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Abstract

Lombard speech is a speaking style associated with increased
vocal effort that is naturally used by humans to improve intelli-
gibility in the presence of noise. It is hence desirable to have a
system capable of converting speech from normal to Lombard
style. Moreover, it would be useful if one could adjust the de-
gree of Lombardness in the converted speech so that the system
is more adaptable to different noise environments. In this study,
we propose the use of recently developed Augmented cycle-
consistent adversarial networks (Augmented CycleGANs) for
conversion between normal and Lombard speaking styles. The
proposed system gives a smooth control on the degree of Lom-
bardness of the mapped utterances by traversing through differ-
ent points in the latent space of the trained model. We utilize a
parametric approach that uses the Pulse Model in Log domain
(PML) vocoder to extract features from normal speech that are
then mapped to Lombard-style features using the Augmented
CycleGAN. Finally, the mapped features are converted to Lom-
bard speech with PML. The model is trained on multi-language
data recorded in different noise conditions, and we compare its
effectiveness to a previously proposed CycleGAN system in ex-
periments for intelligibility and quality of mapped speech.
Index Terms: Augmented CycleGAN, style conversion, Lom-
bard speech, vocal effort, pulse-model in log domain vocoder

1. Introduction
Lombard speech [1] refers to a speaking style with increased vo-
cal effort that is automatically utilized by speakers to enhance
the intelligibility of speech in noisy environments. It would
be beneficial to have speech technology capable of converting
speech from normal style to Lombard style in a similar manner
as humans do. The technology of converting speech of one style
to another, while retaining the linguistic and speaker-specific in-
formation of the original speech signal, is called speaking style
conversion (SSC). SSC can be regarded as a distinct area of
speech technology, but it is related to other fields such as speech
intelligibility enhancement in speech transmission [2]. Strict la-
tency requirements imposed by real-time speech transmission,
however, are not necessarily present in SSC, where offline pro-
cessing is also possible for several potential use scenarios.

SSC has been previously studied in whisper-to-normal con-
version [3–5] and in normal-to-Lombard conversion [6–8]. In
addition, a parametric approach to normal-to-Lombard SSC
was recently explored in [9], where a vocoder was used to ex-
tract frame level features that were then transformed from nor-
mal to Lombard style using parallel data-driven mapping mod-
els, and then synthesized as speech in the target style using
the same vocoder. The proposed vocoder-based SSC method-
ology was extended in [10] to a non-parallel learning scheme

by using cycle consistent generative adversarial networks (Cy-
cleGANs [11]), demonstrating superior quality and degree of
Lombardness in comparison to the parallel-data system in [9].

Although powerful for non-parallel learning, CycleGANs
have the disadvantage that they are only capable of learning a
deterministic mapping from one style to another. However, in-
creasing the level of Lombardness beyond what is required in
a given environment may result in an undesired mismatch be-
tween communicative expectations and the resulting vocal ex-
pression in the given situation. Therefore, an ideal normal-to-
Lombard SSC system would convert speech only to the extent
that is suitable for the current level of background noise (i.e.,
allow conversion along the vocal effort continuum). Such a sys-
tem would also require a way to control the degree of Lombard-
ness achieved in the conversion, which is not necessarily trivial
for mappings making use of machine learning.

Beyond the lack of control, the deterministic mapping in the
CycleGAN has a number of other limitations. For instance, the
model tends to embed information regarding the source style in
the transformed signal, as the generator has to recover the de-
tails of the original sample in order to satisfy the cyclic con-
sistency requirement [12]. The mapping also tends towards
the mean of the target distribution, whereas natural speech has
a rich variability of vocal efforts that may not be well cap-
tured by such a mapping. Several studies have explored non-
deterministic GAN variants to counter these problems, includ-
ing so-called BiCycleGANs [13] and the use of domain-specific
variational information bound [14]. Among these, the Aug-
mented CycleGANs [15] are an attractive extension to the Cy-
cleGAN framework, as they simultaneously learn the mapping
and a latent space that encodes additional variability in the data
distributions. In SSC, the latent space could provide a princi-
pled way to capture the natural variance in speaking styles (e.g.,
different degrees of Lombardness) encountered in real speech.
After training, the latent space could potentially be traversed to
obtain different transformations for the same input.

