
 1

Sequence Prediction with Sparse Distributed
Hyperdimensional Coding Applied to the
Analysis of Mobile Phone Use Patterns

Okko J. Räsänen and Jukka P. Saarinen

	

 Abstract—Modeling and prediction of temporal sequences is

central to many signal processing and machine learning
applications. Prediction based on sequence history is typically
performed using parametric models, such as fixed-order Markov
chains (n-grams), approximations of high-order Markov
processes, such as mixed-order Markov models or mixtures of
lagged bi-gram models, or with other machine learning
techniques. This paper presents a method for sequence prediction
based on sparse hyperdimensional coding of the sequence
structure and describes how higher-order temporal structures
can be utilized in sparse coding in a balanced manner. The
method is purely incremental, allowing real-time on-line learning
and prediction with limited computational resources.
Experiments with prediction of mobile phone use patterns,
including the prediction of the next launched application, the
next GPS location of the user, and the next artist played with the
phone media player, reveal that the proposed method is able to
capture the relevant variable-order structure from the sequences.
A comparison with n-grams and mixed-order Markov models
shows that the sparse hyperdimensional predictor clearly
outperforms its peers in terms of unweighted average recall and
achieves an equal level of weighted average recall as the mixed-
order Markov chain but without the batch training of the mixed-
order model.

Index Terms—machine learning, real-time systems, prediction
methods, sequences, time series analysis	

I. INTRODUCTION
his work concentrates on the prediction of discrete
(categorical) sequences on computational platforms where

iterative training is not feasible due to limitations in data
storage or computational power. For instance, prediction of
user behavior from mobile phone sensors and states is a task
with a large amount of potentially useful data, but with only
limited possibilities for pre-training of the predictive models
due to user-specific differences in the behavior. By using

 Manuscript received August 6, 2014. Revised version received April 22,

2015. This research was funded by Tekes and Tivit joint program Data to
Intelligence (D2I) and by Academy of Finland.

O. Räsänen is with the Dept. Signal Processing and Acoustics, Aalto
University, P.O. Box 13000, FI-00076 Aalto, Finland (phone: +358-50-441-
9511; fax: +358-9-460 224; e-mail: okko.rasanen@aalto.fi).

Jukka P. Saarinen is with the Nokia Technologies, P.O. Box 1000, FI-
33721 Tampere, Finland (e-mail: jukka.p.saarinen@nokia.com).

incrementally learning predictive algorithms that scale up to
potentially large and a priori unknown representational spaces
while using finite pre-allocated computational resources, the
models could be learned on the fly as more and more data is
observed. Moreover, one-shot learning from individual
episodic instances would be desirable if the amount of training
data is very low.

 In order to accomplish the prediction problem, this work
proposes a method based on sparse hyperdimensional coding
[1] of a sequence structure. The idea is to represent the
previously observed history of each possible sequence state
using a single vector of a very large dimensionality – a sort of
rich prototype for the preceding context of the state. In this
vector, the typical preceding states and their precise temporal
ordering are represented in a compositional manner. The
prediction of the next most likely state is achieved by building
a similar compositional vector representation from the
currently observed sequence and measuring the similarity of
this vector to the previously learned context vectors of each
possible future state. The state corresponding to the most
similar context vector is then chosen as the hypothesis for the
next sequence state.

This type of compositional coding provides a natural means
of representing variable order structure in the data, i.e., the
prediction is based on the overall similarity of the situation at
different distances in the sequence history instead of using
fixed conditional probabilities based on precisely observed
preceding states, as in standard Markov processes. If the
current sequence has only partial similarity to the previously
learned structure, only the similar parts are automatically used
in the prediction process. In comparison to earlier work on
hyperdimensional predictive methods [2,3], the current work
describes a non-parametric mutual-information based method
for weighting observations at different temporal distances in
the compositional representation, leading to enhanced
performance in the prediction process for sources that do not
follow first-order Markov statistics.

The proposed sparse distributed predictor (SDP) is
evaluated by using it to predict real life mobile phone user
data [4] including application launch logs, sequences of GPS
locations, and music playback logs. The experiments show
that the SDP clearly outperforms all studied Markov-process

T

 2

baseline methods in the tasks when measured in terms of
unweighted average recall, and obtains an equal level of
performance with the mixed-order Markov model in weighted
average recall but with purely incremental (non-iterative)
training. However, in comparison to more powerful state-of-
the-art methods such as long short-term memory (LSTM)
networks [5] or their deep variants [6], the present method is
unable to efficiently solve some of the more complex long
time lag problems (see [5] for examples). This is the cost
associated with purely incremental training and the absence of
sensitive hyperparameters that would have significant impact
on the system performance across different prediction tasks.

The paper is organized as follows. First, a brief introduction
to the standard solutions in sequence prediction is given in
section I.A, followed by a review of previous research on
sparse hyperdimensional coding in sequence modeling.
Section II describes the SDP predictor. Section III describes
the experimental setup, the baseline methods, and the results
from the prediction experiments. Finally, a discussion and
conclusions are given in the final section.

A. Prior art
Although numerous learning algorithms can be used for

discrete categorical prediction, a comprehensive review of the
existing work is way beyond the scope of this paper. Instead,
the aim here is to provide a number of examples of how the
dependencies at different temporal distances in sequences
have been utilized in the prediction task in the context of
Markov models and how sparse distributed coding has been
applied so far to the coding of sequential structures.

In discrete sequence prediction, the sequences may
originate from a multivariate time series that are vector
quantized into a discrete form through clustering or state-
space partitioning, or it may be categorical in nature (e.g.,
genomic sequences or words of a language). The basic
problem is to infer the most likely next state wt+1 of a discrete
sequence X = {w1, w2, …, wt}, where wt is the most recently
observed state and all states belong to a finite set of A unique
states (wi ∈ {1, 2, …, A}). Typical solutions assume that the
next state is only dependent on m previous observations Xcontext
= {wt-m+1, wt-m+2, …, wt}, corresponding to a Markov process
of the same order. On this basis, the most straightforward
approach is to model the next state as a discrete conditional
distribution, or n-gram (with n = m+1), of the form

P(wt+1 | wt, wt-1 , …, wt-m+1) (1)
A maximum-likelihood solution for the probabilities can be

derived directly from the counts of state joint-occurrences in
the data. Although efficient for many problems such as
language models in speech recognition [7], the n-grams have
two inherent problems: 1) the order of the n-gram should
ideally correspond to the order of the process generating the
data or otherwise information is lost and 2) the number of
parameters in an n-gram model grows exponentially as a
function of the n-gram order. In practice, the n-grams that can
be reliably estimated from typical finite data sets are limited to
relatively low orders. In addition, the underlying source
generating the data may not be a truly fixed-order Markov

process, but the optimal n-gram length may vary across
sequence position, making fixed-order model an inaccurate
descriptor of the process.

In order to overcome the limitations of the standard n-
grams, numerous improvements have been proposed to
capture the long-distance temporal dependencies in sequences.
In the so-called back-off models [8], n-grams of various orders
are first estimated from the training data. During the
prediction (or sequence probability estimation), when faced
with a rarely observed n-gram of a high order, the probability
of the n-gram is interpolated from lower order n-grams whose
probabilities are known more reliably. Although successful in
combining information from n-grams of different orders, the
smoothing process used in the back-off models may cause loss
of information regarding the sequence structure [9].

Mixed-order Markov chains [9] have been proposed to
combat the problem of smoothing in the back-off models. In
the mixed-order Markov model, the n-grams are replaced by a
set of skip-k transition matrices (bigrams) M(wt-k, wt+1) so that
the probability of a state wt+1 is computed as

P(wt+1 |wt,...,wt−m+1) = λk (wt−k)
k=0

m−1

∑ Mk (wt−k,wt+1)...

