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Abstract 
Human neo-cortex can be viewed as a modality invariant system 
for pattern discovery and associative learning. Similarly, 
research in the field of distributional learning suggests that much 
of human language acquisition can be explained by generic 
statistical learning mechanisms. The current paper argues that 
pattern processing capabilities of the human brain can be better 
understood if the process of early language acquisition is 
modeled using an entire cognitive architecture capable of 
unsupervised pattern discovery and associative learning. A high-
level motivation and description for generic processing 
principles in such architecture are given, followed by examples 
of our current work in the field. 
Index Terms: language acquisition, computational modeling, 
statistical learning, associative learning, multimodality, memory 
architectures 

1. Introduction 
The manner that human infants acquire their native language 
seems almost effortless. Instead of being explicitly taught, they 
learn to understand and produce speech through everyday 
interaction with other people in different contexts. Due to 
continuous linguistic exposure, children become able to 
understand speech in adverse acoustic conditions and despite 
different acoustic characteristics of different talkers. Moreover, 
they are able to fill in missing semantic and referential content of 
speech with the help of the context in which the communication 
takes place, and add tens of new words to their vocabularies on a 
daily basis.  

The astonishing effectiveness of human learning becomes 
clear when one tries to build a machine able to understand 
spoken language. State-of-the-art automatic speech recognition 
(ASR) systems are based on the estimation of statistical 
correspondences between acoustic and textual representations. 
This calls for expert knowledge in phonetics and huge amount of 
work in preparing the speech material for the estimation of the 
system parameters. Still, the ASR systems perform well only on 
speech input that conforms to the acoustical and lexical content 
of the training material (see [1]). Novel words, grammatically 
incorrect constructions, background noise, and the paralinguistic 
aspects of everyday communication all cause major challenges to 
the system with a pre-defined set of capabilities. These 
shortcomings are not least due to the fact that ASR systems do 
not understand speech, but they are simply converting acoustic 
input into textual output using the given elementary units and 
their estimated correspondences in the both modalities. 

Since a machine able to really understand spoken language is 
of interest from both practical and theoretical point of view, the 
question is how does one construct such a device? Given the 

complexity and notable differences of world’s languages, it is 
evident that the language has to be learned through ever 
increasing experience. Since communication does not take place 
in a vacuum but the meanings of words only emerge through 
situated grounding, the system must also be able to understand 
its external and internal context and how the context is related to 
the goals and needs of the system. This means that learning must 
also take place outside the auditory domain, and that the meaning 
is ultimately coupled to the learned consequences of the auditory 
patterns. In order to accumulate experience, the system must be 
able to interact with the surrounding world in order to evaluate 
its behavior and proactively acquire knowledge of the 
relationship between sensory patterns and the external 
affordances. In other words, it can be argued that a system 
capable of full-scale language learning requires an entire 
cognitive architecture – an architecture that is able to learn the 
dependencies between its input and output modalities in a 
manner that the sensory patterns become predictive cues for the 
states of the surrounding world, thereby indirectly or directly 
guiding the actions of the learning system. Such architecture, if 
successful in explaining a variety of experimental data, would be 
a step towards an integrative theory of spoken language 
processing (see [2]). 

The goal of the current paper is to illuminate the possibilities 
and challenges of studying language acquisition (LA) as a 
generic learning process of a cognitive system. The domain 
generality (versus language specificity) of the learning processes 
is inspired by the idea of neocortex as a universal pattern 
processing device [3] and motivated by the experimental 
findings in distributional learning that seem to point towards 
modality generic perceptual learning processes (e.g. [4]). Also 
due to the ongoing research of the authors, the focus is on the 
associative learning between patterns of different input and 
output modalities. 

2. A general model for multimodal 
associative learning  

The central characteristic of a cognitive architecture is the ability 
to learn meaningful patterns from sensory data without a priori 
knowledge of the patterns. This already poses two difficult 
questions: 1) what is a pattern, and 2) where does the meaning 
emerge from? According to our view, these questions can be 
approached from two different perspectives.  

According to the first (traditional) view, and assuming a 
finite state space representation for a sensory signal, a pattern 
can be considered as a probabilistic construct of elementary 
events (or observations) that are dependent on each other in time 
and/or space. The dependency does not have to be deterministic, 
but above chance level probability of observing two or more 
elementary events in a specific configuration can already be 



considered as a pattern. For example, an acoustic signal 
corresponding to a spoken word can be interpreted as a specific 
distribution of signal energy in time and frequency, analyzed up 
to a desired resolution. However, patterns discovered from a 
single data stream alone do not carry any meaning. According to 
the first view, the meaning of the pattern only emerges when the 
observed pattern is associated (grounded) to a jointly occurring 
contextual variable perceived through another modality or a 
variable representing an internal state of the system (e.g., active 
concepts in memory or current emotional state). For a spoken 
word such as “a ball”, the contextual variable could correspond 
to the visual or haptic percept of a real ball. In other words, the 
pattern as such can be defined without the grounding component, 
but the meaning emerges only through the grounding process.  

