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Abstract 
The main goal of the auditory system is to detect and identify 
incoming sound patterns that are distributed in time and 
frequency. Since a priori knowledge of the spectrotemporal 
structure of these patterns is not available, the optimal strategy 
for the auditory system is to integrate incoming signals in 
frequency and time according to the average spectrotemporal 
structure of ecologically relevant stimuli. In the current work, we 
measure the average spectrotemporal dependencies of 
continuous speech and show that the dependency structure can 
be interpreted as an optimal filter matched to the structure of 
speech, and that the characteristics of the obtained filters are 
notably similar to the critical bands of human hearing. This 
result provides further evidence that speech and the auditory 
system are matched for optimal signaling performance and that 
the dependency structure is learnable with a single Hebbian-like 
learning mechanism. 
Index Terms: speech perception, auditory perception, statistical 
learning, sensory plasticity 

1. Introduction 
Acoustic signals such as speech patterns have structure 
distributed in time and frequency. This means that holistic 
perception of these signals also requires integration of 
information in both of these domains across the extent of the 
incoming sound patterns. Signal detection theory states that the 
optimal signal-to-noise ratio in pattern detection under stochastic 
uncertainty is obtained by correlating (integrating) the incoming 
signal with a template of the target pattern being detected [1]. 
However, it is evident that the auditory system has no a priori 
access to the detailed characteristics of the incoming stimuli. In 
addition, the identification of pattern onsets from a stream of 
continuous and overlapping acoustic stimuli is not possible 
before identification of the patterns themselves, making 
synchronized template matching impossible.  

Given these constraints, the second best strategy for a 
perceptual system is to optimize the signal-to-noise ratio of 
pattern detection across all audio stimuli that serve an 
ecologically relevant role for the perceiver. This means that the 
frequency content of the incoming audio signal is pooled across 
frequency channels according to the average statistical 
dependency between the channels. Similarly, integration in time 
is necessary to account for the fact that sound patterns are not 
localized but distributed in time, and where the average temporal 
structure of patterns changes with the signal frequency.  

In the current work, we study the spectral and temporal 
dependency structure of continuous speech by using a so-called 

spectrotemporal dependency function (STDF), a non-logarithmic 
modification of the well-known mutual information function 
(MIF; [2,3]). Unlike the previous work [4], we extend the study 
of dependencies not only in time, but also across frequencies. 
Our statistical analysis shows that the statistical dependencies of 
continuous speech match well to the frequency resolution of the 
auditory filterbank observed in human hearing. This provides 
support for the idea that the human auditory system performs 
signal integration in a manner that optimizes the signal-to-noise 
ratio of pattern recognition under stochastic uncertainty. 

1.1 Related work 

The idea of the correspondence between the statistics of natural 
sounds and the properties of the human auditory system is not 
new. In [4] it was already shown that a single linear integrator is 
able to explain psychoacoustic data on different aspects of 
temporal auditory processing when the integrator is matched to 
the average temporal structure of continuous speech.  

In [5], independent component analysis (ICA) was used to 
derive a set of auditory filters with minimal statistical 
dependency between the filter outputs for natural sounds. When 
the filter estimation was performed for 8–ms audio waveforms 
from both animal vocalizations and non-biological 
environmental sounds, it was observed that the characteristics of 
the learned filters have high correspondence to the physiological 
data observed in the human auditory system.  

Recently, Ghosh et al. [6] have studied how the 
characteristics of an auditory filterbank are reflected in the 
ability to derive the underlying articulatory gestures from 
speech. They used mutual information (MI) to quantify the 
amount of dependency between articulatory gestures (from X-
ray data) and the spectral representation of speech corresponding 
to the articulations. The spectral representation of speech was 
obtained from 20 brick-shaped filters that had adjustable 
bandwidth and center frequency and these parameters were 
optimized for maximal MI between the speech and articulation. 
What they found out was that the least uncertainty regarding the 
articulatory gestures was obtained for a filterbank whose center 
frequencies had close correspondence to the characteristics of the 
cochlear filterbank in the human auditory system.   