[1−λ j
j=0

k−1

∏ (wt− j)]
 (2)

i.e., as a set of predictions from a number of different
temporal lags k, where the lag-specific predictions depend on
the transition parameters Mk(w1, w2) and the mixing weights
λk(w). Both the transition matrices and the mixing weights are
iteratively estimated using the EM algorithm. The parameters
Mk can be initialized from the raw frequency-based lagged
bigrams that already provide a solid starting point for the
model (see [9] for details). When performed in this manner,
the prediction is no longer dependent on an exact match in the
sequence history up to the specified model order, but partial
similarity is sufficient to provide finite probability estimates
for the next state. Saul & Pereira [9] show that the mixed-
order model clearly outperforms the standard back-off n-gram
model [8] in the context of language models for speech
recognition. This is mainly due to its ability to provide a finite
probability for any n-gram whose one or more bi-gram
components have occurred in the training data and due to the
ability to utilize long-distance dependencies in the data when
they exist. Also, the number of parameters in the mixed-order
model increases only linearly as a function of model order in
comparison to the exponential growth in the standard n-grams.
The drawback of the mixed-order model is that the training
has to be performed iteratively across the entire training data,
requiring storage of the entire sequence history and making
incremental updates to the model complicated.

Mixed-order temporal structure is also captured in the so-
called mixture transition distributions (MTD) [10], where the
formulation in Eq. (1) is represented in the form

P(wt+1 |wt,...,wt−m+1) = λk
k=0

m−1

∑ M (wt−k,wt+1) (3)

 3

with the constraint ∑λk = 1. In other words, there is only
one transition matrix M(w1,w2) and a set of lag-specific
weights λk, and these parameters are optimized using
constrained non-linear optimization. Due to the parsimony of
the MTD model (only m+A2 parameters in comparison to the
(A-1)Am parameters of standard n-grams), the model is fitted to
data with small number of training samples or high state-space
dimensionality. Berchold & Raftery [11] show that the model
can outperform standard Markov chains in modeling wind
direction and epileptic seizure data. Prinzie & Van den Poel
[12] show similar results for the modeling of consumer
purchasing sequence patterns.

In the generalized MTD (GMTD) [11], the requirement for
a single transition matrix is relaxed by having a different
transition matrix for each lag, leading to the form

P(wt+1 |wt,...,wt−m+1) = λk
k=0

m−1

∑ Mk (wt−k,wt+1) (4)

in which estimation of λk and Mk(w1,w2) can be performed
with the EM algorithm or other iterative optimization methods
(see [11]). This additional degree of freedom leads to further
improvements in the prediction power on complex data as
long as there is a sufficient amount of training data available
for reliable estimation of the model parameters.

Finally, in variable length Markov chains (VLMC) [13,14]
the assumption is that the order of the Markov process
changes across position in the data. Therefore the model order
itself can be modeled as a function of the sequence history m =
f(wt, wt-1, wt-2,…), and the higher-order parameter estimates are
grouped together when their predictions of the future state are
equal, leading to increased accuracy of the parameters. In [14],
an efficient algorithm to estimate the variable length model is
given. The authors also show the usefulness of capturing the
variable order structure with the VLMC in the analysis of
recurring structures from DNA sequences.

In the context of the present work, the main issue with the
higher-order Markov chain approximations described above is
that they typically require iterative estimation of the model
parameters. In some domains such as the presently
investigated prediction of mobile phone use patterns, storage
of all relevant training data may not be feasible. Therefore a
purely incremental system would be beneficial.

B. Sequence prediction with hyperdimensional vectors
Incremental sequence prediction has already been

previously studied in the context of hyperdimensional
computing (HC). The idea in HC is to represent processed
entities (symbols, values, objects, states) as random sparse
vectors having a huge dimensionality, typically counted in
thousands (e.g., d = 10000). Each represented element, say, a
sequence state wi (e.g., a word of a language or GPS location
of a phone user), is coded by a unique randomly generated
hyperdimensional vector vi, from now on referred to as a
hypervector. The values of the vector can all be randomly
assigned (e.g., being +1 or -1 for a binary vector), or the
vectors can be ternary with only a small number of non-zero
±1 elements (e.g., 5% of all values) at randomly assigned

positions [15, 16]. Moreover, distances between the vectors
can be measured using a variety of metrics, typical metrics
being either Hamming distance (for binary data) or dot
product of the vectors. In all variants, the large dimensionality
of such vectors leads to a number of interesting properties:
First, the representations are highly robust against distortions
and noise in the coding process due to the distribution of
information across the entire vector length. Secondly, the
distribution of the mutual distances between all possible
random vectors is tightly packed around the mean of the
distances. This means that the probability that a distance
between any two randomly drawn vectors is notably smaller
than the average distance in the vector space is extremely
small1. This property of near orthogonality of random vectors
leads to the practical property that the sparse coding can be
used to represent sets of items as vector addition of the
hypervectors of the items in each set (i.e., vset = vstate1+vstate2)
without an increase in the dimensionality of the representation.
Importantly, the combined set representation is similar to its
components in the hyperspace, and therefore the individual
items can still be recovered from the holistic representation
(see [1]). Moreover, the similarity metrics of the vectors are
maintained so that two sets with similar sub-components are
similar to each other if their components are similar to each
other. This applies even if the overall number of sub-
components differs between the vectors, providing a
continuous measure of similarity (e.g., in terms of the dot
product) that takes into account only those parts of the
representation that are present in both vectors (so-called
partial matching). Naturally, sets containing qualitatively
different types of tokens (e.g., spoken words and visual
objects) and sets of sets can all be combined into new
hypervectors in a similar manner and the chosen metric is
always applicable between the representations. Also, if
required by the computational architecture, the sum vector can
be rounded back to a binary or ternary vector without losing
the basic functionality of the sum coding, although at the cost
of coding efficiency. Since the early work of Kanerva [17],
HC has been applied to numerous domains including, e.g.,
visual character recognition [18], cognitive software agents
[19], speech recognition [20,21], robotics [22], pattern
denoising [23], and naturally, sequence prediction [2,3,17].

In the earliest work on sequence modeling utilizing HC,
Kanerva proposed a special memory architecture named
sparse distributed memory (SDM) for learning of associations
between hyperdimensional representations [17,24]. The basic
idea in SDM is to use one input vector vi as a memory address
that activates a small fraction of M hard-coded memory
locations in the hyperspace sufficiently close to the given
address (typically M >> 10000 when using pre-allocated
addresses). Another input vector (content vector) vj is then

1 Kanerva [1] gives an example with 10000–dimensional binary vectors:
given any data point in the 10000–dimensional binary space, all other possible
data points are, on average, 5000 bits away in the Hamming space. However,
less than a thousand-millionth of the data points are closer than 4700 bits.
This means that a vector with almost half of its bits randomized is still
distinct, in practice, from any randomly drawn vector.

 4

stored to each of these locations by using the vector addition
principle. During recall, an address vector again activates a
number of nearby memory slots and the memory output is
obtained by taking the averaged result across all the activated
slots. The motivation for SDM, together with the general
benefits of HC discussed above, is its content addressability:
representations can be retrieved from the memory based on
only partial similarity, providing an inherent mechanism for
generalization towards similar but not identical situations.

In order to learn a sequential structure using the SDM, the
memory can be operated in a heteroassociative learning mode
where hypervectors corresponding to the preceding sequence
states are associated to the currently observed state. For
example, in order to learn a first-order sequential structure, the
input vector vt+1 can correspond to a sequence state wt+1 while
the address vector vt is derived from the previous state wt. In
so-called k-folded learning, a separate SDM is trained for
associations at each temporal lag vt-k à vt in order to utilize
higher-order temporal information in the prediction [17]. This
type of learning has been studied, e.g., in the modeling of
service robot movement trajectories [22,26].

