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Abstract 

A novel and computationally straightforward clustering 
algorithm was developed for vector quantization (VQ) of 
speech signals for a task of unsupervised pattern discovery (PD) 
from speech. The algorithm works in purely incremental mode, 
is computationally extremely feasible, and achieves comparable 
classification quality with the well-known k-means algorithm in 
the PD task. In addition to presenting the algorithm, general 
findings regarding the relationship between the amounts of 
training material, convergence of the clustering algorithm, and 
the ultimate quality of VQ codebooks are discussed. 
Index Terms: speech recognition, pattern discovery, time 
series analysis, vector quantization, data clustering 

1. Introduction 

A conventional HMM based speech recognizer transforms input 
speech to a stream of continuous value feature vectors, and 
further, these vectors into a discrete sequence of the most likely 
phones by comparing them to internal acoustic models derived 
during the design phase. For unsupervised language acquisition 
task studied, e.g., in the ACORNS project [1], pre-defined 
models for atomic language units are not readily available, but 
have to be discovered by the system itself from the provided 
continuous speech material. 

The first important step in our approach to this bottom-up 
pattern discovery task (PD) is the transformation of continuous 
speech signals to discrete time and discrete category units by 
vector quantization (VQ). For this purpose we have studied 
cognitively plausible ways to perform vector quantization and 
developed a novel straightforward method called self-learning 
vector quantization (SLVQ). It enhances a basic sequential 
algorithm scheme (BSAS, [2]) by incorporating adaptive cluster 
radii and merging of nearby clusters. The purely incremental 
and computationally straightforward algorithm converges 
quickly to a limited number of clusters with variable input data, 
where non-adaptive methods suffer from ever-increasing or 
slow convergence of cluster numbers. Despite the quick 
convergence, SLVQ also retains adaptivity towards totally new 
types of input data and creates new classes to quantify input if 
necessary. We show that codebooks created with SLVQ 
achieve comparable quality with codebooks created with the 
well-established k-means algorithm using only a fraction of the 
computational time needed in the latter. In addition, several 
important implications regarding vector quantization in bottom-
up pattern discovery will be brought out. 

The algorithm is first introduced in detail. This is followed 
by experiments used to determine the behavior of the algorithm, 
including a comparison with the k-means approach. Finally, the 

relationship between convergence of a cluster space and quality 
of the codebook is examined in a PD task.  

 

2. SLVQ algorithm 

2.1 The basic algorithm 

Since one of the aims in ACORNS is to perform computational 
modeling of infant language acquisition, we wanted to perform 
cognitively plausible processing where new acoustic input 
changes the existing processing structures incrementally 
(plasticity). This excludes methods with batch processing of 
massive datasets and storage of all past acoustic inputs in detail. 
Also for bottom-up pattern discovery purposes, it was desirable to 
have an algorithm that can adapt to the properties of the input data 
so that hard decisions made by the user can be avoided. For 
example, instead of deciding on the exact number of clusters in 
advance, we wanted to allow some room for the data to speak for 
itself. We also wanted to have an open architecture where 
processes can be easily analyzed and understood, and therefore 
neural networks were not utilized.  

Due to the strong emphasis on incrementality, the SLVQ 
algorithm is not purely divisive or agglomerative in the traditional 
sense (see, e.g., [3]), and resembles Kohonen maps [4], BSAS [2], 
and the VQ-INC-EXT algorithm [5] while being at the same time 
computationally extremely straightforward. It differs from, e.g., 
Learning Vector Quantization (LVQ) and its modifications (see, 
e.g., [6]) due to lack of supervision in training.  

Incrementality sets some serious limitations to the way that 
data can be processed: knowledge about future inputs is not 
available to the algorithm so all classification decisions have to be 
performed on-line. Therefore the main functional principle of 
SLVQ is to take one feature vector at a time as input and compare 
it to the existing cluster structures. If no suitable match is found, a 
new cluster is created for the input. If a match is found, the input 
is merged to the existing centroid that becomes updated and then 
the original input vector is discarded (see the next subsection for a 
description of adaptive updating of the cluster radii). 

The following pseudocode illustrates the main steps taken in 
the clustering process (see also fig. 1):  
1. Assign first input vector vi as the first cluster centroid with radius r0. 
2. Take the next input vector vi and compute its distance di,j to all existing 
clusters. 
3. if !di,j > rj, where rj is radius of cluster Xj  

    create a  new cluster with centroid vi and radius r0.  
else if " di,j # rj,  

merge vi to Xc, where c = argjmin di,j , by having xc = (xc+vi)/(nc+1), 
where xc is the cluster centroid of Xc and nc is the number of vectors 
already merged to the cluster c.  

