unique sparse vector is randomly 
generated for each possible sequence state wi and for each 
possible lag k ∈ {0, 1, 2, …, m} so that the same state wi 
obtains a different hypervector representation at different 
temporal lags with respect to the current time t (Fig. 1; cf. shift 
register idea in [2]). For notational simplicity, these lag-
specific vectors are referred to as vt-k (see Fig. 1). Now, a 
sequence of length L can be uniquely described using a sum 
vector vseq: 

      

€ 

vseq = vL−k
k=0

L
∑     (6) 

 
In the context of prediction, it is desirable to represent only 

a finite preceding context of the sequence up to a history 
length m. Also, as motivated earlier, the preceding states 
should receive weights corresponding to their predictive 
power. This leads to a formulation of the context vcontext at time 
t: 

      

€ 

vcontext = λk v t−k
k=0

m−1

∑    (7)  

In order to derive the lag-specific weights λk, the mutual 
information function (MI) [31] is utilized. The average MI at 
lag k is expressed as 

    

€ 

MIk = Pk (wi,w j )
i, j
∑ log2

Pk (wi,w j )
P(wi)P(w j )

 (8) 

In the equation, Pk(wi, wj) is the probability of a state pair 
{wi, wj} when wj is delayed by k elements with respect to wi. 
What the MI essentially measures is the amount of statistical 
dependency in the signal at different temporal lags k and 
accounts also for non-linear dependencies between signal 
states. The assumption in the current work is that the average 
statistical dependency at distance k equals to the average 
predictive power from that distance relative to other possible 
lags. Since the MI is systematically overestimated from finite 
length sequences, the following correction is made to the 
empirically estimated MI’ in order obtain the final lag-specific 
weights [32-34] (see also [35] and references therein): 

λk−1 =MI'k −
(A−1)2

2L
   (9) 

Note that since the goal is to predict wt+1 from wt, the 
reliability λ0 of the state wt is not MI0 but the standard bi-gram 
dependency MI1. Also note that for any non-deterministic 
process, the value of MI decays to zero as k increases. This 
provides a natural upper bound for the model order m used in 
the prediction since the use of information from longer 
distances in the history has no effect on the prediction result. 
In the special case of a first-order Markov process, the MI-
based weights decay in a geometric fashion similarly to the 
parameters in [2] and [3]. For all other temporal dependency 
structures, the MI provides a more accurate description of the 

predictive power of the preceding states than the geometric 
weighting scheme.   

B. Predicting from a hypervector memory 
Unlike the RI where the goal is to compute the synonymy 

of two words, the goal here is to predict the most likely next 
state of a sequence, i.e., to estimate the distribution of the form 
P(wt+1 | wt, wt-1, …, wt-m+1). In order to do this, a matrix H of 
size M x d is initialized similarly to the RI (Fig. 3). Then the 
preceding temporal context (“left context”) of each observed 
sequence state wt is computed from wt-m+1 up to wt using Eq. 
(7) and summed to the corresponding row of H defined by 
wt+1 as in the normal RI training. In this manner, the rows of H 
become overall compositional descriptions of the sequence 
histories for the states wi.  

In order to compute the non-normalized probability 
distribution p of next states, one simply computes the matrix 
product of the currently observed context vcontext and the 
memory matrix H, 

 
p = Hvcontext     (10) 

 
and chooses the state with the largest value of p as the 

hypothesis whypo for the next state: 
 

    

€ 

whypo = argi max{ p(wi)}   (11) 
 
The raw data in H basically provides a probability estimator 

for the next state that is dependent on the frequencies of state 
occurrences (i.e., a sort of pseudo-maximum-likelihood 
solution). However, normalization of the columns of H to unit 
vectors before applying Eq. (10) was found to slightly 
improve the average prediction accuracy. From now on, this 
column-wise normalized sparse distributed predictor will be 
referred to as SDP-c.  

