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Abstract 

Phone segmentation in ASR is usually performed indirectly by 
Viterbi decoding of HMM output. Direct approaches also exist, 
e.g., blind speech segmentation algorithms. In either case, 
performance of automatic speech segmentation algorithms is 
often measured using automated evaluation algorithms and used 
to optimize a segmentation system’s performance. However, 
evaluation approaches reported in literature were found to be 
lacking. Also, we have determined that increases in phone 
boundary location detection rates are often due to increased 
over-segmentation levels and not to algorithmic improvements, 
i.e., by simply adding random boundaries a better hit-rate can 
be achieved when using current quality measures. Since 
established measures were found to be insensitive to this type 
of random boundary insertion, a new R-value quality measure 
is introduced that indicates how close a segmentation 
algorithm’s performance is to an ideal point of operation. 
Index terms: blind speech segmentation, segmentation 
evaluation. 

1. Introduction 

Automatic speech segmentation has many applications in 
speech processing and phonetics, e.g., in automatic speech 
recognition and automatic annotation of speech corpora. 
Several methodological approaches to automatic segmentation 
have therefore been proposed (e.g., [1-9]). In order to develop 
and test a segmentation algorithm, the properties of the 
automatically created speech segments need to be analyzed in 
detail, and therefore automated evaluation methods are 
required. These methods should provide a fast, independent, 
and overall estimate of algorithm performance over large 
amounts of data. This would enable efficient experimentation 
regarding the effects of different parameter values and would 
make analysis spanning different annotated corpora more 
feasible. Moreover, if the output quality can be described using 
a single reliable measure that is able to indicate the distance and 
direction from the point of ideal performance, automatic 
optimization of algorithm parameters would become much 
more facilitated. 

 However, evaluation methods described in literature are 
not self-explanatory and therefore cannot be repeated in an 
exact manner.  No single best — or in any other way — 
approved method for describing the accuracy has been 
suggested, the trend being that many authors just adapt some 
conventional approach exploiting boundary search regions 
without specifying their use. The ambiguity associated with 
these evaluation approaches leads to problems when 
comparisons between approaches are conducted at different 
sites, and more importantly, the results may become unreliable 
in terms of the relationship between the real phonetic content of 

speech and the algorithmic output if the evaluation is not 
performed with care. Previous publications in this area were 
therefore comprehensively investigated. As a result, this paper 
identifies two major problems and offers solutions for them. The 
first one concerns itself with how correctly detected segment 
boundaries are computed. The second problem arises from over-
segmentation and its corruptive effects on the obtained hit rates.  

In order to sufficiently resolve the detected problems in 
evaluation, a method for correctly counting detected segment 
boundaries is explicitly defined and a new segmentation quality 
measure, called the R-value, is proposed.  

2. Evaluation methodology 

2.1 Evaluation reference 

In order to perform automatic evaluation it is necessary to have 
access to a reliable reference that indicates true segment locations 
in speech. The convention is to perform a segmental boundary 
comparison between an automatic method and a manually 
produced segmentation, since many well-known speech corpora 
are provided with an annotation created manually by one or more 
trained phoneticians. While manual segmentation is prone to the 
variability present in individual judgments, it is often considered 
as a reliable baseline for quality if it is carefully produced [10].  

2.2 Quality measures 

When algorithmic output is compared to a reference, a number of 
measures can be computed. Insertions are detected when one or 
more boundaries created by a segmentation algorithm do not 
match any reference boundary, or, if there are several generated 
boundaries in the vicinity of only one reference boundary. 
Deletions are noted when there is a boundary marked in the 
reference, but the algorithm produces no corresponding boundary. 
Finally, correctly detected boundaries are considered as hits.  

By using these measures, the overall segmentation accuracy is 
usually defined in terms of hit-rate (HR). For some finite section 
of speech let Nhit be the number of boundaries correctly detected 
and Nref be the total number of boundaries in the reference. HR 
can then be calculated using equation 1 in table 1 [1]. Another 
central measure, especially in the case of blind methods, is the 
over-segmentation (OS) rate, which is the ratio of the total 
number of detected boundaries Nf to the number of boundaries in 
the reference Nref (2) [11].  

Precision (3) describes the likelihood of how often the 
algorithm identifies a correct boundary whenever a boundary is 
detected. Recall (4) is the same as HR (1) except that it is not 
scaled to be a percentage. In order to describe the performance of 
an algorithm with one scalar value, the F-value (5) can be 
computed from precision (3) and recall (4) [12]. False-alarm rates 
and miss rates are also sometimes used (e.g., [6]) and can be 
derived directly from the above measures.  
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Table 1: The most common quality measures used for 
segmentation. 