The inherent problem with the first viewpoint is that even 
though the quantification of statistical dependencies in time and 
frequency is possible, it is not possible to derive an “optimal” 
and finite set of distinct patterns (or categories) for a data set in 
isolation. The goodness of a representation is always measured 
with respect to the task or context against which the optimality of 
the patterns is reflected. 

The second viewpoint argues that the patterns and their 
meanings are inherently intertwined so that there is no other 
without the other. According to this view, any processing beyond 
the learning of low-level sensory receptive fields always takes 
place in the context of multiple temporally proximate 
perceptions and mental states (memory, emotions) of the 
perceiver, and that this context affects the way how incoming 
sensory information from each modality is interpreted. This 
automatically attaches a set of multimodal associations to each 
percept and the elementary sensory events become bound 
together not only by their mutual co-occurrences but also by 
their shared context. In this case, the learning of pattern 
categories is no longer merely a question of bottom-up statistical 
clustering, but the categories are actually a function of the 
context: the sensory inputs belonging to the same pattern 
category are those that have equivalent predictions of the state of 
the world in other modalities, or equivalently, the current context 
defines the boundaries of a pattern category. In a sense, the idea 
of non-chance level dependency of elementary events in the first 
viewpoint is extended to allow these elementary events or states 
to occur across multiple input and output modalities of the 
system.  

The obvious challenge with the latter viewpoint is that the 
estimation of all cross-modal dependencies through, e.g., normal 
joint probabilities is not possible due to the high dimensionality 
of the problem. Also, the direct associations between low-level 
sensory events (e.g., spectral features and visual receptive fields) 
may not be meaningful, but the useful dependency structure only 
emerges when at least one of the signal representations is 
sufficiently invariant to act as “labeling” for the remaining 
modalities (cf. visual tags in weakly-supervised LA simulations, 
e.g. [5]). How these abstracted representations can be learned 
from scratch is not clear, but one can hypothesize that the 
patterns in the sense of the first viewpoint may also allow the 
bootstrapping of the cross-modal learning.  

In order to study the feasibility of both viewpoints, our goal 
is to develop a computational cognitive architecture where these 
theories can be tested. Since language (both spoken and written) 
is a good example of a complex system including patterns 
(acoustic, articulatory, written) at different scales (e.g., phones, 
words, phrases, letters, written words) and their meanings (the 

external and internal world of the perceiver), we use LA 
simulations to provide a solid experimental framework for 
unsupervised learning of meanings from data with a generic 
cognitive architecture. The basic framework is described in the 
following section. 

3. Towards an interaction platform to study 
language acquisition with a cognitive 

architecture 
LA is an excellent field to study unsupervised associative 
learning because of the several active modalities relevant in the 
learning situation, including visual and auditory information, 
articulatory motorics and emotional feedback. However, the 
earlier work on language acquisition modeling has specially 
focused on studying either learning of speech production (e.g., 
HABLAR, [6]; DIVA, [7]; Elija, [8]) or learning and grounding 
of words in weakly-supervised (e.g. [9]) or unsupervised (e.g. 
[10]) conditions. No unified work combining perceptual and 
motor learning have been carried out using an unsupervised 
learning paradigm; Elija comes closest, but for example its 
speech perception is strictly based on stored caregiver’s exact 
reformulations of Elija’s articulations using a dynamic time 
warping algorithm. We take a slightly different approach to 
develop a platform to study LA in multimodal environment. The 
idea is to include (but also control) the basic components of real-
life LA that can be considered significantly important in the 
process, and to study how the learning process is guided or 
constrained by these factors. Figure 1 shows a schematic 
overview of our learning platform. 

 
Figure 1: A schematic of the basic learning platform 

 
The platform consists of three major components: the learning 
virtual infant agent, or LeVi, a caregiver, and a simulated 
environment in which the learning takes place. All signaling 
between the caregiver and the learner takes place through the 
simulated environment.  