Another possibility to normalize the data in H is to 
maximize the prediction accuracy of each individual state. 
This can be beneficial in applications where the successful 
prediction of rarely occurring events is more important than 
getting the most frequent states maximally correct (e.g., 
predicting when rarely used mobile phone user interface (UI) 
actions are needed if they reside deep in the UI menu 
hierarchy in comparison to the frequent actions). In order to do 
this, the rows of H are normalized into unit vectors, from now 
on referred to as the SDP-r variant of the algorithm. With this 
normalization, Eq. (10) essentially becomes comparable to the 
cross-correlation between the context history of a state in H 
and the current sequence context vcontext (whether vcontext is 
normalized to a unit vector or not does not affect the shape of 
the predicted state distribution but simply its scale). Naturally, 
the difference between SDP-r and SDP-c increases as the state 
frequency distribution becomes more different from a uniform 
distribution. 
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III. EXPERIMENTS 

A. Material 
Prediction of three qualitatively different types of mobile 

phone use data was studied in the experiments: clustered GPS 
locations, application usage, and media player records. All 
data were extracted from the Nokia Lausanne dataset that was 
collected during 2009 and 2010 from almost two hundred 
persons using Nokia N95 mobile phones [4]. All data consists 
of normal everyday use of the phones with the data collection 
and transfer software running in the background. The average 
data collection period per test subject was approximately one 
year. Since all of the data had been collected in advance 
instead of running a predictor on-line in the phone, there is no 
interaction between any predictor performance and the phone 
use patterns.  

For all data types, data from users with length less than L = 
200 samples or having less than A = 6 unique states were 
excluded in order to avoid ill-defined or trivial prediction 
problems. The chronologically first 80% of the available data 
points were always used for training of the prediction model 
while the remaining 20% were used to evaluate the prediction 
accuracy. The prediction models were always for user-specific 
data and no generalization or model combination across 
multiple users was attempted. 

In the Lausanne dataset, the GPS data has been collected by 
turning the GPS receiver on and off by using a number of 
system internal heuristics, leading to asynchronous sampling 
of the user location [4]. In order to represent phone user 
location in a discrete sequential form, the raw GPS data 
(latitude and longitude) were converted into points of interest 
(POIs). This was done by recursively splitting the two-
dimensional data cloud into two halves along the direction of 
the second principal component (covariance matrix 
eigenvector with the second largest eigenvalue) so that each 
half contains equal number of data points. After N splits, 2N 

regions were obtained in the feature space. All points of a 
single region were then used to compute the mean centroid of 
that region, and all GPS data points were assigned to the 
nearest centroid in terms of Euclidean distance (see [36]). The 
result is somewhat similar to the standard k-means clustering, 
but the process is much faster with a large amount of data and 
leads to a more uniform distribution of data points across all 
clusters. Temporally subsequent repetitions of the same POIs 
caused by a stationary phone user were removed from the 
sequences since the goal was to predict the most likely next 
location of the user. After pre-processing, the average number 
of GPS samples per test subject was 3385 (min 240, max 
36521, highly non-Gaussian distribution across different test 
subjects). GPS data exceeding the minimum of 200 data points 
were available from a total of 167 users. 

As for the application use, applications that were launched 
more than 20 times during the recording period were included 
in the application dataset. However, screensaver and standby 
applications were excluded from the sequences since they 
reflect automatic behavior of the phone and had a very high 
frequency of occurrence compared to user initiated 

applications. Each application identifier was assigned with a 
unique integer value, thereby converting the application use 
logs into discrete temporal sequences from a finite alphabet. 
The average number of applications per user was 18.0 
(standard deviation ± 6.8) and the average number of all app 
uses was 4017 (± 2951). Typical frequently used applications 
included, e.g., text messaging, contacts, telephone, log, 
camera, calendar, clock, web browser, maps, e-mail, gallery, 
settings, and music player. Application-use data were 
available from a total of 171 users. 

In the prediction of music listening patterns, the original 
phone logs contain a sequence of songs played by the user 
during the data collection period. Each song is associated with 
metadata containing the artist name, album title, and the track 
title. In the current study, only the artist information was used 
so that each state of the media player sequence corresponds to 
a unique artist played with the phone. Moreover, subsequent 
repetitions of the same artist were removed in order remove 
the effects of listening to an entire album at once and to 
simulate the process of providing suggestions of the next artist 
to the user. The mean number of artists per user was 27.0 (± 
16.2) with the mean number of samples being 1039 (min 217, 
max 7047). Media player data were available from a total of 
32 users.  