Due to the additivity principle of the vectors, the context of
multiple preceding states can also be coded as a single vector
vcontext = vt + vt-1 +… + vt-m+1, possibly with each vt-k uniquely
determined not only by the state identity, but also by the
relative position (lag) of the state with respect to current time
(e.g., as in a shift register; see [2]). However, the problem in
both k-folded learning and in the single combined context
vector is that the preceding states are not all equally important
in the prediction task since the predictive value of a state
typically diminishes as the distance between the states in the
sequence increases. When the distance metrics are applied
between sparse representations, the overall scale of the codes
from the different lags will determine how much weight is
given to each sub-component in the combined context vector.
The problem is to a find a weighted representation of the
history that can be associated with the next state vt+1 so that
the prediction accuracy becomes maximal (see also Fig. 1):

vcontext = λ0vt+ λ1vt-1 + … + λmvt-m+1 (5)
Bose et al. [2] attempted to solve the weighting problem in

SDM by setting geometrically diminishing weights to the
history state codes. In their approach, the most recent state
was represented with weight λ0 = 1 and the preceding states as
λk = bk, where b is a constant weight. Their results with
artificial symbol sequences showed that the use of lag-
dependent (shift register) coding of the previous states
together with diminishing history weights leads to a better
sequence prediction performance than using either of them
alone. Snaider & Franklin [3] have also proposed the use of
SDM for sequence prediction with geometrically diminishing
weighting of the preceding states so that the weight coefficient
is defined manually. The problem in both of these approaches
is that the assumption of a geometric decay is arbitrary with
respect to the real dependency of states at different temporal

wt!1#

#me&

vt#vt!1#vt!2#vt!3#

wt&wt!2#...# wt!3#wt!m+1& wt+1&

?#

...#

###vcontext=#λm!1vt!m+1###+##...##+"λ3vt!3##+#λ2vt!2##+""λ1vt!1##+###λ0vt#

vt!m+1#

original##
sequence#

sparse##
codes#

context#
vector#

...#

Fig. 1. An example of the sparse coding process. Each history state wt-k of a
discrete sequence X (bottom) is mapped onto a hyperdimensional sparse
vector vt-k that is orthogonal with all the other sparse codes used. The overall
history up to m previous elements is represented as a weighted sum vcontext of
the corresponding sparse codes.

distances and can only apply to the first-order Markov
processes if the parameter b is properly set. Neither Bose et al.
[2] or Snaider & Franklin [3] tested their systems with non-
artificial data of an unknown Markov order, and therefore the
scalability of the approaches remains unclear.

In addition to the absence of a satisfactory solution to the
problem of history weighting, a major challenge in the
practical application of the standard SDM is its computational
complexity (O{NM} for accessing hard locations) and the
problem of generating an optimal set of hard locations to the
address matrix A if the data is not uniformly and randomly
distributed across the entire space (see, e.g., [27,28] for
possible solutions to the address problem). These challenges
make the application of full-scale SDM non-trivial even with
modern computers, not to mention mobile platforms with
limited computational resources.

However, SDM is not the only architecture that can utilize
the benefits of HC. Random indexing (RI) [15,16] uses HC-
based representations to estimate the degree synonymy
between words in text (Fig. 2). For a sequence of words X =
{w1, w2, …, wL} (e.g., a text corpus), the left context of each
word wt is defined as {wt-m, …, wt-1} and the right context as
{wt+1,…,wt+m}. For each unique word wi in the sequence, there
is a sparse hyperdimensional random vector vi associated with
the word. Therefore, the left and right contexts of each word
can be described as vcontext = vleft + vright = vw(t-m)+…+ vw(t-1) +
vw(t+1)+…+ vw(t+m) (cf. Eq. (5)). The core of the RI is a memory
matrix HAxd with a unique row for each possible word wi and
the number of columns equal to the dimensionality of the
hyperspace. In the beginning, H is initialized with all entries
zero. For each occurrence of word wi in the training data, the
corresponding context vector vcontext is computed and summed
to the with row of H. As a result, the rows of H become
descriptions of the typical contexts in which each word wj
occurs. By normalizing the rows of H into unit vectors and
computing S = HHT, a measure of the pair-wise synonymy of
words S(wi ,wj) is obtained since the words with a similar
meaning occur in similar contexts [15]. In comparison to
latent semantic analysis (LSA) [29], RI allows fast word
synonymy estimation without having to compute the singular
value decomposition of a huge co-occurrence matrix. In the
standard synonymy estimation with LSA, the word-context

 5

Fig. 2. Schematic view of the standard RI [15]. The temporal context of each
word wt is coded with a hypervector vcontext that represents the neighboring
states wt-m…wt-1 and wt+1…wt+m . For all wt in the data set (t ∈ [m, L-m]), the
corresponding context vectors are accumulated in the rows of H
corresponding to each wt. As a result, each row represents the sum of contexts
in which each possible word wi occurs. Contextual similarity (synonymy) of a
word pair {wi, wj} is derived by normalizing the rows of H and computing the
distance between the rows i and j using a chosen metric. In the web browsing
predictor of [30], the context vector is formed from a set of contextual
variables such as time, location, and previous web pages whereas each row
represents a web page URL wi.

co-occurrence matrix grows exponentially as a function of
vocabulary size as the context of each word is defined in terms
of other words. In RI, on the other hand, dimension of the
context representation never increases from the original value.

In [30], the RI-based computation is used to predict the
most likely web page that a mobile phone browser user wants
to visit next. Instead of explicitly modeling browsing as
sequential behavior, the predictor simply combines different
sources of information (e.g., current location, time, previous
pages, and calendar) into a single hypervector vcontext without
any weighting procedure (a bag-of-words representation) and
models the occurrence of these context vectors during each
visited URL by assigning a unique row wi in the H matrix for
each URL. Similarly to the predictive work with the SDM, the
major shortcoming of approach in [30] is the lack of a suitable
weighting scheme that accounts for the varying importance of
different information sources, and therefore effective
utilization of the fine-grained temporal information from the
preceding system states is not possible.

In the current work, we extend the basic idea of
hypervectors and RI in order to predict variable-order
sequential data. More specifically, we use RI to model the
history of preceding contexts of each possible state wi in a
sequence and provide an information-theoretically motivated
weighting scheme for the optimal usage of information in the
preceding signal states. The proposed method is described in
the following section in more detail.

II. SPARSE DISTRIBUTED PREDICTOR

A. Coding temporal context with mutual information
weighted hypervectors

In order to represent and predict the varying-order structure
of sequences, hyperdimensional coding of states with mutual
information-based weighting is utilized. The benefit of using
hyperdimensional codes is that typical processed data is likely
to be sparse, i.e., only a small fraction of all possible

wt!1#

time

wt#wt!2#...# wt!3#wt!m+1# wt+1#...#sequence

context
vector

2###!4###30####7#####22##!93#...#############1###0##64##!20####
memory#matrix#

HAxd#

9###!2#!138###63##!23###1#...############0###!1###37##!21####

9###24##130##!15##67##10#...############!30##!1##22##!5####

...

...

w
or

ds
 w

i

hypervectors v1xd

wt+1

0####!1####!1#####1####0####!1##...#############!1####0###1###!1#

+

 vcontext =λm-1vt-m+1+...+ λ3vt-3+ λ2vt-2+λ1vt-1+λ0vt

wt!1#

time

wt#wt!2#...# wt!3#wt!m+1# wt+1#...#

 λm-1vt-m+1+...+ λ3vt-3+ λ2vt-2+λ1vt-1+λ0vt = vcontext

.2##!.01#!.11##.07##.12#...####0.22#!.06#.05#!.03####
normalized#memory#matrix#

HAxd#

.01##!.64#!.22#.01##.07...########0##!.16##.02#.07####

.03##.01#.06##!.01##.27...#######!.2#!.01#.02##.07####
...

...

0#
#!0

.3
##1
.2
##0
#..
.##
!1
.1
###
0.
4#
##0
.6
#

Hvcontext = pdx1

0.
2#
##0
.0
1#
...
#0
.2
7#

argimax{p(wi)}

Fig. 3. A schematic view of the SDP. Top: All preceding contexts of each
sequence state wi are coded into hyperdimensional context vectors vcontext and
accumulated in the corresponding rows of H during training. Bottom: During
prediction, the current context vcontext is compared to the normalized memory
matrix Hnorm and the best matching state wi is chosen as a hypothesis for the
next sequence state.

sequences will be observed in the data. In this case, d-
dimensional distributed vectors can approximate joint
distributions of larger state spaces and longer temporal lags
than the trivial use of strictly orthogonal codes (m x A >> d),
making the approach scalable for potentially huge state spaces
(e.g., language modeling) using a fixed amount of memory
resources. We use the basic idea of RI memory matrix to store
the preceding context wt-m,…, wt of each state wt+1 and retrieve
the most likely next state during prediction by comparing the
current context and the previously learned context
representations. For this to work, the context vectors vcontext
must capture the structural information of the typical
preceding states, including the state identities, their temporal
ordering, and the relative importance of the states at different
temporal distances in the history. Also, the vector
representation should be robust so that it can generalize to
only partially familiar sequences, and ideally, the quality of
the representation should not critically dependent on the
length of the temporal history included in the representation
(the model order).