HR =
Nhit

Nref

*100 (1)  OS = (
N f

Nref

!1)*100 (2)  

PRC=
Nhit

N f

(3)  RCL =
Nhit

Nref

(4) 

F =
2.0*PRC *RCL

PRC + RCL
(5)  

 

2.3 Counting the hits: the search region method 

In order to determine the number of hits, deletions, and 
insertions, the reference annotation has to be somehow 
compared to a segmentation algorithm’s output. The practice 
evident in literature is to place a fixed-size search-region 
around each reference boundary and verify whether the 
segmentation algorithm has produced any boundaries in these 
regions. However, a major source of ambiguity exists in 
literature that concerns the overlapping of search regions [1-9]. 
A typical definition reads as: “a boundary is considered to be 
correctly detected if the hypothesis and the manual 
transcription are within 20 ms of each other” without any 
further specifications (from [2], p. 2; see also, e.g., [1], [3-9]). 
Situations, in which there are two reference boundaries within 
40 ms of each other1, while the algorithm produces a single 
boundary in the overlapping region, are not well defined (fig. 
1). The manner in which reference and segment output 
boundaries are paired in these situations and whether re-use of 
boundaries for several hits is explicitly ruled out leads to 
different hit-rates. Such subtle differences in interpretation may 
yield changes in performance as large as 5 % [13] and therefore 
acts as a large source of inconsistency in the reporting of 
segmentation algorithm results. 

 
Figure 1: Example of an overlapping search region causing an 
ambiguous situation in evaluation. The second algorithmically 
produced boundary is within two search regions 
simultaneously, leading to the problem of how to define a 
matching boundary for each reference boundary.   

 
A simple method to avoid the overlap problem can be 
formulated as follows: search regions of a typical fixed size, 
e.g., ±20 ms, are placed around each reference boundary. If 
overlapping search regions exist, that is, adjacent regions with 
their reference boundaries exist closer than 40 ms to each other, 
then the regions are asymmetrically shrunk to divide the space 
between two reference boundaries into two equal-width halves 
(similarly to [11], but now with a maximum search region size; 
see fig. 2). This prevents ambiguous situations associated with 
overlapping search regions. Now each region can be searched 
for algorithmically generated boundaries. Every search region  

                                                                    
1 For example, in TIMIT 21.9 % of all boundaries are closer than 

40 ms to each other. 

 
Figure 2: The overlap of regions is removed by asymmetrically 
shrinking the search regions of boundary 1 and 2 to a common 
mid-point (indicated by the arrow). The matching of reference 
boundaries to algorithmic boundaries now becomes 
straightforward. 
 
containing an algorithmically generated boundary is considered as 
a hit and all additional boundaries are counted as insertions. 
Empty regions are considered as deletions. 

3. Stochastic over-segmentation 

One notable aspect of the search region approach is that a 
relatively large proportion of the signal timeline becomes covered 
with search regions, since normal rate speech contains about ten 
phones per second. For example, with the TIMIT corpus, 45 % of 
all audio material already falls into some search region when a 
±20 ms search region is specified (fig. 3). This is one reason why 
larger search regions become questionable for evaluation 
purposes. In some publications even larger search regions up to 
±100 ms have been used [14-15]. Even with only a 70 ms search 
region (± 35 ms) around each TIMIT phone boundary, 68 % of 
the timeline becomes covered causing many sporadically 
generated phone boundaries to be classified as correct. This 
clearly would permit a very poor segmentation algorithm to fare 
well since any generated boundary would only have an 
approximately 1/3 chance of falling outside of a hit window. 
Obviously, improvements are required in how segmentation 
algorithm performance is measured. 

As explained above, expanding timeline coverage is a 
potential problem in the evaluation of any generic segmentation 
algorithm since the probability that a randomly inserted boundary 
hits a search region increases when more of the timeline is 
covered. To demonstrate the interdependence of accuracy and 
over-segmentation, a stochastic segmentation experiment was 
performed. In this experiment boundaries were generated at 
entirely random temporal locations with a stochastic process. By 
counting the number of boundaries hitting the search regions, the 
hit-rate started to increase along with the over-segmentation 
value. This movement can be seen when plotted in the 
segmentation performance plane (hit-rate vs. over-segmentation) 
near the bottom of figure 4 as the dashed line labeled “Theoretical 
stochastic process”. Note that a segmentation algorithm that 
would match the reference annotation perfectly would be 
considered to be performing ideally and would have its operating 
point marked at the 100 % hit-rate and 0 % over-segmentation 
levels. This point of ideal operation is referred to as the target-
point (TP). 
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Figure 3: Search region timeline coverage in TIMIT material as 
a function of search region width (overlapping sections of 
adjacent search regions are not included twice in the analysis). 

 
Figure 4: Use of the segmentation performance plane to display 
results from different segmentation algorithms ([1-2], [6]) as 
well as the result obtained using random insertion of segment 
boundaries. Note that the target-point indicates the point at 
which a segmentation algorithm would perform ideally, i.e., the 
algorithmic output would match the reference annotation 
according to a defined search region. 

 

The increase of HR as a function of OS in this process has 
significant similarity to the state-of-the-art segmentation results 
reported in literature ([1-2], [6-7]), i.e., the rate at which hit-rate 
increases (by allowing more over-segmentation) does not seem 
to be any larger than what can be obtained by randomly 
inserting boundaries. 