B. Evaluation 
The prediction accuracy was measured in terms of 

unweighted average recall (UAR) and weighted average recall 
(WAR). UAR is defined as the average of class specific 
prediction accuracies (the mean of a confusion matrix 
diagonal) whereas WAR is simply the ratio of correct 
predictions to the total number of predicted states. UAR 
provides a more balanced view of the prediction accuracy for 
highly uneven class distributions and is therefore often more 
beneficial in the evaluation of pattern recognition algorithms 
(e.g., [37]). In the prediction of mobile phone application use, 
UAR better reflects the system’s ability to recognize situations 
where rarely used applications are needed, whereas a 
relatively high WAR can be achieved by simply predicting the 
most frequent applications correctly (in principle, if an 
application such as “browser” is used 60% of the time, a WAR 
of 60% can be achieved by always guessing <browser> for the 
next application even if there are tens of other possibilities). 
On the other hand, WAR is a straightforward measure of how 
often the prediction is correct in total.  

UAR and WAR were estimated separately for each phone 
user in the data and the averages of the measures were 
computed across all users. For application and media player 
use, the evaluation was also performed by studying how often 
the true next state is within the five best hypotheses provided 
by the algorithm. This type of accuracy is relevant in 
applications where the phone user is provided with several 
suggestions for the next apps or pieces of music. 

C. Compared baseline methods 
The two SDP variants were compared against the standard 

bi-, tri-, and four-gram models as n-grams are the most 



 8 

straightforward and computationally efficient way to learn a 
predictive model for Markov processes of a given order. N-
gram probabilities were estimated from the state frequencies 

 

    

€ 

P(wt+1 | wt ,wt−1, ...,wt−n+2) =
C(wt+1,wt ,wt−1, ...,wt−n+2)

C(wt ,wt−1, ...,wt−n+2)
(12) 

 
where C(wt) is the frequency of state wt occurrence in the 

training data. Even though the n-grams are simple and suffer 
from the exponential increase in parameters for higher order 
modeling, they are still widely used in various predictive 
applications due to their simplicity and computational speed. 
Since the idea here is to compare SDP to a fixed-order model, 
no n-gram smoothing was performed and previously unseen n-
grams always led to a random prediction during testing. 

In addition, the mixed-order Markov chain model [9] was 
used as a state-of-the art baseline system for modeling 
variable-order structure (see section I). Note that the mixed-
order model is no longer incremental, but provides a reference 
performance level of an approach that is known to be capable 
of capturing varying-order temporal structure. In the current 
work, the transition probabilities of the model were always 
initialized from lagged bi-gram probabilities and the mixing 
weights λk(w) were initialized as a uniform distribution. The 
EM algorithm was always run for 6 iterations as it was found 
to provide a reasonable trade-off between log-likelihood 
convergence on the training data and generalization of the 
model to the test data.  

A. Results 
Results for all data types were computed with SDPs using a 

vector dimensionality d = 2000 with 5% of vector values non-
zero (±1). Figs. 4 and 5 show the application prediction 
performance for 1 and 5 best hypotheses, respectively. Figs. 6 
and 7 show GPS POI prediction accuracy for 8 and 16 POIs, 
respectively. Finally, Figs. 8 and 9 show media player 
prediction accuracy for 1 and 5 best hypotheses.   
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Fig. 4. Application prediction performance as a function of model order (1 
best hypothesis). The left panel shows the unweighted average recall (UAR) 
and the right panel shows the weighted average recall (WAR). The solid line 
denotes the SDP-r performance whereas the dashed line denotes the SDP-c 
performance. The dash-dotted line shows the mixed-order Markov model 
performance and vertical bars show n-gram performance for bi-, tri-, and four-
grams. Note that model order m on the x-axis refers to the Markov process 
order, not the n-gram order that is n = m+1. Standard deviations of the SDP 
variants across multiple trials with different random hypervector assignments 
are shown with horizontal bars.  
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Fig. 5. Application prediction performance  (5 best hypotheses). The left panel 
shows the UAR and the right panel shows the WAR. The solid line denotes 
the SDP-r performance whereas the dashed line denotes the SDP-c 
performance. The dash-dotted line shows the mixed-order Markov model 
performance and vertical bars show n-gram performance for bi-, tri-, and four-
grams. 
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Fig. 6. GPS prediction performance for 8 POIs. The left panel shows the UAR 
and the right panel shows the WAR. The solid line denotes the SDP-r 
performance whereas the dashed line denotes the SDP-c performance. The 
dash-dotted line shows the mixed-order Markov model performance and 
vertical bars show n-gram performance for bi-, tri-, and four-grams. 
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Fig. 7. GPS prediction performance for 16 POIs. The left panel shows the 
UAR and the right panel shows the WAR. The solid line denotes the SDP-r 
performance whereas the dashed line denotes the SDP-c performance. The 
dash-dotted line shows the mixed-order Markov model performance and 
vertical bars show n-gram performance for bi-, tri-, and four-grams. 
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Fig. 8. Media player prediction performance (1 best hypothesis). The left 
panel shows the UAR and the right panel shows the WAR. The solid line 
denotes the SDP-r performance whereas the dashed line denotes the SDP-c 
performance. The dash-dotted line shows the mixed-order Markov model 
performance and vertical bars show n-gram performance for bi-, tri-, and four-
grams. 
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Fig. 9. Media player prediction performance (5 best hypotheses). The left 
panel shows the UAR and the right panel shows the WAR. The solid line 
denotes the SDP-r performance whereas the dashed line denotes the SDP-c 
performance. The dash-dotted line shows the mixed-order Markov model 
performance and vertical bars show n-gram performance for bi-, tri-, and four-
grams. 

