
Self-learning Vector Quantization for Pattern Discovery from Speech

Okko Johannes Räsänen1, Unto Kalervo Laine1, and Toomas Altosaar1

1Department of Signal Processing and Acoustics, Helsinki University of Technology, Finland
Okko.Rasanen@tkk.fi, Unto.Laine@tkk.fi, Toomas.Altosaar@tkk.fi

Abstract

A novel and computationally straightforward clustering
algorithm was developed for vector quantization (VQ) of
speech signals for a task of unsupervised pattern discovery (PD)
from speech. The algorithm works in purely incremental mode,
is computationally extremely feasible, and achieves comparable
classification quality with the well-known k-means algorithm in
the PD task. In addition to presenting the algorithm, general
findings regarding the relationship between the amounts of
training material, convergence of the clustering algorithm, and
the ultimate quality of VQ codebooks are discussed.
Index Terms: speech recognition, pattern discovery, time
series analysis, vector quantization, data clustering

1. Introduction

A conventional HMM based speech recognizer transforms input
speech to a stream of continuous value feature vectors, and
further, these vectors into a discrete sequence of the most likely
phones by comparing them to internal acoustic models derived
during the design phase. For unsupervised language acquisition
task studied, e.g., in the ACORNS project [1], pre-defined
models for atomic language units are not readily available, but
have to be discovered by the system itself from the provided
continuous speech material.

The first important step in our approach to this bottom-up
pattern discovery task (PD) is the transformation of continuous
speech signals to discrete time and discrete category units by
vector quantization (VQ). For this purpose we have studied
cognitively plausible ways to perform vector quantization and
developed a novel straightforward method called self-learning
vector quantization (SLVQ). It enhances a basic sequential
algorithm scheme (BSAS, [2]) by incorporating adaptive cluster
radii and merging of nearby clusters. The purely incremental
and computationally straightforward algorithm converges
quickly to a limited number of clusters with variable input data,
where non-adaptive methods suffer from ever-increasing or
slow convergence of cluster numbers. Despite the quick
convergence, SLVQ also retains adaptivity towards totally new
types of input data and creates new classes to quantify input if
necessary. We show that codebooks created with SLVQ
achieve comparable quality with codebooks created with the
well-established k-means algorithm using only a fraction of the
computational time needed in the latter. In addition, several
important implications regarding vector quantization in bottom-
up pattern discovery will be brought out.

The algorithm is first introduced in detail. This is followed
by experiments used to determine the behavior of the algorithm,
including a comparison with the k-means approach. Finally, the

relationship between convergence of a cluster space and quality
of the codebook is examined in a PD task.

2. SLVQ algorithm

2.1 The basic algorithm

Since one of the aims in ACORNS is to perform computational
modeling of infant language acquisition, we wanted to perform
cognitively plausible processing where new acoustic input
changes the existing processing structures incrementally
(plasticity). This excludes methods with batch processing of
massive datasets and storage of all past acoustic inputs in detail.
Also for bottom-up pattern discovery purposes, it was desirable to
have an algorithm that can adapt to the properties of the input data
so that hard decisions made by the user can be avoided. For
example, instead of deciding on the exact number of clusters in
advance, we wanted to allow some room for the data to speak for
itself. We also wanted to have an open architecture where
processes can be easily analyzed and understood, and therefore
neural networks were not utilized.

Due to the strong emphasis on incrementality, the SLVQ
algorithm is not purely divisive or agglomerative in the traditional
sense (see, e.g., [3]), and resembles Kohonen maps [4], BSAS [2],
and the VQ-INC-EXT algorithm [5] while being at the same time
computationally extremely straightforward. It differs from, e.g.,
Learning Vector Quantization (LVQ) and its modifications (see,
e.g., [6]) due to lack of supervision in training.