4. update all cluster radii 
5. merge all cluster pairs Xi and Xj that satisfy di,j < rmin by having  

xij = (xi+xj)/(ni+nj). Go to 4 until all clusters satisfy !di,j > rmin.  

6. Go to step 2. 

Copyright  2009 ISCA 6-10 September, Brighton UK852



 
Figure 1: Block diagram of the SLVQ algorithm 

 
Distance di,j between cluster centroids i and j is computed using 
a chosen metric, so that d increases as the similarity decreases. 
Every time a new input vector v arrives, its distance di,j to all 
existing cluster centroids is computed and the closest cluster i 
that has a larger radius than the mutual distance is chosen as the 
target cluster  (ri > di) and the vector is merged to the cluster 
centroid using a weighted average: 
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where ni is the number of vectors that have already been merged 
into the cluster. If no sufficiently close cluster is detected, a 
new cluster centroid Xf is created at the location defined by v 
with a radius of r0.  

Since the weighted merging causes the cluster centroids to 
move around in the cluster space, a case exists where two 
centroids drift very close to each other. If the mutual distance 
between two clusters becomes smaller than value rmin at any 
time, the clusters are merged together using equation (2), 
resulting in a single common centroid.  
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2.2 Adaptive cluster radii 

While working with sequential clustering algorithms and 
varying input data like continuous speech, it becomes evident 
that the merging resolution needs to be relatively low with 
clusters of fixed radius or else the number of clusters will 
increase continuously as new data is introduced. In contrast, we 
hypothesized that a high resolution is still required at those 
sections of the feature space that contain large amounts of input 
data and where small nuances have to be differentiated, while 
setting a high resolution for the entire space leads to exploding 
(non-converging) number of very small clusters that are useless 
for the purpose of pattern discovery from quantized sequences.  

To test this hypothesis, a method was devised that allows 
cluster radii to be defined adaptively: the radius ri of a cluster i 
depends on the number of vectors it has received in comparison 
to other clusters. If a cluster Xi has more input vectors (ni) than 
the mean of the number of vectors in all clusters of space X 
(E{n}), the radius of the Xi cluster is shrunk. On the other hand, 
if the cluster has less input vectors than on average, the radius 
of the cluster is increased.  
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The rate that clusters adjust their radii is called the rate of 
adaptation ! and is defined as following: 
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Variable $r is the change in threshold (for a single cluster) and 

the Nv is the number of new input vectors during the change 

(~time), i.e., the rate of adaptation defines the amount of change 
in the cluster threshold for each new input vector.  

In practical algorithm implementations, a counter can be used 
to count the number of input vectors since the last update, and if 
Nv is exceeded, the cluster radii are adjusted by value $r and the 

counter is reset. Therefore, the value Nv is a tradeoff between 
computational complexity and the accuracy of the process: if Nv is 
high, the update is performed less frequently but with larger steps. 
If it is set too high, instability in the clustering process may occur 
due to oscillations of cluster sizes. For a majority of the 
experiments, radius update was performed following the 
presentation of each new utterance.  

In order to set an allowed value range for possible cluster 
radii, a minimum radius rmin and maximum radius rmax are 
defined. Minimum radius rmin defines the highest possible 
resolution of the clustering, whereas rmax controls how rarely 
occurring inputs are treated and therefore has a large impact on 
the convergence of the algorithm. In principle there is also a free 
parameter r0 that defines the default radius for new clusters before 
any adaptation takes place, but the mean of rmin and rmax was 
found to be a suitable choice for r0 in the experiments. Setting r0 
too low in combination with a low ! will result in an explosion in 

the number of clusters since the cluster sizes and therefore cluster 
radii will not develop properly. 

3. Experiments 

3.1 Word recognition framework 

The aim of the experiments was to determine how easily recurring 
phonetic structures are extracted from quantized time-series 
provided by SLVQ. Performance was tested in bottom-up pattern 
discovery experiments using the concept matrix (CM) framework 
described in [7] and [8]. Although the details of the PD algorithm 
are too broad to review here, the idea is to collect statistical 
models of co-occurrences of acoustic events (VQ label pairs) at 
different time distances in a simultaneous presence of a 
multimodal information source (e.g., a set of labels indicating 
what is present in the visual field). This creates associations 
between the acoustic input and events and items present in the 
surroundings of the learner, i.e., the system learns “words” that 
refer to some external entities (see also [9] for a similar learning 
framework). The CM system achieves comparable performance 
with discrete state HMMs in continuous digit recognition if visual 
information in training is replaced with tags indicating the 
presence of digit numbers in the utterance [7]. 