Given this background, the goal of the current study is
to explore the applicability of Augmented CycleGANs in a
normal-to-Lombard SSC with the aim of having controllable
degree of Lombardness in the conversion system. The paper
builds on the data driven approach to the normal-to-Lombard
parametric SSC system explored in [8–10] by using the Pulse
model in log domain (PML [11]) vocoder with the Augmented
CycleGANs [2]. We compare the new system to the reference
CycleGAN system proposed for the same task in [10] using in-
strumental and subjective intelligibility tests and a quality test
for the converted speech. As a result, we show that the new
SSC system learns a controllable one-to-many mapping from
the source style to the target style, capturing different degrees
of Lombardness present in the training data.



G Fy’

E

z
x

z’’

xid
y’’

x F

G

x’

E

y

z’

yid
x’’

y
DX Real/Fake

x
x’

DY Real/Fakey
y’

DZ Real/Fakez
z’

Forward cycle DiscriminatorsBackward cycle

Figure 1: Augmented CycleGAN with mapping functions G, F and E, and discriminators DX , DY and DZ . The forward cycle,
backward cycle, and identity mapping are indicated with blue, red, and green respectively.

2. Augmented CycleGAN
The Augmented CycleGAN [15] is an extension of the Cy-
cleGAN [11] that is capable of learning many-to-many bi-
directional mappings between pairs of items (x, zx) ∈ X×ZX

and (y, zy) ∈ Y × ZY , where, ZX and ZY are trained aug-
mented latent spaces that capture any missing information when
transforming from an element in domain X to Y , and vice-
versa. In our current study, we consider a one-to-many version
of the Augmented CycleGAN that learns a mapping between
domains X × Z and Y , where Z is the latent space with in-
formation about Y not contained in X . The basic structure of
a Augmented CycleGAN is shown in Figure 1. It consists of
three functionsG, F andE, which map data fromX×Z → Y ,
Y → X andX×Y → Z respectively, and three discriminators
DX , DY , and DZ , which determine whether data is from the
true distributions P (X), P (Y ), and P (Z), respectively. The
true data distribution for the latent space P (Z) is assumed to be
Gaussian.

The loss function of an augmented CycleGAN can be for-
mulated similar to that of a standard CycleGAN used in [10].
In our implementation, we use the Wasserstein distance metric
(WGAN loss) with gradient penalty [16] to determine the ad-
verserial loss, defined as

Lgan(G,DY ,X, Y, Z) = E
y∼p(Y )

[DY (y)]−

E
x∼p(X)

[DY (G(x, z))] + λg E
ŷ∼p(Ŷ )

[(||∇ŷDY (ŷ)||2 − 1)2]
(1)

where p(Ŷ ) is implicitly defined by sampling along the straight
lines between pairs of points y and G(x) and λg is the weight
on the gradient penalty term of the WGAN. Similar loss terms
are derived for Lgan(F,DX , X, Y ) and Lgan(E,DZ , Y, Z) as

Lgan(F,DX ,X, Y ) = E
x∼p(X)

[DX(x)]−

E
y∼p(Y )

[DX(F (y))] + λg E
x̂∼p(X̂)

[(||∇x̂DX(x̂)||2 − 1)2]
(2)

Lgan(E,DZ ,Y, Z) = E
z∼p(Z)

[DZ(z)]−

E
z∼p(Z)

[DZ(E(y, F (y)))] + λg E
ẑ∼p(Ẑ)

[(||∇ẑDZ(ẑ)||2 − 1)2]

(3)
A cyclic reconstruction loss term is also defined as shown
Lcyc(G,F,E,X, Y, Z) = E

x∼p(X),z∼p(Z)
[||F (G(x, z))− x||1]

+ E
y∼p(Y )

[||G(F (y), E(F (y), y))− y||1]

+ E
x∼p(X),z∼p(Z)

[||E(x,G(x, z))− z||1]

(4)
Finally, the identity mapping loss [11, 17] is defined to ensure

that input data already corresponding to target domain do not
get transformed in G or F (shown in green in Figure 1).