Incrementality sets some serious limitations to the way that
data can be processed: knowledge about future inputs is not
available to the algorithm so all classification decisions have to be
performed on-line. Therefore the main functional principle of
SLVQ is to take one feature vector at a time as input and compare
it to the existing cluster structures. If no suitable match is found, a
new cluster is created for the input. If a match is found, the input
is merged to the existing centroid that becomes updated and then
the original input vector is discarded (see the next subsection for a
description of adaptive updating of the cluster radii).

The following pseudocode illustrates the main steps taken in
the clustering process (see also fig. 1):
1. Assign first input vector vi as the first cluster centroid with radius r0.
2. Take the next input vector vi and compute its distance di,j to all existing
clusters.
3. if !di,j > rj, where rj is radius of cluster Xj

 create a new cluster with centroid vi and radius r0.
else if " di,j # rj,

merge vi to Xc, where c = argjmin di,j , by having xc = (xc+vi)/(nc+1),
where xc is the cluster centroid of Xc and nc is the number of vectors
already merged to the cluster c.

4. update all cluster radii
5. merge all cluster pairs Xi and Xj that satisfy di,j < rmin by having

xij = (xi+xj)/(ni+nj). Go to 4 until all clusters satisfy !di,j > rmin.

6. Go to step 2.

Copyright 2009 ISCA 6-10 September, Brighton UK852

Figure 1: Block diagram of the SLVQ algorithm

Distance di,j between cluster centroids i and j is computed using
a chosen metric, so that d increases as the similarity decreases.
Every time a new input vector v arrives, its distance di,j to all
existing cluster centroids is computed and the closest cluster i
that has a larger radius than the mutual distance is chosen as the
target cluster (ri > di) and the vector is merged to the cluster
centroid using a weighted average:

 x
i
=

n
i
x

i
+ v

n
i
+1

 (1)

where ni is the number of vectors that have already been merged
into the cluster. If no sufficiently close cluster is detected, a
new cluster centroid Xf is created at the location defined by v
with a radius of r0.

Since the weighted merging causes the cluster centroids to
move around in the cluster space, a case exists where two
centroids drift very close to each other. If the mutual distance
between two clusters becomes smaller than value rmin at any
time, the clusters are merged together using equation (2),
resulting in a single common centroid.

 x
ij

=
n

i
x

i
+ n

j
x

j

n
i
+ n

j

 (2)

2.2 Adaptive cluster radii

While working with sequential clustering algorithms and
varying input data like continuous speech, it becomes evident
that the merging resolution needs to be relatively low with
clusters of fixed radius or else the number of clusters will
increase continuously as new data is introduced. In contrast, we
hypothesized that a high resolution is still required at those
sections of the feature space that contain large amounts of input
data and where small nuances have to be differentiated, while
setting a high resolution for the entire space leads to exploding
(non-converging) number of very small clusters that are useless
for the purpose of pattern discovery from quantized sequences.

To test this hypothesis, a method was devised that allows
cluster radii to be defined adaptively: the radius ri of a cluster i
depends on the number of vectors it has received in comparison
to other clusters. If a cluster Xi has more input vectors (ni) than
the mean of the number of vectors in all clusters of space X
(E{n}), the radius of the Xi cluster is shrunk. On the other hand,
if the cluster has less input vectors than on average, the radius
of the cluster is increased.

r
i,t +1 =

r
i,t
$!r n

i
> E n{ }

r
i,t

+ !r n
i
< E n{ }

"

%

& %
 (3)

The rate that clusters adjust their radii is called the rate of
adaptation ! and is defined as following:

" =
!r

N
v

 (4)

Variable $r is the change in threshold (for a single cluster) and

the Nv is the number of new input vectors during the change

(~time), i.e., the rate of adaptation defines the amount of change
in the cluster threshold for each new input vector.

In practical algorithm implementations, a counter can be used
to count the number of input vectors since the last update, and if
Nv is exceeded, the cluster radii are adjusted by value $r and the

counter is reset. Therefore, the value Nv is a tradeoff between
computational complexity and the accuracy of the process: if Nv is
high, the update is performed less frequently but with larger steps.
If it is set too high, instability in the clustering process may occur
due to oscillations of cluster sizes. For a majority of the
experiments, radius update was performed following the
presentation of each new utterance.