In the simplest case, the environment consists of a 
simulated visual scene with a number of objects and events with 
different visual characteristics. For enhanced ecological 
plausibility, the environment can be expanded to have, e.g., a 
true spatial dimensionality, specific transfer function 
characteristics for acoustic signals, additional background noise 
and more complex interaction between multiple agents. 



LeVi is equipped with auditory and visual perception 
capabilities, and ability to follow caregiver’s attention and to 
perceive emotional feedback (see [5]). In addition, visually 
salient articulatory gestures, or, e.g., orthographical 
representation of speech can be used as separate inputs to 
address specific research questions. LeVi’s output modality 
consists of an articulatory apparatus that transforms articulatory 
gestures to speech. In addition to LeVi’s pre-wired sensory and 
motor specific processing stages, it will be equipped with a 
general-purpose hierarchical associative memory and an episodic 
memory at the top of the memory hierarchy. All sensory 
channels and motor outputs are represented in the system using a 
universal coding by partitioning the parameter/feature space of 
each modality into a finite number of states and then coding the 
state of each modality with the unique labels assigned to these 
partitions. Both the state partitions (codebooks) and the patterns 
abstracted from the universal code are subject to learning. Our 
goal is to study different learning mechanisms and develop 
further LeVi’s memory architecture. 

The caregiver is also equipped with an articulatory 
apparatus similar to LeVi, but the sizes of the articulators and the 
fundamental frequencies of glottal excitation differ. In addition, 
the caregiver has pre-programmed knowledge of native speech 
sound production in articulatory terms and is able to interpret 
LeVi’s speech in terms of intended (learned) articulatory targets. 
The caregiver is also able to attend specific objects in the 
simulated environments and construct grammatically correct 
sentences from the observations.   

The key advantage of the platform in the study of 
unsupervised pattern discovery algorithms is in the increasing 
understanding of the involved processes without resorting to 
trivial synthetic test signals.  For example, it is known that the 
sensory patterns in speech perception and motor patterns in 
speech production are connected to each other although their 
relationship is highly non-linear. This makes evaluation of the 
learned patterns and cross-modal dependencies feasible. 

3.1. Basic principles of the learning process 

In order to study whether LA can be simulated using a generic 
associative learning process, we have set up the following 
hypotheses to be verified or falsified: i) All input and output 
streams should be connected to each other in a hierarchical 
manner, allowing learning of predictive associations between 
any two modalities and across levels of hierarchy.  ii) Principles 
of memory organization are similar for both sensory inputs and 
motor outputs. iii) Associative learning should not be only based 
on direct joint probabilities of sensory events and their 
abstractions, but each input also activates and updates the entire 
semantic network of the perceived patterns (“priming”). This 
allows the system to alleviate the sparseness of input statistics 
for high-level categorical associations. iv) The learning is driven 
simultaneously by bottom-up statistical structure of input 
streams and cross-stream dependencies (cf. Hebbian learning), 
and through feedback that induces plasticity in the memory 
structures. Feedback can be external (rewards or predictions of 
rewards, including caregiver feedback), or internal (failure of 
existing memory structures to predict the current situation; see, 
e.g. [11]). v) The semantic connectivity (synonymy; see, e.g. 
[12]) of internal representations is a function of the current 
external and internal context (or task) instead of being fixed. vi) 
The system will solve the relative importances of different input 
signals and their features in different situations by itself (cf. 

discussion in [13]). Naturally, the computational architecture 
must be flexible enough to support partitioning of input signals 
into multiple parallel representations at different scales.   

Further, vii) Once set up, the only inputs or parameters 
affecting the system performance should arrive through 
established sensory channels, or through purely autonomous 
behavior. This means that different tasks (e.g., word learning and 
grammar acquisition) should be accomplished using the same 
overall system without further intervention. viii) There should be 
no a priori biases to use any specific input modalities or 
combinations of input modalities in specific tasks. These 
preferences should be universal across tasks or learned from 
experience. For example, the use of visual information to aid in 
speech perception should be based on the learned correlation 
between the visual and auditory modalities, and this learning is 
enabled by the fully interconnected modalities at different levels 
of hierarchy. 

4. A learning example: acquisition of native 
phonetic categories in speech production 

An early version of the learning platform has been utilized in 
studying phonetic category learning in infants [14]. The 
simulations were based on the findings that caregivers provide 
feedback to infant’s babbling based on the adult-likeness of the 
productions, immediately shaping the infant’s vocalizations [15], 
and that it is the caregivers who imitate their children when they 
hear vocalizations that can be interpreted as communicative acts 
[16]. By using these assumptions for caregiver-learner 
interaction, a simulation was run where the LeVi started to 
explore random canonical babbling, completely unaware of 
native language phonemes. By reinforcing the memory traces for 
articulatory productions that were associated with positive 
response from the caregiver, LeVi was able to converge to the 
native phone categories a priori known by the caregiver [14].  