Lid(G,F,X, Y, Z) = E
x∼p(X)

[||F (x)− x||1]+

E
y∼p(Y ),z∼p(Z)

[||G(y, z))− y||1]
(5)

The mapping functions G∗, F ∗ and E∗ are trained by alternat-
ing gradient decent on the minmax-game defined as

G∗, F ∗, E∗ = argmin
G,F,E

max
DX ,DY ,DZ

Lall

where, Lall = Lgan(G,DY , X, Y, Z) + Lgan(F,DX , X, Y )

+Lgan(E,DZ , Y, Z) + λcycLcyc(G,F,E,X, Y, Z)
+ λidLid(G,F,X, Y, Z)

(6)
where λcyc and λid control the relative importance of the cyclic
reconstruction loss and the identity mapping loss respectively.

3. Normal-to-Lombard SSC

PML
analysis

PML
synthesis

Mapping 
model

Normal
style
speech

Fo+ U/UV + MGC 
coeffs c1,c2, ….,c15

Fo+ MGC coeffs
c1,c2, ….,c15

U/UV + BNM + MGC coeffs
c0,c16, c17, ….,c39 

Lombard 
style
speech

1 x w

tanh !
X

+1 x 1

to layer n+1

from layer n-1

layer n

K
channels

conv

conv

1 x w 1 x w
conv

Figure 2: Block diagram of the normal-to-Lombard speaking
style conversion system.

Following our previous works [9, 10] on SSC, the cur-
rent study uses a parametric system utilizing frame level Pulse
Model in Log domain (PML [18]) vocoder features for the
normal-to-Lombard conversion. The basic block diagram is
shown in Figure 2. First, the PML vocoder features are ex-
tracted from the input signal, followed by mapping with the
Augmented CycleGAN. The modified features are then fed to
the PML vocoder synthesis to generate the mapped Lombard
speech utterance. Duration modification is not carried out in the
current study, as we focus on differences in the degree of Lom-
bardness between the Augmented CycleGAN system and the
baseline CycleGAN system [10]. If desired, a simple system
for duration modification using constant scaling of the voiced
and unvoiced segments as described in [8–10] could be utilized.
The sections below describe the PML vocoder and the mapping
methods chosen for comparison.

3.1. PML vocoder

The PML [18] vocoder has shown good performance in two
recent studies [18, 19]. PML uses a log-domain source-filter
model with a sinusoidal signal analysis and a pitch synchronous
pulse-based synthesis system. PML models aperiodicity via a
phase distortion deviation (PDD) spectrum, which generalizes
to modeling both voiced and unvoiced speech without explicit
voicing decisions. PDD is thresholded to produce a binary noise
mask (BNM), which is averaged in Mel-bands for parametric
processing. In total, the PML vocoder features include 1) the
binary noise mask (BNM), 2) fundamental frequency (F0), 3)
the voicing decision (V/UV) mask, and 4) the spectral enve-
lope. In the present study, features that are the most important
for normal-to-Lombard SSC, i.e., F0 and spectral envelope en-
coded by the first 15 MGC coefficients c1 ... c15 are used in the



mapping. The rest of the features are directly by-passed to the
target domain for synthesis.

3.2. Mapping model

The current study compares the Augmented CycleGAN to the
standard CycleGAN. Figure 3 shows the block diagram of the
deep convolutional neural networks with residual connections
(CNN ResNet, similar to [10]) which are used as a model for the
generator G. Each of the 6 CNN layers has 256 channels, con-
sisting of an 11-point gated convolutional unit with the last layer
being a linear convolutional layer. The latent variables are mod-
eled by a series of two fully-connected (FC) feedforward layers,
each with the same number of units as the dimensionality of the
latent space with leaky ReLU non-linearities (as in [20]). Adap-
tive instance normalization (AdaIN, [21, 22]) based on linearly
transformed output of the latent variable layers (Fig. 3, bottom)
is used before the application of the non-linearity on each layer
of the CNN. Generators F ,E in the Augmented CycleGAN and
the G, F of the reference CycleGAN as well as discriminators
DX and DY of both are modelled using the same CNN model
without the AdaIN layers, with inputs to E, representations of
the source and target domains, being concatenated. Discrimina-
tor DZ of the Augmented CycleGAN is modelled by a simple
feedforward network with 2 layers with 8 gated units each. The
source codes of the Augmented CycleGAN are available under
an open source license1.1 x w

tanh

X 1 x 1

conv
!