During training, the SLVQ codebook was first created using a 
subset of the training material. Then all material was quantized 
and used with the multimodal visual tags as input to the CM 
system. In the testing phase, only VQ sequences were shown to 
the CM and the system had to indicate which visual items are 
associated with the acoustic input.  

3.2 Material and features 

Speech material used in the experiments was taken from a corpus 
recorded as part of ACORNS project. The material consists of 
2397 Finnish utterances, each containing 1-4 target words from a 
dictionary of 50 words the system is supposed to learn (+ 
numerous inflections inherent to Finnish!). Additionally, the 
target words are surrounded by a number of non-target words. 
The sentences were spoken by 4 speakers (two male), yielding a 
total of 9588 utterances. 
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As for input to the SLVQ, standard MFCC features were 
extracted using a Hamming window of length 20 ms with 10 ms 
shifts. The mean of each vector was removed and they were 
normalized to unit vectors. The cross-correlation of MFCC 
vectors was used as a distance metric in the experiments (note 
that cross-correlation increases with similarity in contrast to the 
distance notation used throughout the algorithm description).  

3.3 Experiments 

3.3.1 Baseline word recognition 

By adjusting the rmax parameter, SLVQ codebooks of 5 different 
sizes were created (N = 600 utterances were used, learning rate 
! = 0.005). As a frame of reference, standard k-means clustering 

was performed on the same data in order to produce codebooks 
of the same size. The CM algorithm was trained with 9000 
utterances and tested with 400 previously unseen utterances (for 
a total of 1200 keyword occurrences). Figure 2 displays the 
recognition results as a function of codebook size. For larger 
codebooks, the difference between SLVQ and k-means is small, 
although k-means performs slightly better for the largest 
codebook. In case of smaller codebooks, SLVQ seems to code 
the speech more efficiently, leading to somewhat better 
recognition results.  

 
Figure 2: Recognition rates (% words correct) as a function of 
codebook size for SLVQ and k-means codebook clustering. 

 
Figure 3: Speaker blocked training. The number of clusters 
increases as new speakers are introduced. Randomly ordered 
clustering shown as a reference. 

3.3.2 Expansion due to novel input 

Since the algorithm creates new clusters for input vectors that 
do not correspond to any existing centroids, the algorithm 
expands its codebook automatically if a totally new type of data 
is introduced. Figure 3 shows an example where 9588 
utterances are trained in four speaker specific blocks. As can be 
seen, the number of clusters increases when a new speaker is 
introduced to the system. This is a useful property in 
unsupervised learning, where forcing of entirely new types of  

 
Figure 4: Number of clusters as a function of trained utterances at 
different rates of adaptation ! (rmin = 0.6, rmax = 0.975, r0 

 = 

0.7875). A very large scale of gamma values (0.000925 - 
0.01625) leads to a very similar end result after 5000 utterances. 
However, if the adaptation rate is set to zero, the number of 
clusters explodes. 

 

input into existing structures may not be desired. However, this 
property has not been utilized so far nor studied in depth. 

3.3.3 Effects of adaptation 

If the radius adaptation is disabled (! = 0), then all clusters will 

have the default radius that is the mean of rmin and rmax. Figure 4 
illustrates what happens in this case: although the mean resolution 
of the cluster space is approximately at the same level as with the 
spaces created using adaptation, the number of clusters becomes 
essentially higher and shows no signs of saturation towards the 
end of the training data. More importantly, the resolution without 
adaptation is much lower (0.7875 vs. 0.975) for the densest parts 
of the cluster space, resulting in a very sparse coding that can still 
miss distinctions between important classes of input data.  

However, experiments with concept matrix speech 
recognition seem to indicate that adaptive resolution may not be 
necessary for good PD results. By setting the default threshold 
sufficiently low and disabling the adaptivity (! = 0), an equal 

number of clusters can be obtained as with adaptive radii. When 
two equal size codebooks, one adaptive and one static, are 
compared, the recognition rate seems to be at equal levels or even 
better for passive clustering (e.g., 91.23 % for adaptive and 91.89 
% for passive, N = 210 clusters, 5000 utterances for codebook 
training). What this seems to suggest, in contrast to the hypothesis 
motivating adaptivity in the first place, is that an extremely high 
resolution is not required for effective quantization of speech, so 
that MFCC vectors (normalized to unit vectors) originating from 
different phonetic units are sufficiently distributed in the space to 
be differentiated with lower cross-correlation values. 