This observation leads to the conclusion that the 
segmentation results that have been reported in literature with 
relatively high over-segmentation values indicate very little 
about the internal characteristics of an algorithm. If the increase 
in accuracy (as is the case with higher levels of OS) starts to 
align itself with the theoretical stochastic process curve in fig. 4 
(i.e., parallel in direction indicating a similar slope), the 
capability of the algorithm to provide information about 
meaningful phonetic changes in the signal becomes negligible. 
Therefore, results from an entirely random segment generation 
process that assumes no knowledge of the underlying speech 
signal can be used to effectively define a zero-level 
segmentation quality baseline.  

4. R-value as a measure for segmentation 
quality 

Optimizing the operation of a speech segmentation algorithm is 
often a tradeoff between hit-rate and over-segmentation (or 
inversely, false-alarm rate and miss-rate). In order to find a 
suitable operating point, a proper balance between these two 
measures needs to be determined.  The previously introduced F-
value (5) is one possible way to describe overall performance of 
an algorithm with a single value. However, the F-value is prone 
to stochastic hit-rate increases due to the over-segmentation 

problem described in section 3. In order to describe performance 
using a single value that is also sensitive to over-segmentation, a 
novel measure was developed.  

The theoretical goal of segmentation is to achieve operation 
around the target-point (TP) that is located at the 100 % hit-rate 
and 0 % over-segmentation levels as compared to a reference. 
The basis of the new measure is the algorithm’s distance from TP 
and not the (hit-rate) gain achieved by over-segmentation. On the 
segmentation performance plane, a distance r1 from the 
segmentation result to TP can be derived (6). Additionally, to 
appreciate the value of under-segmentation compared to over-
segmentation in an algorithm (i.e., less false positives), another 
distance r2 (7) is measured from the segmentation result 
perpendicularly to the ideal zero-insertion line y = x – 100 (fig. 
5). This line is the left-side theoretical limit for possible results in 
this space and extends from –100 % over-segmentation and 0 % 
hit-rate, to the 100 % hit-rate level with 0 % over-segmentation 
(e.g., with a 50 % hit-rate, over-segmentation needs to be –50 % 
in order to avoid any insertions). The distances r1 and r2 are then 
added together and normalized to have a maximum value of 1 at 
the target-point (8). This new distance measure, referred to as the 
R-value, decreases as the distance to the target grows, i.e., 
similarly as the F-value does, but is critical towards over-
segmentation.  

 

r1 = (100 !HR)2 + (OS)2    (6)  

 

r2 =
!OS + HR !100

2

    (7)  

 

R =1!
abs(r1) + abs(r2)

200
    (8) 

 
Figure 5: R-distance is calculated by summing distance r1 
(distance from the segmentation algorithm’s operating point 
“Segmentation result” to the target-point), with r2 (distance from 
“Segmentation result” to the ideal zero-insertions limit), and then 
normalized according to (8). 

 

Figure 6 shows the behavior of F- and R-values in the 
segmentation performance plane using equal value curves. 
Dashed lines indicate how hit-rate increases as a function of over-
segmentation due to the stochastic generation of boundaries.  As 
can be seen, the F-value behaves in a linear manner when 
compared to the R-value. High over-segmentation rates are more 
severely penalized when using the R-value as compared to the F-
value, and the R-value drops dramatically above OS = 0 % when 
OS is increased unless the accuracy is actually increasing more 
rapidly even with the generally detrimental effect of increased 
random insertions.  
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Figure 6: F-value and R-value equal value curves in hit-rate vs. 
over-segmentation coordinates. Superimposed dashed lines 
indicate hit-rate increase as a function of over-segmentation in 
stochastic boundary generation: five different elevated offsets 
for the theoretical stochastic process are shown. The F-value 
curves (solid lines) are nearly parallel with the effects of 
stochastic boundary generation (dashed lines) indicating the F-
value’s strong correlation with over-segmentation and thus its 
weakness as a reliable quality measure. On the other hand, the 
R-value measure is aware of the level of over-segmentation and 
can be used to direct the segmentation algorithm towards the 
target-point. 
 
Thus, the R-value not only measures the quality of a 
segmentation algorithm but can also be used to automatically 
direct the automatic segmentation process towards a goal, e.g., 
the target-point. It should also be noted that distance r1 alone 
can be used to find the optimal operating point from an 
operating curve of an algorithm in terms of equally weighted 
HR and OS rates. 

5. Conclusions 

Serious weaknesses in the manner in which the performance of 
speech segmentation algorithms are currently measured were 
shown. It was found that random insertion of segment 
boundaries increases hit-rate as a function of over-segmentation 
due to a large covering of the search regions in the speech 
timeline. This increase in hit-rate correlates significantly with 
the high over-segmentation results reported in literature, 
suggesting that at higher over-segmentation rates a stochastic 
process starts to dominate the results instead of the capabilities 
of the tested algorithm. Therefore, a novel measure called the 
R-measure was introduced that can be applied to the evaluation 
of any automatic speech segmentation algorithm. The R-
measure increases towards the ideal target-point (100 % hit-rate 
and 0 % over-segmentation) and is much more sensitive to 
increases in over-segmentation levels than previously used 
measures like the F-value. In combination with the search 
region method explicitly defined in section 2.3, this measure 
provides for an independent and more relevant quality score for 
automatic segmentation of speech.  
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