The proposed method is also much faster than any SDM-
based approach for sequential prediction since the time-
consuming distance computations with a huge address matrix
are not required. Prediction and training in SDM require
O{Md} distance computations whereas training in RI does not
require computation of distances between hypervectors at all,

 6

and prediction requires only O{Ad} computations with A <<
M for any typical data set with alphabet size A.

First, a mapping from each sequence state wt-k to a sparse
hyperdimensional vector vt-k is defined so that vt-k = f(wt-k, k).
Unlike the standard RI, a unique sparse vector is randomly
generated for each possible sequence state wi and for each
possible lag k ∈ {0, 1, 2, …, m} so that the same state wi
obtains a different hypervector representation at different
temporal lags with respect to the current time t (Fig. 1; cf. shift
register idea in [2]). For notational simplicity, these lag-
specific vectors are referred to as vt-k (see Fig. 1). Now, a
sequence of length L can be uniquely described using a sum
vector vseq:

€

vseq = vL−k
k=0

L
∑ (6)

In the context of prediction, it is desirable to represent only

a finite preceding context of the sequence up to a history
length m. Also, as motivated earlier, the preceding states
should receive weights corresponding to their predictive
power. This leads to a formulation of the context vcontext at time
t:

€

vcontext = λk v t−k
k=0

m−1

∑ (7)

In order to derive the lag-specific weights λk, the mutual
information function (MI) [31] is utilized. The average MI at
lag k is expressed as

€

MIk = Pk (wi,w j)
i, j
∑ log2

Pk (wi,w j)
P(wi)P(w j)

 (8)

In the equation, Pk(wi, wj) is the probability of a state pair
{wi, wj} when wj is delayed by k elements with respect to wi.
What the MI essentially measures is the amount of statistical
dependency in the signal at different temporal lags k and
accounts also for non-linear dependencies between signal
states. The assumption in the current work is that the average
statistical dependency at distance k equals to the average
predictive power from that distance relative to other possible
lags. Since the MI is systematically overestimated from finite
length sequences, the following correction is made to the
empirically estimated MI’ in order obtain the final lag-specific
weights [32-34] (see also [35] and references therein):

λk−1 =MI'k −
(A−1)2

2L
 (9)

Note that since the goal is to predict wt+1 from wt, the
reliability λ0 of the state wt is not MI0 but the standard bi-gram
dependency MI1. Also note that for any non-deterministic
process, the value of MI decays to zero as k increases. This
provides a natural upper bound for the model order m used in
the prediction since the use of information from longer
distances in the history has no effect on the prediction result.
In the special case of a first-order Markov process, the MI-
based weights decay in a geometric fashion similarly to the
parameters in [2] and [3]. For all other temporal dependency
structures, the MI provides a more accurate description of the

predictive power of the preceding states than the geometric
weighting scheme.

B. Predicting from a hypervector memory
Unlike the RI where the goal is to compute the synonymy

of two words, the goal here is to predict the most likely next
state of a sequence, i.e., to estimate the distribution of the form
P(wt+1 | wt, wt-1, …, wt-m+1). In order to do this, a matrix H of
size M x d is initialized similarly to the RI (Fig. 3). Then the
preceding temporal context (“left context”) of each observed
sequence state wt is computed from wt-m+1 up to wt using Eq.
(7) and summed to the corresponding row of H defined by
wt+1 as in the normal RI training. In this manner, the rows of H
become overall compositional descriptions of the sequence
histories for the states wi.

In order to compute the non-normalized probability
distribution p of next states, one simply computes the matrix
product of the currently observed context vcontext and the
memory matrix H,

p = Hvcontext (10)

and chooses the state with the largest value of p as the

hypothesis whypo for the next state:

€

whypo = argi max{ p(wi)} (11)

The raw data in H basically provides a probability estimator

for the next state that is dependent on the frequencies of state
occurrences (i.e., a sort of pseudo-maximum-likelihood
solution). However, normalization of the columns of H to unit
vectors before applying Eq. (10) was found to slightly
improve the average prediction accuracy. From now on, this
column-wise normalized sparse distributed predictor will be
referred to as SDP-c.

Another possibility to normalize the data in H is to
maximize the prediction accuracy of each individual state.
This can be beneficial in applications where the successful
prediction of rarely occurring events is more important than
getting the most frequent states maximally correct (e.g.,
predicting when rarely used mobile phone user interface (UI)
actions are needed if they reside deep in the UI menu
hierarchy in comparison to the frequent actions). In order to do
this, the rows of H are normalized into unit vectors, from now
on referred to as the SDP-r variant of the algorithm. With this
normalization, Eq. (10) essentially becomes comparable to the
cross-correlation between the context history of a state in H
and the current sequence context vcontext (whether vcontext is
normalized to a unit vector or not does not affect the shape of
the predicted state distribution but simply its scale). Naturally,
the difference between SDP-r and SDP-c increases as the state
frequency distribution becomes more different from a uniform
distribution.

 7

III. EXPERIMENTS

A. Material
Prediction of three qualitatively different types of mobile

phone use data was studied in the experiments: clustered GPS
locations, application usage, and media player records. All
data were extracted from the Nokia Lausanne dataset that was
collected during 2009 and 2010 from almost two hundred
persons using Nokia N95 mobile phones [4]. All data consists
of normal everyday use of the phones with the data collection
and transfer software running in the background. The average
data collection period per test subject was approximately one
year. Since all of the data had been collected in advance
instead of running a predictor on-line in the phone, there is no
interaction between any predictor performance and the phone
use patterns.

For all data types, data from users with length less than L =
200 samples or having less than A = 6 unique states were
excluded in order to avoid ill-defined or trivial prediction
problems. The chronologically first 80% of the available data
points were always used for training of the prediction model
while the remaining 20% were used to evaluate the prediction
accuracy. The prediction models were always for user-specific
data and no generalization or model combination across
multiple users was attempted.

In the Lausanne dataset, the GPS data has been collected by
turning the GPS receiver on and off by using a number of
system internal heuristics, leading to asynchronous sampling
of the user location [4]. In order to represent phone user
location in a discrete sequential form, the raw GPS data
(latitude and longitude) were converted into points of interest
(POIs). This was done by recursively splitting the two-
dimensional data cloud into two halves along the direction of
the second principal component (covariance matrix
eigenvector with the second largest eigenvalue) so that each
half contains equal number of data points. After N splits, 2N

regions were obtained in the feature space. All points of a
single region were then used to compute the mean centroid of
that region, and all GPS data points were assigned to the
nearest centroid in terms of Euclidean distance (see [36]). The
result is somewhat similar to the standard k-means clustering,
but the process is much faster with a large amount of data and
leads to a more uniform distribution of data points across all
clusters. Temporally subsequent repetitions of the same POIs
caused by a stationary phone user were removed from the
sequences since the goal was to predict the most likely next
location of the user. After pre-processing, the average number
of GPS samples per test subject was 3385 (min 240, max
36521, highly non-Gaussian distribution across different test
subjects). GPS data exceeding the minimum of 200 data points
were available from a total of 167 users.

As for the application use, applications that were launched
more than 20 times during the recording period were included
in the application dataset. However, screensaver and standby
applications were excluded from the sequences since they
reflect automatic behavior of the phone and had a very high
frequency of occurrence compared to user initiated

applications. Each application identifier was assigned with a
unique integer value, thereby converting the application use
logs into discrete temporal sequences from a finite alphabet.
The average number of applications per user was 18.0
(standard deviation ± 6.8) and the average number of all app
uses was 4017 (± 2951). Typical frequently used applications
included, e.g., text messaging, contacts, telephone, log,
camera, calendar, clock, web browser, maps, e-mail, gallery,
settings, and music player. Application-use data were
available from a total of 171 users.