As the work in [5] and [6] reveals, the auditory system seems 
to have adapted to the structure of natural sounds and speech. 
However, the existing work has not studied the dependency 
structure across frequencies beyond the instantaneous time scale, 
whereas long-term dependencies up to several hundreds of 
milliseconds are known to exist in natural sounds, including 
speech (see [7]).  

In addition, the ICA-based algorithm of [5] is not 
biologically plausible (as already noted by the author [5]). This 



leaves open the question whether the adaptation of the auditory 
system to the average sound structure can be based on sensory 
learning during early childhood (i.e., learnable by a neural 
substrate; cf. receptive field learning in vision [8]), or is based on 
natural selection. As we will see in the forthcoming sections, the 
current work reveals that the dependency structure can indeed be 
learned with a very straightforward and incremental statistical 
learning mechanism.  

2. Methods 
Unlike the ICA where the goal is to minimize the mutual 
information or Gaussianity of the mixing components of the 
original signal (e.g., [5,9]), the current approach aims to discover 
the characteristics of auditory filters that integrate signal in time 
and frequency in a manner that leads to optimal signal-to-noise 
ratio in the detection of patterns from continuous speech. The 
dependencies are measured in an abstract and non-metric state 
space so that the output of the analysis is scale-free with respect 
to the original signal (e.g., the absolute energy densities at 
different signal frequencies do not affect the outcome of the 
analysis). The outcome of the analysis is a dependency function 
that describes how signal content at a specific frequency is 
dependent on signals at different frequencies and at different 
temporal distances (lags), essentially being the definition of an 
average pattern in the data. 

It is well known that, given a discrete sequence X = {a1, a2, 
…, an}, ai ∈ A, the mutual information function (MIF; [2,3]) can 
be used to measure the mean amount of dependency (in bits) 
between the variables ai and aj separated by lag k: 
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If the mean temporal dependency is desired in a purely 
probabilistic domain, one can neglect the logarithm and compute 
the non-logarithmic temporal dependencies (TD) between 
elements: 
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The TD essentially measures the average deviation from the 
statistical independence of signal events a separated by distance 
k, and weighted by the relative probabilities of different event 
pairs. The minus term is used to ensure that the TD obtains zero 
value in the case of purely independent variables.  

However, there is no reason to limit the analysis purely to 
the temporal dimension, but one can also measure the 
dependency both across time and across multiple parallel 
sequences. Given that the elements of a two dimensional speech 
spectrogram X(t,f) are quantized into a finite number of 
partitions (X(t,f) ∈ [1, …, NA]), the dependencies across the 
frequency channels as a function of lag can be also estimated. In 
this case, the spectrotemporal dependency function (STDF) 
obtains the form 
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STDF describes the mean statistical dependency between the 
frequencies f1 and f2 when f2 is delayed by k frames with respect 

to f1. If one wishes to estimate the overall dependency between 
two frequency channels, one can simply integrate over the lags k 
in order to obtain the spectral dependency function SDF:  
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Note that the temporal dependency structure of natural signals 
diminishes as k increases and therefore the integral converges to 
a finite value. For example, the temporal dependencies of 
continuous speech span to approximately 200-300 ms [7], 
corresponding to the time constants also observed in auditory 
perception [4].  

In the current work, the STDF was estimated for continuous 
speech from two different languages. A total of one thousand 
randomly chosen utterances from the TIMIT (male & female 
train set), CAREGIVER Y2 FIN corpora [10]; 2 males, 2 
females) and from an in-house phonetically balanced Finnish 
corpus (two males) were used in the analysis.  