In order to set an allowed value range for possible cluster
radii, a minimum radius rmin and maximum radius rmax are
defined. Minimum radius rmin defines the highest possible
resolution of the clustering, whereas rmax controls how rarely
occurring inputs are treated and therefore has a large impact on
the convergence of the algorithm. In principle there is also a free
parameter r0 that defines the default radius for new clusters before
any adaptation takes place, but the mean of rmin and rmax was
found to be a suitable choice for r0 in the experiments. Setting r0
too low in combination with a low ! will result in an explosion in

the number of clusters since the cluster sizes and therefore cluster
radii will not develop properly.

3. Experiments

3.1 Word recognition framework

The aim of the experiments was to determine how easily recurring
phonetic structures are extracted from quantized time-series
provided by SLVQ. Performance was tested in bottom-up pattern
discovery experiments using the concept matrix (CM) framework
described in [7] and [8]. Although the details of the PD algorithm
are too broad to review here, the idea is to collect statistical
models of co-occurrences of acoustic events (VQ label pairs) at
different time distances in a simultaneous presence of a
multimodal information source (e.g., a set of labels indicating
what is present in the visual field). This creates associations
between the acoustic input and events and items present in the
surroundings of the learner, i.e., the system learns “words” that
refer to some external entities (see also [9] for a similar learning
framework). The CM system achieves comparable performance
with discrete state HMMs in continuous digit recognition if visual
information in training is replaced with tags indicating the
presence of digit numbers in the utterance [7].

During training, the SLVQ codebook was first created using a
subset of the training material. Then all material was quantized
and used with the multimodal visual tags as input to the CM
system. In the testing phase, only VQ sequences were shown to
the CM and the system had to indicate which visual items are
associated with the acoustic input.

3.2 Material and features

Speech material used in the experiments was taken from a corpus
recorded as part of ACORNS project. The material consists of
2397 Finnish utterances, each containing 1-4 target words from a
dictionary of 50 words the system is supposed to learn (+
numerous inflections inherent to Finnish!). Additionally, the
target words are surrounded by a number of non-target words.
The sentences were spoken by 4 speakers (two male), yielding a
total of 9588 utterances.

853

As for input to the SLVQ, standard MFCC features were
extracted using a Hamming window of length 20 ms with 10 ms
shifts. The mean of each vector was removed and they were
normalized to unit vectors. The cross-correlation of MFCC
vectors was used as a distance metric in the experiments (note
that cross-correlation increases with similarity in contrast to the
distance notation used throughout the algorithm description).

3.3 Experiments

3.3.1 Baseline word recognition

By adjusting the rmax parameter, SLVQ codebooks of 5 different
sizes were created (N = 600 utterances were used, learning rate
! = 0.005). As a frame of reference, standard k-means clustering

was performed on the same data in order to produce codebooks
of the same size. The CM algorithm was trained with 9000
utterances and tested with 400 previously unseen utterances (for
a total of 1200 keyword occurrences). Figure 2 displays the
recognition results as a function of codebook size. For larger
codebooks, the difference between SLVQ and k-means is small,
although k-means performs slightly better for the largest
codebook. In case of smaller codebooks, SLVQ seems to code
the speech more efficiently, leading to somewhat better
recognition results.

Figure 2: Recognition rates (% words correct) as a function of
codebook size for SLVQ and k-means codebook clustering.

Figure 3: Speaker blocked training. The number of clusters
increases as new speakers are introduced. Randomly ordered
clustering shown as a reference.

3.3.2 Expansion due to novel input

Since the algorithm creates new clusters for input vectors that
do not correspond to any existing centroids, the algorithm
expands its codebook automatically if a totally new type of data
is introduced. Figure 3 shows an example where 9588
utterances are trained in four speaker specific blocks. As can be
seen, the number of clusters increases when a new speaker is
introduced to the system. This is a useful property in
unsupervised learning, where forcing of entirely new types of

Figure 4: Number of clusters as a function of trained utterances at
different rates of adaptation ! (rmin = 0.6, rmax = 0.975, r0

 =

0.7875). A very large scale of gamma values (0.000925 -
0.01625) leads to a very similar end result after 5000 utterances.
However, if the adaptation rate is set to zero, the number of
clusters explodes.

input into existing structures may not be desired. However, this
property has not been utilized so far nor studied in depth.