In the prediction of music listening patterns, the original
phone logs contain a sequence of songs played by the user
during the data collection period. Each song is associated with
metadata containing the artist name, album title, and the track
title. In the current study, only the artist information was used
so that each state of the media player sequence corresponds to
a unique artist played with the phone. Moreover, subsequent
repetitions of the same artist were removed in order remove
the effects of listening to an entire album at once and to
simulate the process of providing suggestions of the next artist
to the user. The mean number of artists per user was 27.0 (±
16.2) with the mean number of samples being 1039 (min 217,
max 7047). Media player data were available from a total of
32 users.

B. Evaluation
The prediction accuracy was measured in terms of

unweighted average recall (UAR) and weighted average recall
(WAR). UAR is defined as the average of class specific
prediction accuracies (the mean of a confusion matrix
diagonal) whereas WAR is simply the ratio of correct
predictions to the total number of predicted states. UAR
provides a more balanced view of the prediction accuracy for
highly uneven class distributions and is therefore often more
beneficial in the evaluation of pattern recognition algorithms
(e.g., [37]). In the prediction of mobile phone application use,
UAR better reflects the system’s ability to recognize situations
where rarely used applications are needed, whereas a
relatively high WAR can be achieved by simply predicting the
most frequent applications correctly (in principle, if an
application such as “browser” is used 60% of the time, a WAR
of 60% can be achieved by always guessing <browser> for the
next application even if there are tens of other possibilities).
On the other hand, WAR is a straightforward measure of how
often the prediction is correct in total.

UAR and WAR were estimated separately for each phone
user in the data and the averages of the measures were
computed across all users. For application and media player
use, the evaluation was also performed by studying how often
the true next state is within the five best hypotheses provided
by the algorithm. This type of accuracy is relevant in
applications where the phone user is provided with several
suggestions for the next apps or pieces of music.

C. Compared baseline methods
The two SDP variants were compared against the standard

bi-, tri-, and four-gram models as n-grams are the most

 8

straightforward and computationally efficient way to learn a
predictive model for Markov processes of a given order. N-
gram probabilities were estimated from the state frequencies

€

P(wt+1 | wt ,wt−1, ...,wt−n+2) =
C(wt+1,wt ,wt−1, ...,wt−n+2)

C(wt ,wt−1, ...,wt−n+2)
(12)

where C(wt) is the frequency of state wt occurrence in the

training data. Even though the n-grams are simple and suffer
from the exponential increase in parameters for higher order
modeling, they are still widely used in various predictive
applications due to their simplicity and computational speed.
Since the idea here is to compare SDP to a fixed-order model,
no n-gram smoothing was performed and previously unseen n-
grams always led to a random prediction during testing.

In addition, the mixed-order Markov chain model [9] was
used as a state-of-the art baseline system for modeling
variable-order structure (see section I). Note that the mixed-
order model is no longer incremental, but provides a reference
performance level of an approach that is known to be capable
of capturing varying-order temporal structure. In the current
work, the transition probabilities of the model were always
initialized from lagged bi-gram probabilities and the mixing
weights λk(w) were initialized as a uniform distribution. The
EM algorithm was always run for 6 iterations as it was found
to provide a reasonable trade-off between log-likelihood
convergence on the training data and generalization of the
model to the test data.

A. Results
Results for all data types were computed with SDPs using a

vector dimensionality d = 2000 with 5% of vector values non-
zero (±1). Figs. 4 and 5 show the application prediction
performance for 1 and 5 best hypotheses, respectively. Figs. 6
and 7 show GPS POI prediction accuracy for 8 and 16 POIs,
respectively. Finally, Figs. 8 and 9 show media player
prediction accuracy for 1 and 5 best hypotheses.

1 2 3 4 5

12

14

16

18

20

22

24

26

28

30

model order

U
AR

 (%
)

2−gram2−gram 3−gram3−gram 4−gram4−gram

SDP−r
SDP−c
mixord

1 2 3 4 5

28

30

32

34

36

38

40

42

model order

W
AR

 (%
)

2−gram2−gram 3−gram3−gram 4−gram4−gram
SDP−r
SDP−c
mixord

Fig. 4. Application prediction performance as a function of model order (1
best hypothesis). The left panel shows the unweighted average recall (UAR)
and the right panel shows the weighted average recall (WAR). The solid line
denotes the SDP-r performance whereas the dashed line denotes the SDP-c
performance. The dash-dotted line shows the mixed-order Markov model
performance and vertical bars show n-gram performance for bi-, tri-, and four-
grams. Note that model order m on the x-axis refers to the Markov process
order, not the n-gram order that is n = m+1. Standard deviations of the SDP
variants across multiple trials with different random hypervector assignments
are shown with horizontal bars.

1 2 3 4 5

40

45

50

55

60

model order

U
AR

 (%
)

2−gram2−gram 3−gram3−gram 4−gram4−gram

SDP−r
SDP−c
mixord

1 2 3 4 5
60

65

70

75

80

85

model order

W
AR

 (%
)

2−gram2−gram 3−gram3−gram 4−gram4−gram

SDP−r
SDP−c
mixord

Fig. 5. Application prediction performance (5 best hypotheses). The left panel
shows the UAR and the right panel shows the WAR. The solid line denotes
the SDP-r performance whereas the dashed line denotes the SDP-c
performance. The dash-dotted line shows the mixed-order Markov model
performance and vertical bars show n-gram performance for bi-, tri-, and four-
grams.

1 2 3 4 5
30

35

40

45

50

55

model order

U
AR

 (%
)

2−gram 3−gram 4−gram

SDP−r
SDP−c
mixord

1 2 3 4 5
40

45

50

55

60

65

70

model order

W
AR

 (%
)

2−gram2−gram 3−gram3−gram 4−gram4−gram

SDP−r
SDP−c
mixord

Fig. 6. GPS prediction performance for 8 POIs. The left panel shows the UAR
and the right panel shows the WAR. The solid line denotes the SDP-r
performance whereas the dashed line denotes the SDP-c performance. The
dash-dotted line shows the mixed-order Markov model performance and
vertical bars show n-gram performance for bi-, tri-, and four-grams.

1 2 3 4 5

32

34

36

38

40

42

44

model order

U
AR

 (%
)

2−gram 3−gram 4−gram

SDP−r
SDP−c
mixord

1 2 3 4 5

35

40

45

50

55

60

model order

W
AR

 (%
)

2−gram2−gram 3−gram3−gram 4−gram4−gram

SDP−r
SDP−c
mixord

Fig. 7. GPS prediction performance for 16 POIs. The left panel shows the
UAR and the right panel shows the WAR. The solid line denotes the SDP-r
performance whereas the dashed line denotes the SDP-c performance. The
dash-dotted line shows the mixed-order Markov model performance and
vertical bars show n-gram performance for bi-, tri-, and four-grams.

 9

1 2 3 4 5
10

15

20

25

30

35

40

model order

U
AR

 (%
)

2−gram 3−gram 4−gram

SDP−r
SDP−c
mixord

1 2 3 4 5
10

15

20

25

30

35

40

model order

W
AR

 (%
)

2−gram2−gram 3−gram3−gram 4−gram4−gram

SDP−r
SDP−c
mixord

Fig. 8. Media player prediction performance (1 best hypothesis). The left
panel shows the UAR and the right panel shows the WAR. The solid line
denotes the SDP-r performance whereas the dashed line denotes the SDP-c
performance. The dash-dotted line shows the mixed-order Markov model
performance and vertical bars show n-gram performance for bi-, tri-, and four-
grams.