All signals were resampled to a sampling rate of 16 kHz 
before further processing. The standard magnitude spectrum of 
FFT was computed for all speech material using a 12–ms 
Hamming and a window shift of 4 ms, yielding a total of 97 
frequency bins including the DC (~520 000 signal frames). Each 
FFT frequency bin was then treated as an individual time-series 
that was fed to the standard k-means algorithm in order to 
estimate NA = 8 quantization levels for the given frequency. 
Finally, all data was quantized using the obtained codebooks and 
the STDFs and SDFs were computed from the data according to 
Eqs. (3-4) for all 97 frequency bins and lags k = {1, 2, …, 25} 
corresponding to the temporal delay range of 4 – 100 ms. 

3. Results   
Figure 1 shows examples of the estimated spectrotemporal 
dependency functions for point frequencies (f1 in Eq. (3)) of 200, 
1000, 4000 and 6000 Hz. As can be observed, the dependency 
functions resemble typical tuning curves observed in auditory 
nerve firing data. The average dependency across frequency 
increases with increasing center frequency, whereas dependency 
in time decreases relatively quickly from the maximum level but 
still has a long tail especially at low frequencies. In addition, the 
shape of the filter is not symmetric in the frequency domain but 
the slope of the high-frequency side is steeper, similarly to the 
tuning curves of auditory nerves in the human auditory system.  
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Figure 1: STDFs for four point frequencies of 200 (top left), 1000 
(top right), 4000 (bottom left) and 6000 Hz (bottom right). 
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Figure 2: SDFs obtained from continuous speech. Only the SDFs 
of every fifth frequency bin are shown for visual clarity. 
 
Figure 2 shows the SDFs (Eq. 4) for the frequency range of 0-
7000 Hz. As can be again seen in the figure, the output of the 
analysis is notably similar with the typical auditory filter bank 
representations. However, the dependency does not drop to a 
zero level outside the main peak of the dependency function, but 
weak coupling can be observed across nearly 2000 Hz distances. 
This is mainly a result of the fact that speech is wide-band in 
nature, and factors contributing to the changes in the overall 
spectrum level (e.g., prosody) and wide-band spectra of, e.g., 
plosive bursts and fricatives are likely reflected in the 
dependency measure.  

As an interesting detail, the frequency range of 0-300 Hz, 
the band corresponding to the typical fundamental frequency of 
speech, is characterized by very high spectrotemporal 
dependencies inside the band, whereas the dependencies to other 
frequencies are very low. This reveals the decoupling of glottal 
source from the articulatory control of the vocal tract (cf., [11]) 
at a statistical level and suggests that an optimal speech 
perception device should utilize similar type of activity pooling 
in the frequency range of F0.  

In order to compare the obtained filters to the physiological 
data on the human auditory system, bandwidths of the filters 
were measured. However, the SDF filters do not have a direct 
correspondence to the energy of physical signals, but simply 
represent the statistical dependencies between signal frequencies. 
Therefore, the lower and higher cutoff-frequencies for each filter 
centered at f1 were defined as the points where the statistical 
dependency had attenuated δ = 1.5 units from the maximal value 
at f1. Since the frequency resolution of the original analysis was 
only 83.3 Hz, the attenuation was measured from SDF curves 
that had been upsampled by a factor of ten using low-pass 
interpolation [12]. This procedure prevents the bandwidth 
estimation for very low and very high frequencies due to the lack 
of data points, but provides a more systematic result for the 
remaining frequencies. 

Figure 3 shows the obtained bandwidths. In addition, the 
physiologically motivated critical bandwidths of hearing are 
shown in terms of Bark [13] and equivalent rectangular 
bandwidth (ERB; [14]; computed according to [15]), scales. As 
can be seen, the correlation between the measured bandwidths 
and the ERB scale is very high (r = 0.95), meaning that the SDF 
essentially reconstructs the critical bands of hearing purely from 
the statistics of speech signals in an unsupervised and parameter-
free manner. Although there is slight over-estimation of the 
bandwidth at low frequencies (< 2000 Hz), the filter bandwidth 
increases approximately linearly with the center frequency.  
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Figure 3: Bandwidth estimates from the SDF shown in Figure 2. 
Equivalent rectangular bandwidths (ERB) and critical band 
bandwidths from the Bark scale are shown as a reference.  
 