When the babbling became sufficiently close to adult-like 
speech (in terms of articulatory targets), the caregiver started to 
imitate LeVi. For example, “amam” produced by LeVi could be 
interpreted and imitated as “mama” by the caregiver. Mediated 
by the shared context of the communicative situation and cross-
situational learning, LeVi was able to associate his own 
articulatory actions and acoustic speech output to the perceived 
and learned representations of caregiver speech, thereby also 
allowing the imitation on behalf of the infant [14].  

After the learning process, LeVi was able to recognize and 
thus imitate caregiver’s vowels almost perfectly (phone 
recognition rate 99.3 %) and consonants’ place of articulation 
with an accuracy of 86.0 %. The results indicate that the highly 
non-linear inversion from caregiver’s acoustic output to infant’s 
articulation can be learned with satisfactory accuracy with a 
reasonably simple learning procedure when the language 
knowledge of the caregiver and interactive learning situation are 
properly modeled. When the phoneme categories have first 
obtained meanings in the articulatory domain during the 
rewarded babbling phase, the pattern processing device of the 
infant presumably begins associating the following reactions of 
the environment under these meaningful phoneme labels. When 
the caregiver’s speech is later listened, and phoneme recognition 
happens directly based on the articulatory labeling, caregiver’s 
speech can be easily imitated and new words added to the 
expressive vocabulary. 



4.1. Future experiments and predicted advantages 

Examples of the interaction between different modalities in 
language related tasks are numerous. McGurk effect confirms 
that the speech percept of a listened syllable can change due to 
watching a visual image of a person pronouncing a different 
syllable [17]. Listening to speech has been shown to activate 
motor areas in brain, suggesting that the motor system is directly 
coupled to the perception of acoustic speech stimuli (e.g. [18]). 

The proposed learning platform enables further experiments 
with additional modalities and associations between different 
levels of hierarchy, allowing to study, e.g., the role of learned 
articulation in speech perception and formation of phonetic 
categories. Associations can be learned e.g. between the visual 
and acoustic domain to link caregiver’s lip and jaw movements 
into either infant’s or caregiver’s acoustic production, or from 
physical objects into auditory representations of corresponding 
words. 

Updating the associations across the whole semantic network 
during the learning process would have several advantages. As 
an example, let’s imagine a situation where the virtual infant has 
learned to understand and imitate the speech of the mother, but 
has never heard speech of a male speaker. It is known that 
children are not always able to understand the speech of new 
previously unheard speakers (e.g. [19]). 

Now let’s imagine that the infant is able to identify visually a 
physical object of a ball. He has heard, and can link the auditory 
speech signal “ball” by the mother to the object, and is possibly 
able to pronounce the word himself. Now when a male speaker 
pays attention to the same object and pronounces “ball” with an 
unidentified voice, the associative network of the infant should 
be able to link the new vocalization to the object, but also to all 
the existing memory representations of the object. This way the 
new male vocalization would be linked to the mother’s 
vocalization of the word and the phonemes, and further to the 
infant’s articulation of the phonemes allowing the infant to 
rapidly adapt to new speakers. 

In addition to speaker adaptation, the cognitive architecture 
would presumably enable robust language modeling without 
extensive training corpora through learning of synonymy or 
semantic connections between words, or using the most reliable 
acoustic or visual features for recognition depending on the 
observed background noise conditions. 

5. Conclusions 
The change from study of task specific machine learning setups 
towards a general learning architecture allows the analysis of 
how much of language acquisition can be explained by non-
speech specific statistical learning mechanisms (given the 
physiological constraints of auditory perception and speech 
production). If successful, this methodology for associative 
learning will be also applicable to other domains outside 
language dealing with automatic analysis of data streams.  A 
notable advantage in this type of generic approach is that the 
simulations addressing different aspects of LA are directly 
compatible, as the same framework is supposed to describe these 
multiple phenomena in parallel. Only when the assumptions of 
domain generic learning processes fail, one should start looking 
for specially tailored solutions for specific aspects of LA. 

Naturally, the approach does also come with a number of 
drawbacks. For example, the ecological plausibility of the 
simulations is highly affected by the used interaction framework 

and complexity of the simulated environment. Also, evaluation 
of the system performance becomes more difficult when moving 
away from strictly defined machine learning tasks towards more 
natural interaction framework.1 
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