 
In the case of SDP, the mean and standard deviation of the 

performance was measured across 5 runs of the algorithm in 
order to see how much variation is introduced by the random 
generation of the state and lag specific hypervectors. The 
standard deviations are denoted with horizontal bars in each 
figure. N-grams and the mixed-order Markov model are 
deterministic for a given set of data and therefore no standard 
deviations are reported for them.  

As can be observed from the results, the two variants of the 
SDP-predictor perform notably differently in terms of UAR 
and WAR. SDP-r clearly outperforms all other methods in 
terms of UAR. The only exception is the case of predicting the 
five best hypotheses for media player usage where SPD-r 
achieves a similar level of performance with the SDP-c and 
the mixed-order Markov model. On the other hand, SDP-c and 
the mixed-order Markov model perform well in terms of WAR 
where SDP-r performs poorly except for the media player 
data. This is an expected result due to the absence of overall 
state-frequency information in SDP-r, comparable to the 
absence of a prior in a Bayesian naïve predictor. In terms of 
WAR, bi- and tri-grams provide solid baseline performance 
levels for application and GPS prediction, and they are not 
greatly exceeded by the variable order models. The situation is 
different in the media player data where the n-grams fall far 
behind the other methods. Notably, a model order of as high as 
m = 4 seems to provide optimal results in the media player 

data set, demonstrating the power of variable-order structure 
modeling for complex asynchronously sampled data.  

Fig. 10 shows a comparison of MI-based weighting (current 
work) and the geometrically diminishing weights proposed by 
Bose et al. [2] and Snaider & Franklin [3] in the media player 
prediction task. The geometric weights λk = λ0

k were 
optimized to minimize their distance to the MI curve so that, 
in the case of a first-order Markov process, the fit would be 
perfect between the MI and the geometric decay. As can be 
seen from the results, the geometric weighting scheme is 
unable to capture all the relevant information from higher lags, 
performing significantly worse than the MI variant. 
Importantly, the SDP variants are relatively stable with 
increasing model order even beyond the optimal order in terms 
of performance. This suggests that the MI-based weighting of 
information from different lags is successful in utilizing long-
distance dependencies, and a precisely optimized model order 
is not critical for reasonable performance. As an exception to 
this, the UAR performance of the SDP-c variant seems 
sometimes to drop notably above the optimal order (Figs. 4–
9). The reason for this is currently unknown but suggests that 
the weighting scheme could be still improved. For example, if 
the SDP were modified to use an iterative training scheme, the 
weights λk initialized by the MI could be optimized for 
prediction performance on the training data set using some 
optimization procedure. However, it is evident from the results 
that the SDP-r variant should be preferred if high UAR is 
desired. Also, a combination of SDP-r and SDP-c could be 
utilized. As for the mixed-order Markov model, the 
convergence to the optimal performance level is guaranteed by 
the EM algorithm even for “too high” model orders as long as 
there is a sufficient amount of training data available. 
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Fig. 10. Comparison of media player prediction performance for MI-based 
history weights and the geometrically diminishing weights according to [2,3], 
denoted with SDP-r/c-geo. The left panel shows the UAR while the right 
panel shows the WAR.  