3.3.3 Effects of adaptation

If the radius adaptation is disabled (! = 0), then all clusters will

have the default radius that is the mean of rmin and rmax. Figure 4
illustrates what happens in this case: although the mean resolution
of the cluster space is approximately at the same level as with the
spaces created using adaptation, the number of clusters becomes
essentially higher and shows no signs of saturation towards the
end of the training data. More importantly, the resolution without
adaptation is much lower (0.7875 vs. 0.975) for the densest parts
of the cluster space, resulting in a very sparse coding that can still
miss distinctions between important classes of input data.

However, experiments with concept matrix speech
recognition seem to indicate that adaptive resolution may not be
necessary for good PD results. By setting the default threshold
sufficiently low and disabling the adaptivity (! = 0), an equal

number of clusters can be obtained as with adaptive radii. When
two equal size codebooks, one adaptive and one static, are
compared, the recognition rate seems to be at equal levels or even
better for passive clustering (e.g., 91.23 % for adaptive and 91.89
% for passive, N = 210 clusters, 5000 utterances for codebook
training). What this seems to suggest, in contrast to the hypothesis
motivating adaptivity in the first place, is that an extremely high
resolution is not required for effective quantization of speech, so
that MFCC vectors (normalized to unit vectors) originating from
different phonetic units are sufficiently distributed in the space to
be differentiated with lower cross-correlation values.

The next point of interest was that the adaptation might
improve learning rate since the number of clusters stabilizes
relatively quickly, whereas constant radii results in gradual
increase in cluster numbers (fig. 4). In figure 5 this difference is
further clarified: the adaptive method is relatively stable already
after 100 utterances, whereas the constant radii results in a
gradual increase in cluster numbers (the constant radius was set to
a value that leads to the same number of clusters at 500 utterances
as the adaptive process). If more data would be provided, the
constant radii algorithm process would keep increasing the cluster
numbers, whereas the number of clusters in an adaptive process
would not be highly affected unless a significantly differing type
of data would be introduced.

854

Figure 5: Number of clusters as a function of number of trained
utterances for constant and adaptive radii clustering (rdefault =
0.69 for static and rmin = 0.6 rmax = 0.975, ! = 0.008 for

adaptive) when a codebook of size 188 is created.

The first recognition test with these codebooks showed that
when only 500 randomly chosen utterances were used for
training of the VQ codebook, adaptive clustering performed
clearly better than passive clustering, yielding a 92.72 % versus
90.23 % recognition rate with 188 clusters. However, when the
amount of training material was further limited to 100 randomly
chosen utterances (peak value of adaptive clustering in fig. 5),
producing a total of 208 clusters, the recognition rate was now
91.06 % in the adaptive case. When the default radii r0 was set
sufficiently tight so that an equal number of clusters were
created in the passive condition, the recognition result was
91.72 %, although the number of clusters was again far from
stable. When an equal sized (N = 208 clusters) codebook was
created from the same 100 utterances using the standard k-
means algorithm, the recognition rate was 91.89 %.

Taken together, these results seem to point to a number of
important implications. Firstly, the stability in the number of
clusters is not an indicator of the quality of the codebook for
pattern discovery purposes like in the CM algorithm [7]. This
should also apply for NMF [9] due to similarities in how co-
occurrence statistics are used. Secondly, the effect of the
amount of training material used to create the codebook seems
to be very small with a limited number of speakers, since
recognition rates are not highly affected whether 100 or 5000
utterances are used. Thirdly, the nature of the quantization
method itself does not seem to play a big role in the ultimate
PD task. SLVQ and k-means both result in very similar overall
performance, although the former works in a purely incremental
basis without any global error measure, whereas the latter
minimizes the global quantization error in a batch process given
the desired number of clusters.