1 2 3 4 5

45

50

55

60

65

70

model order

U
AR

 (%
)

2−gram2−gram 3−gram3−gram 4−gram4−gram

SDP−r
SDP−c
mixord

1 2 3 4 5

50

55

60

65

70

75

80

model order

W
AR

 (%
)

2−gram2−gram 3−gram3−gram 4−gram4−gram

SDP−r
SDP−c
mixord

Fig. 9. Media player prediction performance (5 best hypotheses). The left
panel shows the UAR and the right panel shows the WAR. The solid line
denotes the SDP-r performance whereas the dashed line denotes the SDP-c
performance. The dash-dotted line shows the mixed-order Markov model
performance and vertical bars show n-gram performance for bi-, tri-, and four-
grams.

In the case of SDP, the mean and standard deviation of the

performance was measured across 5 runs of the algorithm in
order to see how much variation is introduced by the random
generation of the state and lag specific hypervectors. The
standard deviations are denoted with horizontal bars in each
figure. N-grams and the mixed-order Markov model are
deterministic for a given set of data and therefore no standard
deviations are reported for them.

As can be observed from the results, the two variants of the
SDP-predictor perform notably differently in terms of UAR
and WAR. SDP-r clearly outperforms all other methods in
terms of UAR. The only exception is the case of predicting the
five best hypotheses for media player usage where SPD-r
achieves a similar level of performance with the SDP-c and
the mixed-order Markov model. On the other hand, SDP-c and
the mixed-order Markov model perform well in terms of WAR
where SDP-r performs poorly except for the media player
data. This is an expected result due to the absence of overall
state-frequency information in SDP-r, comparable to the
absence of a prior in a Bayesian naïve predictor. In terms of
WAR, bi- and tri-grams provide solid baseline performance
levels for application and GPS prediction, and they are not
greatly exceeded by the variable order models. The situation is
different in the media player data where the n-grams fall far
behind the other methods. Notably, a model order of as high as
m = 4 seems to provide optimal results in the media player

data set, demonstrating the power of variable-order structure
modeling for complex asynchronously sampled data.

Fig. 10 shows a comparison of MI-based weighting (current
work) and the geometrically diminishing weights proposed by
Bose et al. [2] and Snaider & Franklin [3] in the media player
prediction task. The geometric weights λk = λ0

k were
optimized to minimize their distance to the MI curve so that,
in the case of a first-order Markov process, the fit would be
perfect between the MI and the geometric decay. As can be
seen from the results, the geometric weighting scheme is
unable to capture all the relevant information from higher lags,
performing significantly worse than the MI variant.
Importantly, the SDP variants are relatively stable with
increasing model order even beyond the optimal order in terms
of performance. This suggests that the MI-based weighting of
information from different lags is successful in utilizing long-
distance dependencies, and a precisely optimized model order
is not critical for reasonable performance. As an exception to
this, the UAR performance of the SDP-c variant seems
sometimes to drop notably above the optimal order (Figs. 4–
9). The reason for this is currently unknown but suggests that
the weighting scheme could be still improved. For example, if
the SDP were modified to use an iterative training scheme, the
weights λk initialized by the MI could be optimized for
prediction performance on the training data set using some
optimization procedure. However, it is evident from the results
that the SDP-r variant should be preferred if high UAR is
desired. Also, a combination of SDP-r and SDP-c could be
utilized. As for the mixed-order Markov model, the
convergence to the optimal performance level is guaranteed by
the EM algorithm even for “too high” model orders as long as
there is a sufficient amount of training data available.

1 2 3 4 5

15

20

25

30

35

model order

U
AR

 (%
)

1 2 3 4 5

20

25

30

35

40

model order

W
AR

 (%
)

SDP−r−geo
SDP−r

SDP−c−geo
SDP−c

Fig. 10. Comparison of media player prediction performance for MI-based
history weights and the geometrically diminishing weights according to [2,3],
denoted with SDP-r/c-geo. The left panel shows the UAR while the right
panel shows the WAR.

The effect of hypervector dimensionality and sparsity was

also studied. Fig. 11 shows the SDP-r prediction performance
on the media player dataset as a function of vector
dimensionality d with 5% of non-zero elements in each vector.
As can be seen from the figure, the performance
monotonically increases and finally saturates with an
increasing dimensionality. This confirms that the desired
properties of the hyperdimensional spaces become apparent
when the dimensionality starts to approach thousands (cf. [1]),
whereas the sum-code representations fail to maintain details

 10

101 102 10320

25

30

35

40

hypervector dimensionality d

pe
rfo

rm
an

ce
 (%

)

WAR
UAR

Fig. 11. Media player prediction performance as a function of hypervector
dimensionality d with SDC-r and model order m = 5. The solid line denotes
the UAR (%) and the dashed line denotes the WAR (%).

of their components with low-dimensional random mappings.
On the other hand, the vector sparsity (the number of non-zero
elements in a vector) did not affect the SDP performance as
long as the number of non-zero elements was between 5% and
100%. As the proportion of non-zero elements approaches
zero, the chance risk of creating similar hypervectors for
different states increases. However, this problem is not very
pronounced with the relatively small number of unique
sequence states analyzed in the current study.

Fig. 12 shows the computation times of the compared
methods on the media player dataset. The mixed-order
Markov model and SDP both have complexity of O{bm} as
the number of parameters increases only linearly as a function
of model order. However, at least in a naïve implementation of
the algorithm, the constant b of the mixed-order model is
much larger due to the iterative batch processing of the entire
training data while the SDP only processes each data point
once. In Fig. 12, the computational complexity of the n-grams
increases significantly due to the exponentially increasing
number of parameters with an increasing model order.
However, high-order n-gram computational costs can also be
alleviated with properly optimized data structures for n-gram
representation. Importantly, the overall processing time for the
SDP is realistic even for a mobile phone platform and can be
further facilitated by specialized software or hardware
solutions for parallelizing the hyperdimensional memory and
operations and by making use of the sparsity of the matrices
(e.g., [38,39]).

In addition to the mobile phone data experiments, SDP was
also tested in two long time lag prediction problems described
in the context of LSTMs [5].

In the first experiment, namely the task of two widely
separated symbols (see [5]), the goal of the algorithm is to
classify sequences into four classes. All sequences start with
symbol B and end to symbol E, otherwise consisting of
randomly sampled symbols {a,b,c,d} except for two special
symbols at positions t1 and t2 that are randomly set to either X
or Y. All sequences are 100-110 elements long and t1 is
always randomly chosen between 10 and 20 while t2 is
between 50 and 60. Depending on the identity of the symbols
at t1 and t2, each sequence belongs to one of the four possible

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

model order

av
er

ag
e

co
m

p.
 ti

m
e

(s
)

2−gram 3−gram 4−gram

SDP
mixord

Fig. 12. Average computation times of the compared algorithms as a function
of model order (average time in seconds spent for training and recognition of
media player data from a single mobile phone user). The algorithms were run
in the MATLAB R2012b environment using 4x3.2 GHz Intel Xeon processors
using fast but not explicitly parallelized code. The results should not be taken
as the final word for computational costs of different algorithms but simply
shows the scale of SDP speed in comparison to the other approaches.

classes (XX à c1, XY à c2, YY à c3, YX à c4). The goal of
the algorithm is to recognize the correct class of each test
sequence, given a set of previously observed training
sequences. When SDP with maximum lag of m = 50 and
dimension d = 2000 was applied to this task, it achieved a
correct classification rate of 75% after 30000 training samples
(25% chance level) and then saturated in performance. In
comparison, a nearly perfect classification rate is achieved
with LSTMs after 30000 sequences, but with a manually
tailored network architecture for the given problem.

In the second long lag experiment, the goal was to learn
embedded Reber grammars [40], that is, finite state automata
that subsume the automata itself in a recursive manner. While
SDP successfully learns standard (non-embedded) Reber
grammars, it fails in the embedded grammar task unlike
LSTM that can solve the problem. This failure is likely caused
by the highly non-linear dependencies in the data, practically
meaning that individual symbols can have deterministic
effects on the sequence after several and varying number of
intermediate stochastic steps. As SDP cannot differentiate
between variability in symbol identity at a specific lag from
variability in lags at which a specific symbol occurs, it cannot
learn perfect predictive models for clearly non-Markovian
processes such as the embedded Reber grammar. Note that
also standard (non-LSTM) recurrent networks and n-grams
fail in this task (see, e.g., [5]).