The next point of interest was that the adaptation might 
improve learning rate since the number of clusters stabilizes 
relatively quickly, whereas constant radii results in gradual 
increase in cluster numbers (fig. 4). In figure 5 this difference is 
further clarified: the adaptive method is relatively stable already 
after 100 utterances, whereas the constant radii results in a 
gradual increase in cluster numbers (the constant radius was set to 
a value that leads to the same number of clusters at 500 utterances 
as the adaptive process). If more data would be provided, the 
constant radii algorithm process would keep increasing the cluster 
numbers, whereas the number of clusters in an adaptive process 
would not be highly affected unless a significantly differing type 
of data would be introduced.  
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Figure 5: Number of clusters as a function of number of trained 
utterances for constant and adaptive radii clustering (rdefault = 
0.69 for static and rmin = 0.6 rmax = 0.975, ! = 0.008 for 

adaptive) when a codebook of size 188 is created.  
 

The first recognition test with these codebooks showed that 
when only 500 randomly chosen utterances were used for 
training of the VQ codebook, adaptive clustering performed 
clearly better than passive clustering, yielding a 92.72 % versus 
90.23 % recognition rate with 188 clusters. However, when the 
amount of training material was further limited to 100 randomly 
chosen utterances (peak value of adaptive clustering in fig. 5), 
producing a total of 208 clusters, the recognition rate was now 
91.06 % in the adaptive case. When the default radii r0 was set 
sufficiently tight so that an equal number of clusters were 
created in the passive condition, the recognition result was 
91.72 %, although the number of clusters was again far from 
stable. When an equal sized (N = 208 clusters) codebook was 
created from the same 100 utterances using the standard k-
means algorithm, the recognition rate was 91.89 %.  

Taken together, these results seem to point to a number of 
important implications. Firstly, the stability in the number of 
clusters is not an indicator of the quality of the codebook for 
pattern discovery purposes like in the CM algorithm [7]. This 
should also apply for NMF [9] due to similarities in how co-
occurrence statistics are used. Secondly, the effect of the 
amount of training material used to create the codebook seems 
to be very small with a limited number of speakers, since 
recognition rates are not highly affected whether 100 or 5000 
utterances are used. Thirdly, the nature of the quantization 
method itself does not seem to play a big role in the ultimate 
PD task. SLVQ and k-means both result in very similar overall 
performance, although the former works in a purely incremental 
basis without any global error measure, whereas the latter 
minimizes the global quantization error in a batch process given 
the desired number of clusters.  

4. Conclusions 

A novel method called self-learning vector quantization 
(SLVQ) for quantization of multi-dimensional data was 
introduced. The method is especially designed for incremental 
learning problems where the size of the codebook and the 
amount of input material is difficult to determine beforehand 
but when some resolution limits are known. In the clustering 
process, new clusters are created if they are not sufficiently 
similar to existing ones. Adaptation helps to build an efficient 
coding of the input when the data is unequally distributed in the 
cluster space, making the pruning of small clusters unnecessary 
and leading to convergence of the cluster space. However, it is 
noteworthy that though the idea is to avoid hard decisions and 

therefore the algorithm does not require the number of clusters to 
be pre-specified, it is still necessary to set several parameters that 
indirectly affect the number of clusters. This has to be done by 
either a user or a system dealing with SLVQ output in order for 
the algorithm to achieve desired performance.  

The algorithm is computationally efficient. Only one input 
frame and the existing cluster centroids have to be stored in 
memory at any one time. Since the classification decisions are 
made on-line, the number of computations per each input frame is 
low and does not increase as a function of input frames. In 
principle, the algorithm can cluster infinite amount of data. For 
example, batch mode clustering of 1000 utterances into a 
codebook of size 250 takes approximately 94 minutes for a 
standard k-means algorithm running in a MATLAB environment 
using fast C++ routines for vector distance computations, whereas 
an incremental SLVQ codebook of the same size takes only 65 
seconds to create (tested on a 4 x 2.66 GHz Intel Xeon).  

However, the obtained results from pattern discovery 
experiments are somewhat ambiguous and difficult to interpret. In 
principle, the SLVQ algorithm performs at the same level as the 
theoretically more sophisticated k-means algorithm. On the other 
hand, the quality of the clustering does not seem to be greatly 
affected by the manner in which clustering is performed when 
measured from the perspective of pattern discovery from VQ 
sequences. Adaptivity, the amount of training material, and even 
the blind incrementality versus batch mode optimization do not 
seem to cause significant differences. Mainly the overall size of 
the codebook has a significant impact on the quality of the 
learned patterns and therefore on the recognition accuracy. Since 
the SLVQ algorithm was designed for the pattern discovery task 
used in this paper, it may be that some other experimental 
framework would better contrast the suitability of the SLVQ 
algorithm as a general incremental classification mechanism to 
other existing approaches.  
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