4. Conclusions

A novel method called self-learning vector quantization
(SLVQ) for quantization of multi-dimensional data was
introduced. The method is especially designed for incremental
learning problems where the size of the codebook and the
amount of input material is difficult to determine beforehand
but when some resolution limits are known. In the clustering
process, new clusters are created if they are not sufficiently
similar to existing ones. Adaptation helps to build an efficient
coding of the input when the data is unequally distributed in the
cluster space, making the pruning of small clusters unnecessary
and leading to convergence of the cluster space. However, it is
noteworthy that though the idea is to avoid hard decisions and

therefore the algorithm does not require the number of clusters to
be pre-specified, it is still necessary to set several parameters that
indirectly affect the number of clusters. This has to be done by
either a user or a system dealing with SLVQ output in order for
the algorithm to achieve desired performance.

The algorithm is computationally efficient. Only one input
frame and the existing cluster centroids have to be stored in
memory at any one time. Since the classification decisions are
made on-line, the number of computations per each input frame is
low and does not increase as a function of input frames. In
principle, the algorithm can cluster infinite amount of data. For
example, batch mode clustering of 1000 utterances into a
codebook of size 250 takes approximately 94 minutes for a
standard k-means algorithm running in a MATLAB environment
using fast C++ routines for vector distance computations, whereas
an incremental SLVQ codebook of the same size takes only 65
seconds to create (tested on a 4 x 2.66 GHz Intel Xeon).

However, the obtained results from pattern discovery
experiments are somewhat ambiguous and difficult to interpret. In
principle, the SLVQ algorithm performs at the same level as the
theoretically more sophisticated k-means algorithm. On the other
hand, the quality of the clustering does not seem to be greatly
affected by the manner in which clustering is performed when
measured from the perspective of pattern discovery from VQ
sequences. Adaptivity, the amount of training material, and even
the blind incrementality versus batch mode optimization do not
seem to cause significant differences. Mainly the overall size of
the codebook has a significant impact on the quality of the
learned patterns and therefore on the recognition accuracy. Since
the SLVQ algorithm was designed for the pattern discovery task
used in this paper, it may be that some other experimental
framework would better contrast the suitability of the SLVQ
algorithm as a general incremental classification mechanism to
other existing approaches.

Acknowledgements

This research is funded as part of the EU FP6 FET project
Acquisition of Communication and Recognition Skills
(ACORNS), contract no. FP6-034362.

References

[1] Acquisition of Communication and Recognition Skills
(ACORNS). EU FP7 FET Project. http://www.acorns-project.org

[2] Theodoridis, S., & Koutroumbas K., “Pattern Recognition”,
Academic Press, San Diego, California, 1998

[3] Liao, W., “Clustering of time series data – a survey. Pattern
Recognition”, Vol. 38, pp. 1857-1874, 2005

[4] Kohonen, T., “Self-Organizing Maps”, 2nd extended ed., Springer,
Berlin, Germany, 1995

[5] Lughofer, E., “Extensions of vector quantization for incremental
clustering”, Pattern Recognition, Vol. 41, pp. 995-1011, 2008

[6] Kohonen, T., “Improved versions of learning vector
quantization”, Proc. Neural Networks, vol. 1, pp. 545-550, 1990

[7] Räsänen, O. J., Laine, U. K., and Altosaar, T., “A Noise Robust
Method for Pattern Discovery in Quantized Time-Series: the
Concept Matrix approach”, Proc. Interspeech, Brighton, England,
2009.

[8] Laine, U. K., Räsänen O. J., Altosaar T., Driesen J., Aimetti G. &
Henter G.: "Methods for enhanced pattern discovery in speech
processing", ACORNS project deliverable,
http://lands.let.ru.nl/acorns/documents/, 2008

[9] Van hamme, H., “HAC-models: a Novel Approach to Continuous
Speech Recognition”, Proc. Interspeech, Brisbane, Australia, 2008

855