IV. DISCUSSION AND CONCLUSIONS
A new method to predict sequential data using

hyperdimensional coding is proposed in this work. The
approach can be easily applied to different prediction tasks as
it is very robust with respect to its hyperparameters. The MI-
based temporal weights are automatically derived from the
learning data, leaving the dimension of the hyperspace as the
only free hyperparameter. Even for the dimensionality, only
graceful degradation will be observed from the ideal model
performance when the dimensionality is decreased below the
minimum optimal level.

The method has two different ways of normalizing the
memory used for prediction, leading to optimization of either

 11

unweighted or weighted average recall. The experiments show
that the incremental algorithm is able to utilize high-order
temporal structure when it exists, and thereby achieves a
performance level that compares well against the iterative
mixed-order Markov model.

Due to its incrementality and tolerable computational
complexity, the SDP seems a promising choice for real-time
applications where storage or transmission of the entire data
history is expensive, ruling out methods based on iterative
batch training such as the majority of the recurrent neural
network architectures. Since both SDP-r and SDP-c variants
are applicable using the same previously learned statistics of
the sequential data (the non-normalized H matrix), the
predictor can provide hypotheses for the next state that either
maximize UAR or WAR on demand. This type of versatility
can be beneficial, e.g., in recommendation engines in mobile
phones where the user can be provided with a number of
choices that he or she would like to perform next with the
phone. In these cases, the most frequent operations should be
readily available (cf. WAR), but the system should also be
sensitive to situations where rarely used operations are
required as they might be located very deep in the UI
hierarchy (cf. UAR). By showing a number of SDP-r- and
SDP-c-based recommendations, both of these goals can be
achieved simultaneously. Usage of the SDP in this type of
application is also one of the topics of future studies.

Although the current experiments were limited to the
prediction of mobile phone user patterns using finite state
spaces, the coding capacity of the hyperdimensional spaces
should make SDP also beneficial in other applications such as
language models of automatic speech recognition (see [41] for
capacity analysis). The study shows that the hyperdimensional
coding can be used to represent complex and variable distance
temporal dependencies in an efficient and mathematically
compact manner. In principle, the same framework should
scale to the use of other contextual information sources that
are additively coded to the hypervectors representing the
contextual states. For example, the app prediction of the
current work can benefit from other information, such as, the
time of day or location of the user (see, [42]), although these
aspects were intentionally left out from the current study for
the simplicity of presentation. Also, the current method of
weighting different information sources according to their
statistical dependency can be combined with the other
methods used with hyperdimensional computing.

The major limitation in SDP is that it still only learns an
approximation of Markov-processes up to some finite order
using episodic descriptions of the sequences. This means that
the algorithm cannot capture complex long-distance
regularities such as those present in embedded grammars (see
[5,40]) that can be successfully solved using LSTMs. Since
weighting of past information in prediction is based on the
average temporal structure (MI) of the data, the model is
unable to take into account non-Markovian characteristics
such as grammar-like recursions that might be responsible for
generating the data. On the other hand, the existing state-of-
the-art approaches also require careful model architecture

selection and initial parametrization in order to successfully
solve these tasks (see [5]), making their applicability to
different prediction tasks non-trivial for naïve users or without
any a priori knowledge of the data properties.

Interestingly, Plate [43,44] has shown how nested
hierarchical compositional structures can be represented
within the hypervectors by using circular convolution, and
how these representations are similar to the analogical
reasoning in humans. In [45], it is shown how distributed
representations can be used to enhance the performance of
information retrieval in knowledge-based systems. These links
provide interesting possibilities for extending the simple linear
state history representation into more comprehensive
contextual state representations that utilize hierarchical
complex information from a number of different information
sources. This may also help the approach to overcome the
current limitations in learning more complex grammar-like
properties of the input data.

Finally, the current work has only concentrated on the
modeling of discrete states with their sparse codes being
pseudo-orthogonal with each other. With a proper mapping,
the hyperdimensional coding also enables similarity-based
computations where the hypervectors that have a similar
meaning or similar value in the original signal space (e.g.,
neighboring GPS coordinates) can be represented using
partially overlapping sparse codes. This would allow the
utilization of the second primary advantage of
hyperdimensional spaces, namely the content addressability,
in multivariate feature spaces in addition to the presently
investigated discrete domain.

ACKNOWLEDGMENT

The authors would like to thank Leo Kärkkäinen from Nokia
Research Center for useful comments and ideas related to this
study and Olivier Bornet from the Idiap / EPFL for his help
with the Lausanne database.

REFERENCES
[1] P. Kanerva, “Hyperdimensional Computing: An introduction to computing

in distributed representation with high-dimensional random vectors,”
Cognitive Computation, vol. 1, no. 2, pp. 139–159, 2009.

[2] J. Bose, S. B. Furber, and J. L. Shapiro, “An associative memory for the
on-line recognition and prediction of temporal sequences,” in Proc.
IEEE International Joint Conference on Neural Networks, Montreal,
Canada, Jul./Aug. 2005, pp. 1223–1228.

[3] J. Snaider and S. Franklin, “Extended Sparse Distributed Memory and
Sequence Storage,” Cognitive Computation, vol. 4, no. 2, pp. 172–180,
2012.

[4] N. Kiukkonen, O. Dousse, D. Gatica-Perez, and J. Laurila, ”Towards rich
mobile phone datasets: Lausanne data collection campaign,” in Proc.
ACM International Conference on Pervasive Services (ICPS’2010),
Berlin, Germany, Jul. 2010.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[6] A. Graves, A. Mohamed, and J. Hinton, “Speech recognition with deep
recurrent neural networks,” in Proc. ICASSP’13, Vancouver, Canada,
May 2013, pp. 6645–6649.

[7] F. Jelinek, “Continuous Speech Recognition by Statistical Methods”,
Proceedings of the IEEE, vol. 64, pp. 532–556, Apr. 1976.

[8] S. M. Katz, “Estimation of probabilities from sparse data for the language
model component of a speech recognizer,” IEEE Trans. Acoustics,
Speech, and Signal Processing, vol. 35, pp. 400–401, Mar. 1987.

 12

[9] L. Saul and F. Pereira, “Aggregate and mixed-order Markov models for
statistical language processing,” in Proc. Second Conference on
Empirical Methods in Natural Language Processing, Providence, RI,
Aug. 1997, pp. 81–89.

[10] A. E. Raftery, “A Model for High-order Markov Chains,” J. Royal
Statistical Society. Series B (Methodological), vol. B47, no. 3, pp. 528–
539, 1985.

[11] A. Berchtold and A. E. Raftery, “The Mixture Transition Distribution
Model for High-Order Markov Chains and Non-Gaussian Time Series,”
Statistical Science, vol. 17, no. 3, pp. 328–356, 2002.

[12] A. Prinzie and D. Van den Poel, “Investigating purchasing-sequence
patterns for financial services using Markov, MTD and MTDg models,”
European Journal of Operational Research, vol. 170, no. 3, pp. 710–
734, 2006.

[13] M. J. Weinberger, J. Rissanen, and M. Feder, “A universal finite memory
source,” IEEE Trans. Inform. Theory, vol. 41, pp. 643–652, May 1995.

[14] P. Bühlmann and A. J. Wyner, “Variable length Markov Chains,” Ann.
Statistics, vol. 27, no. 2, pp. 480–513, 1999.

[15] P. Kanerva, J. Kristoferson, and A. Holst, “Random indexing of text
samples for latent semantic analysis,” in Proc. 22nd Annual Conference
of the Cognitive Science Society, Philadelphia, PA, Aug. 2000, pp. 1036.

[16] M. Sahlgren, “An introduction to random indexing”, in Proc. Methods
and Applications of Semantic Indexing Workshop, 7th Int. Conf. on
Terminology and Knowledge Engineering, Copenhagen, Denmark, Aug.
2005.

[17] P. Kanerva, Sparse distributed memory. Cambridge, MA: Bradford/MIT
Press, 1988.