+

conv

K channelsLayer n

to
 la

ye
r 

n+
1

fro
m

 
la

ye
r n

-1

…….
1 x w

conv

…….

N - layers

1 x 11

tanh

X 1 x 1

conv
!

+

conv

256 channelsLayer n

to
 la

ye
r 

n+
1

Fr
om

la
ye

r n
-1

…….
1 x 11

conv

…….

6 - layers

AdaIN

AdaIN

FC FC
Latent 
space i/p

Figure 3: Block diagram of layer n of the CNN used to model
the mapping functions G, F and E and the discriminators Dx

and Dy of the augmented CycleGAN.

4. Experimental Setup
4.1. Data

Read and conversational Lombard speech corpora from two
languages, Finnish and English were used to train the current
model. The Finnish corpus (see [23] for details) consists of
recordings from 20 Finnish speakers (10 female) in normal and
Lombard style. The Lombard speech was elicited using four
different background noise conditions (highly non-stationary
pub noise and stationary car noise in both mild and severe con-
ditions) played to the speakers’ ears with headphones while
they were being recorded [23]. The English data were from the
Hurricane Challenge dataset [24] that contains both normal and
Lombard speech spoken by one British male. The Finnish and
English data consisted of approx. 80 and 60 minutes of speech,
respectively. Data from both corpora were downsampled to 16
kHz before further processing.

1https://github.com/shreyas253/
AugmentedCycleGAN_1dCNN

For the instrumental and subjective intelligibility tests, En-
glish Lombard grid-speech corpus from [25] was used. The
dataset contained 2700 normal and Lombard utterances each
respectively from 54 talkers. Each utterances contained short 6
word sentences with a color, letter and digit that are considered
as keywords for a keyword spotting task [26], such as ”Set blue
in B five please”. For the subjective quality experiments, two (1
male and female) speakers form the Finnish corpora were ran-
domly chosen for evaluation, while the rest of the 18 speakers
along with the English data were used for training.

4.2. System specifications

The inputs to the mapping model were z-scored to zero mean
and unit variance. Analysis frames of 25 ms with a 5-ms frame
shift were used by the PML vocoder. F0 was computed us-
ing the RAPT algorithm from the SPTK toolkit [27]. The
binary noise mask of the PML vocoder was 25-dimensional.
40-dimensional Mel-generalized cepstrum (MGC) coefficients
were used to represent the spectral envelopes which were ex-
tracted using STRAIGHT [28]. The dimension of the latent
space Z was set to 2. The hyperparameters of the loss function
in Equation 6, λg and λcyc were both set to 10. The training
was run for 5000 iterations with λid set to 5 for the first 2500 it-
erations and linearly decreasing to 0 from then (similar to [29]).
Lall in Equation 6 also included a penalty on discriminator out-
put magnitudes (see [30]).

After training the Augmented CycleGAN, each of the train-
ing utterances of the Lombard style became associated with a
point in the latent space as ẑ = E(F (y), y). Linear discrim-
inant analysis (LDA) was used on these points to find a linear
combination of latent variables that maximally separates differ-
ent values of spectral tilt (represented as histogram-quantized
c1 coefficients) of the training utterances associated with the
points ẑ. This line in the latent space was used as a proxy for
vocal effort continuum along which there is a maximal change
in the degree of Lombardness. For the experiments, three points
along this line were chosen to reflect three levels of Lombard-
ness (low, medium, and high) in the mapped utterances.