As an example of spectrotemporal integration using the 
dependency structure of estimated from speech, Fig. 4 shows a 
clean speech spectrum and Fig. 5 shows a noisy speech spectrum 
(factory noise at SNR = 7.5 dB from NoiseX database) smoothed 
with the STDF filterbank (N = 97 filters). In the images, each 
time-frequency bin was computed as 
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where ℑ denotes Fourier-transform of the original speech signal 
(pre-emphasized with a standard FIR filter of form H(z) = 1-
0.95z-1). STDFnorm is the spectrotemporal dependency function as 
in Eq. (3), but linearly scaled to have a minimum value of zero 
and a sum of one across all lags k and frequencies f. The non-
linear factor α is used to control the sharpness of the filters since 
the STDFs are unitless and have notable proportion of the 
dependency mass outside the main peak region of the function. 
As can be observed from the figures, the STDF filtering provides 
subtle smoothing in time and frequency, effectively enhancing 
the signal-to-noise ratio for signal components that conform to 
the average spectrotemporal structure of continuous speech 
without sacrificing on the temporal accuracy of, e.g., sound 
onsets. Note that only one free parameter, α, is needed in the 
entire process of speech optimized spectrogram smoothing. 
Naturally, the number of filterbank outputs can be decreased to a 
much smaller number if compact parametrization of the data is 
required.  
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Figure 4: Application of STDF filterbank to clean speech. Top 
panel: the original speech signal. Middle panel: STDF output 
with α = 8. Bottom panel: STDF output with α = 4. 
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Figure 5: Application of STDF filterbank to noised speech. Top 
panel: the original speech signal. Second panel: the same signal 
with additive factory noise at SNR = 7.5 dB. Third panel: STDF 
output with α = 8. Bottom panel: STDF output with α = 4. 

4. Discussion and conclusions 
The current results show that the average statistical dependencies 
between signal frequencies of continuous speech match with the 
characteristics of the auditory filters observed in the human 
auditory system. Since the SDF-based filters can be interpreted 
as matched filters for speech, the obtained representation 
guarantees, on average, optimal signal-to-noise ratio in pattern 
detection from speech (cf. [1]). This provides further evidence 
that the speech and the auditory system have co-adapted for 
optimal signaling performance (see [5,6]).  

Importantly, the current results show that the matched filters 
can be learned incrementally from the input data by using a 
simple Hebbian-like learning rule. This puts forward the 
question whether the critical bands of hearing are actually based 
on neural plasticity and auditory experience during early 
development, or whether they are the result of natural selection. 
Assuming that the physiological constraints in the inner ear and 
auditory nerve do not impose the given frequency resolution and 
integration at the middle and higher frequencies, ecologically the 
most efficient approach for all mammalian species would be 
to learn the optimal pooling of auditory information across time 
and frequency from every-day auditory environments. However, 
no definite data on early auditory capabilities of human infants 
are available (see [16]) since the distinction between early 
auditory learning and early innately specified neural 
development is extremely difficult.  

Given the idea of a filterbank matched to the average 
dependencies (patterns) in signals, it is of interest whether the 
STDF-based filters could be used to complement the existing 
filterbank solutions in speech technology applications. For 
example, by training the STDFs directly for the patterns of 
interest (e.g., generic speech or specific phonetic contrasts) they 
can be used as theoretically optimal integrators for detection of 
the patterns under adverse signal conditions. Moreover, separate 
STDFs can be estimated for anticipated noise types, allowing the 
maximal contrast between the wanted signals and the noise 
sources. Also, the dependency measure could be used to quantify 
the average spectral coupling between frequency bands in 
telephone bandwidth extension, where earlier work has been 
mainly based on quantification of dependencies between Mel-

scale filter outputs (e.g., [17,18]). Given the scope of the current 
study, these questions are left for future work. 
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