[18] Y.-S. Hong and S.-S. Chen, “Character recognition in a sparse distributed
memory,” IEEE Trans. Systems, Man, and Cybernetics, vol. 21, pp.
674–678, May/Jun. 1991.

[19] U. Ramamurthy, S. K. D’Mello, and S. Franklin, “Modified sparse
distributed memory as transient episodic memory for cognitive software
agents,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, The
Hague, Netherlands, Oct. 2004, pp. 5858–5863.

[20] R. W. Prager and F. Fallside, “The modified Kanerva model for
automatic speech recognition,” Computer Speech & Language, vol. 3,
no. 1, pp. 61–81, 1989.

[21] D. G. Danforth, An empirical investigation of sparse distributed memory
using discrete speech recognition. RIACS Technical Report 90.18,
NASA Ames Research Center, 1990.

[22] S. Jockel, M. Mendes, J. Zhang, P. Coimbra, and M. Crisóstomo, “Robot
navigation and manipulation based on a predictive associative memory,”
in Proc. 8th IEEE International Conference on Development and
Learning (ICDL’09), Shanghai, China, Jun. 2009, pp. 1–7.

[23] H. Meng, K. Appiah, A. Hunter, S. Yue, M. Hobden, N. Priestley, P.
Hobden, and C. Petitt, “A modified sparse distributed memory model for
extracting clean patterns from noisy inputs,” in Proc. Int. Joint
Conference on Neural Networks (IJCNN’09), Atlanta, GA, Jun. 2009,
pp. 2084–2089.

[24] P. Kanerva, “Sparse distributed memory and related models,” In
Associative Neural Memories: Theory and Implementation, M. Hassoun,
Ed., New York: Oxford University Press, 1993, pp. 50–76.

[25] J. T. Abbott, J. B. Hamrick, and T. L. Griffiths, “Approximating
Bayesian inference with a sparse distributed memory system,” in Proc.
Annual Conference of the Cognitive Science Society, Berlin, Germany,
Jul./Aug. 2013, pp. 1686–1691.

[26] S. Jockel, Crossmodal learning and prediction of autobiographical
episodic experiences using a sparse distributed memory. Doctoral
Thesis, University of Hamburg, Department of Informatics, 2010.

[27] B. Ratitch and D. Precup, “Sparse distributed memories for on-line value-
based reinforcement learning,” Lecture Notes in Computer Science, vol.
3201, no. 1, pp. 347–358, 2004.

[28] T. A. Hely, D. J. Willshaw, and G. M. Hayes, “A new approach to
Kanerva’s sparse distributed memory,” IEEE Trans. Neural Networks,
vol. 8, pp. 101–105, May 1997.

[29] T. K. Landauer and S. T. Dumais, “A solution to Plato’s problem: The
latent semantic analysis theory of acquisition, induction, and
representation of knowledge,” Psychological Review, vol. 104, no. 2, pp.
211–240, 1997.

[30] M. Terho, “Practical approach to real time contextual data access,” In
Frontiers in artificial intelligence and applications, volume 251:
Information modelling and knowledge bases XXIV, P. Vojtás et al., Eds.
IOS Press, Netherlands, pp. 328–343, 2013.

[31] W. Li, “Mutual information functions versus correlation functions,” J.
Statistical Physics, vol. 60, no. 5/6, pp. 823–837, 1990.

[32] H. Herzel, A. O. Schmitt, and W. Ebeling, “Finite sample effects in
sequence analysis,” Chaos, Solitons and Fractals, vol. 4, no. 1, pp. 97–
113, 1994.

[33] H. Herzel and I. Grosse, “Measuring correlations in symbol sequences,”
Physica A, vol. 216, no. 4, pp. 518–542, Jul. 1995.

[34] R. Steuer, J. Kurths, C. O. Daub, J. Weise, and J. Selbig, “The mutual
information: Detecting and evaluation dependencies between variables,”
Bioinformatics, vol. 5 suppl. 2, pp. S231–240, 2002.

[35] C. O. Daub, R. Steuer, J. Selbig, and S. Kloska, “Estimating mutual
information using B-spline functions – an improved measure for
analyzing gene expression data,” BMC Bioinformatics, vol. 5, no. 118,
2004.

[36] Y.-W. Chen and C.-C. Chen, “Vector quantization by principal
component analysis,” in Proc. Vision Interfaces, Vancouver, Canada,
Jun. 1998, pp. 295–299.

[37] B. Schuller, S. Steidl, A. Batliner, E. Nöth, A. Vinciarelli, F. Burkhardt,
R. van Son, F. Weninger, F. Eyben, T. Bocklet, G. Mohammadi, and B.
Weiss, “The INTERSPEECH 2012 speaker trait challenge,” in Proc.
Interspeech’12, Portland, OR, Sept. 2012.

[38] T. Hämäläinen, P. Kolinummi, and K. Kaski, “Linearly expandable
partial tree shape architecture for parallel neurocomputer,” in Proc.
International Conference on Artificial Neural Networks (ICANN’96),
Bochum, Germany, Jul. 1996, pp. 365–370.

[39] L. Kärkkäinen, M. Terho, and N. Werdi, “Method and apparatus for
providing efficient context classification,” US Patent application
20120110267 A1, May 5, 2012.

[40] A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland, “Finite state
automata and Simple Recurrent Networks,” Neural Computation, vol. 1,
no. 3, pp. 372–381, 1989.

[41] S. I. Gallant and T. W. Okaywe, “Representing Objects, Relations, and
Sequences,” Neural Computation, vol. 25, no. 8, pp. 2038–2078, 2013.

[42] C. Shin, J.-H. Hong, and A. K. Dey, “Understanding and prediction of
mobile application usage for smart phones,” in Proc. UbiComp’12,
Pittsburgh, PA, Sep. 2012, pp. 173–182.

[43] T. Plate, “Holographic reduced representations,” IEEE Trans. Neural
Networks, vol. 6, pp. 623–641, May 1995.

[44] T. Plate, “Analogy retrieval and processing with distributed vector
representations,” Expert Systems: The International Journal of
Knowledge Engineering and Neural Networks – Special Issue on
Connectionist Symbol Processing, vol. 17, no. 1, pp. 29–40, 2000.

[45] D. A. Rachkovskij and S. V. Slipchenko, “Similarity-based retrieval with
structure-sensitive sparse binary distributed representations,”
Computational Intelligence, vol. 28, no. 1, pp. 106–129, 2012.

Okko J. Räsänen was born in Finland in 1984. He received the M.Sc. degree
in language technology from the Helsinki University of Technology in 2007
and D.Sc. (Tech.) degree in language technology from
Aalto University, Finland, in 2013.

He is currently a postdoctoral researcher at the
Department of Signal Processing and Acoustics at
Aalto University and a visiting researcher at the
Language and Cognition Lab of Stanford University.
His research interests include computational modeling
of language acquisition, cognitive aspects of language
processing, context-aware computing, multimodal data
analysis, and speech technology in general. He is a
member of ISCA and Cognitive Science Society.

Jukka P. Saarinen was born in Finland in 1961. He studied computer
architecture, signal processing, telecommunications, and software engineering
at Tampere University of Technology, Finland, where he received M.Sc.
degree (with honors) in 1986, a Licentiate degree in Technology in 1989, and
a Doctor of Technology degree in 1991.

He held the position of a professor of computer engineering at the Tampere
University of Technology, where he was the head of the laboratory in 1996-
2001. In 2001, he started as the head of Speech and Audio Systems
Laboratory in Nokia Research Center. After that he was heading the Audio-
Visual Technology Laboratory in 2002-2003 and Multimedia Technologies
Laboratory in 2004-2006. Since then, he has been in different positions at
Nokia including Nokia Research Fellow and Director of Open Innovation. His
research interests cover different signal processing algorithms and
applications, multimedia architectures & systems, and DSP architectures. He
has published more than 57 international refereed journal articles, 201
refereed international conference papers, and 38 other technical reports. He
has also supervised 12 doctoral theses and more than 150 M.Sc. theses.