 
The effect of hypervector dimensionality and sparsity was 

also studied. Fig. 11 shows the SDP-r prediction performance 
on the media player dataset as a function of vector 
dimensionality d with 5% of non-zero elements in each vector. 
As can be seen from the figure, the performance 
monotonically increases and finally saturates with an 
increasing dimensionality. This confirms that the desired 
properties of the hyperdimensional spaces become apparent 
when the dimensionality starts to approach thousands (cf. [1]), 
whereas the sum-code representations fail to maintain details  
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Fig. 11. Media player prediction performance as a function of hypervector 
dimensionality d with SDC-r and model order m = 5. The solid line denotes 
the UAR (%) and the dashed line denotes the WAR (%).  
 
of their components with low-dimensional random mappings. 
On the other hand, the vector sparsity (the number of non-zero 
elements in a vector) did not affect the SDP performance as 
long as the number of non-zero elements was between 5% and 
100%. As the proportion of non-zero elements approaches 
zero, the chance risk of creating similar hypervectors for 
different states increases. However, this problem is not very 
pronounced with the relatively small number of unique 
sequence states analyzed in the current study.    

Fig. 12 shows the computation times of the compared 
methods on the media player dataset. The mixed-order 
Markov model and SDP both have complexity of O{bm} as 
the number of parameters increases only linearly as a function 
of model order. However, at least in a naïve implementation of 
the algorithm, the constant b of the mixed-order model is 
much larger due to the iterative batch processing of the entire 
training data while the SDP only processes each data point 
once. In Fig. 12, the computational complexity of the n-grams 
increases significantly due to the exponentially increasing 
number of parameters with an increasing model order. 
However, high-order n-gram computational costs can also be 
alleviated with properly optimized data structures for n-gram 
representation. Importantly, the overall processing time for the 
SDP is realistic even for a mobile phone platform and can be 
further facilitated by specialized software or hardware 
solutions for parallelizing the hyperdimensional memory and 
operations and by making use of the sparsity of the matrices 
(e.g., [38,39]). 

In addition to the mobile phone data experiments, SDP was 
also tested in two long time lag prediction problems described 
in the context of LSTMs [5].  

In the first experiment, namely the task of two widely 
separated symbols (see [5]), the goal of the algorithm is to 
classify sequences into four classes. All sequences start with 
symbol B and end to symbol E, otherwise consisting of 
randomly sampled symbols {a,b,c,d} except for two special 
symbols at positions t1 and t2 that are randomly set to either X 
or Y. All sequences are 100-110 elements long and t1 is 
always randomly chosen between 10 and 20 while t2 is 
between 50 and 60. Depending on the identity of the symbols 
at t1 and t2, each sequence belongs to one of the four possible  
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Fig. 12. Average computation times of the compared algorithms as a function 
of model order (average time in seconds spent for training and recognition of 
media player data from a single mobile phone user). The algorithms were run 
in the MATLAB R2012b environment using 4x3.2 GHz Intel Xeon processors 
using fast but not explicitly parallelized code. The results should not be taken 
as the final word for computational costs of different algorithms but simply 
shows the scale of SDP speed in comparison to the other approaches.  
 
classes (XX à c1, XY à c2, YY à c3, YX à c4). The goal of 
the algorithm is to recognize the correct class of each test 
sequence, given a set of previously observed training 
sequences. When SDP with maximum lag of m = 50 and 
dimension d = 2000 was applied to this task, it achieved a 
correct classification rate of 75% after 30000 training samples 
(25% chance level) and then saturated in performance. In 
comparison, a nearly perfect classification rate is achieved 
with LSTMs after 30000 sequences, but with a manually 
tailored network architecture for the given problem.  

In the second long lag experiment, the goal was to learn 
embedded Reber grammars [40], that is, finite state automata 
that subsume the automata itself in a recursive manner. While 
SDP successfully learns standard (non-embedded) Reber 
grammars, it fails in the embedded grammar task unlike 
LSTM that can solve the problem. This failure is likely caused 
by the highly non-linear dependencies in the data, practically 
meaning that individual symbols can have deterministic 
effects on the sequence after several and varying number of 
intermediate stochastic steps. As SDP cannot differentiate 
between variability in symbol identity at a specific lag from 
variability in lags at which a specific symbol occurs, it cannot 
learn perfect predictive models for clearly non-Markovian 
processes such as the embedded Reber grammar. Note that 
also standard (non-LSTM) recurrent networks and n-grams 
fail in this task (see, e.g., [5]). 

IV. DISCUSSION AND CONCLUSIONS 
A new method to predict sequential data using 

hyperdimensional coding is proposed in this work. The 
approach can be easily applied to different prediction tasks as 
it is very robust with respect to its hyperparameters. The MI-
based temporal weights are automatically derived from the 
learning data, leaving the dimension of the hyperspace as the 
only free hyperparameter. Even for the dimensionality, only 
graceful degradation will be observed from the ideal model 
performance when the dimensionality is decreased below the 
minimum optimal level.  

The method has two different ways of normalizing the 
memory used for prediction, leading to optimization of either 
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unweighted or weighted average recall. The experiments show 
that the incremental algorithm is able to utilize high-order 
temporal structure when it exists, and thereby achieves a 
performance level that compares well against the iterative 
mixed-order Markov model. 

Due to its incrementality and tolerable computational 
complexity, the SDP seems a promising choice for real-time 
applications where storage or transmission of the entire data 
history is expensive, ruling out methods based on iterative 
batch training such as the majority of the recurrent neural 
network architectures. Since both SDP-r and SDP-c variants 
are applicable using the same previously learned statistics of 
the sequential data (the non-normalized H matrix), the 
predictor can provide hypotheses for the next state that either 
maximize UAR or WAR on demand. This type of versatility 
can be beneficial, e.g., in recommendation engines in mobile 
phones where the user can be provided with a number of 
choices that he or she would like to perform next with the 
phone. In these cases, the most frequent operations should be 
readily available (cf. WAR), but the system should also be 
sensitive to situations where rarely used operations are 
required as they might be located very deep in the UI 
hierarchy (cf. UAR). By showing a number of SDP-r- and 
SDP-c-based recommendations, both of these goals can be 
achieved simultaneously. Usage of the SDP in this type of 
application is also one of the topics of future studies.   

Although the current experiments were limited to the 
prediction of mobile phone user patterns using finite state 
spaces, the coding capacity of the hyperdimensional spaces 
should make SDP also beneficial in other applications such as 
language models of automatic speech recognition (see [41] for 
capacity analysis). The study shows that the hyperdimensional 
coding can be used to represent complex and variable distance 
temporal dependencies in an efficient and mathematically 
compact manner. In principle, the same framework should 
scale to the use of other contextual information sources that 
are additively coded to the hypervectors representing the 
contextual states. For example, the app prediction of the 
current work can benefit from other information, such as, the 
time of day or location of the user (see, [42]), although these 
aspects were intentionally left out from the current study for 
the simplicity of presentation. Also, the current method of 
weighting different information sources according to their 
statistical dependency can be combined with the other 
methods used with hyperdimensional computing.  

The major limitation in SDP is that it still only learns an 
approximation of Markov-processes up to some finite order 
using episodic descriptions of the sequences. This means that 
the algorithm cannot capture complex long-distance 
regularities such as those present in embedded grammars (see 
[5,40]) that can be successfully solved using LSTMs. Since 
weighting of past information in prediction is based on the 
average temporal structure (MI) of the data, the model is 
unable to take into account non-Markovian characteristics 
such as grammar-like recursions that might be responsible for 
generating the data. On the other hand, the existing state-of-
the-art approaches also require careful model architecture 

selection and initial parametrization in order to successfully 
solve these tasks (see [5]), making their applicability to 
different prediction tasks non-trivial for naïve users or without 
any a priori knowledge of the data properties. 

Interestingly, Plate [43,44] has shown how nested 
hierarchical compositional structures can be represented 
within the hypervectors by using circular convolution, and 
how these representations are similar to the analogical 
reasoning in humans. In [45], it is shown how distributed 
representations can be used to enhance the performance of 
information retrieval in knowledge-based systems. These links 
provide interesting possibilities for extending the simple linear 
state history representation into more comprehensive 
contextual state representations that utilize hierarchical 
complex information from a number of different information 
sources. This may also help the approach to overcome the 
current limitations in learning more complex grammar-like 
properties of the input data. 

Finally, the current work has only concentrated on the 
modeling of discrete states with their sparse codes being 
pseudo-orthogonal with each other. With a proper mapping, 
the hyperdimensional coding also enables similarity-based 
computations where the hypervectors that have a similar 
meaning or similar value in the original signal space (e.g., 
neighboring GPS coordinates) can be represented using 
partially overlapping sparse codes. This would allow the 
utilization of the second primary advantage of 
hyperdimensional spaces, namely the content addressability, 
in multivariate feature spaces in addition to the presently 
investigated discrete domain.  
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