4.3. Evaluation

The mapped utterances were initially evaluated using an instru-
mental intelligibility test called Speech Intelligibility in Bits
(SIIB, [31]) using its Gaussian variant (SIIBGauss [31]). Sub-
jective evaluation was then carried out, including an English
Intelligibility test and a Finnish Quality test. Participants were
21 Finnish native graduate students with a good command of
English (e.g., [32] reports LexTale scores comparable to C1/C2
Common European Framework English proficiency in the same
population). Sounds were played to the listeners in a quiet room
using the Sennheiser HD598 headphones. All the sound sam-
ples being compared were normalized using sv56 standard [33].
Each listening test included a tutorial phase before the actual
test. Furthermore, the listeners were asked to adjust the sound
volume to a loud yet comfortable level during the tutorial ses-
sion, after which the volume was kept fixed. The two tests took
approximately 40 minutes for the subjects to complete. The
tests were implemented using MATLAB GUI.

Objective intelligibility was measured using SIIB [31, 34]
that is based on the mutual information between a clean ref-
erence and a noisy signal (as used in [9]). The test was con-
ducted on the entire English Lombard grid-speech corpus [25]
using two different noise types (unstationary factory noise and
stationary Volvo noise [35]) at two signal-to-noise ratio (SNR)

https://github.com/shreyas253/AugmentedCycleGAN_1dCNN
https://github.com/shreyas253/AugmentedCycleGAN_1dCNN
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Figure 4: From left to right, (a) the SIIB instrumental intelligibility metric over the 4 noise conditions, (b) the keyword error rates
of the subjective intelligibility averaged over the 4 noise types and (c) the CMOS scores from the subjective quality test. Error bars
correspond to one standard error. Bonferroni corrected significant values for (b) and (c), calculated using the Students t-test and the
Mann-Whitney U-test respectively, are highlighted.

levels here referred to as moderate and severe. These SNR lev-
els were set to 0 dB and -5 dB for the factory noise and -15
dB and -25 dB for the Volvo noise after initial piloting (in line
with [36]). SIIB was measured for the copy synthesis versions
of the natural normal and natural Lombard utterances as well
as for four SSC systems: the baseline CycleGAN system and
three Augmented CycleGAN systems corresponding to latent
space values with low, medium, and high Lombardness.

The subjective intelligibility test was conducted as a key-
word spotting task [26]. On each trial, the subject heard a short
six-word English sentence that had a color, letter, and digit in
that order, and which they were asked to identify. This exper-
iment was conducted in the same noise conditions as the SIIB
test. Each subject listened to a total of 80 stimuli which con-
sisted of three utterances in each style category (natural nor-
mal, natural Lombard, four normal-to-Lombard-converted) and
in each four noise conditions, as well as eight reference utter-
ances in no noise condition. The listeners were only allowed to
listen to the utterances once.

Finally, the subjective quality test was performed using the
comparison category rating (CCR) test [37]. Each trial con-
tained a pair of utterances without added noise. The subjects
were asked to rate the perceived quality of the second utterance
in comparison to the first using a continuous rating scale: -3,
much worse; -2, worse; -1, slightly worse; 0, almost similar; 1,
slightly better, 2, better; 3, much better. Each pair consisted of
a mapped utterance and its corresponding copy synthesis ver-
sion of the natural Lombard utterance. Each pair was presented
in both orders and null pairs were also included. Each listener
rated 36 utterances in total. The comparison mean opinion score
(CMOS) [37], the average of the scores for each unique utter-
ance pair, normalized to zero mean across each listener (as sug-
gested in [38]) was used as the final quality measure. Lower
normalized CMOS value means better speech quality.

5. Results
Results for the subjective and instrumental evaluation are shown
in Figure 4. The SIIB measure shows that the CycleGAN has
an intelligibility score slightly higher than that of the reference
Lombard. The variations of the Augmented CycleGAN gradu-
ally increase in intelligibility from a level comparable to the ref-
erence Lombard to that of exceeding the CycleGAN. As for the
subjective intelligibility test, it can be seen that the only signif-
icant differences are in the ’digit’ keyword error rates between
the reference normal and the reference Lombard and between
the reference Lombard and the CycleGAN. The lack of statis-

tically significant differences in the other two keywords, even
between natural normal and Lombard speech, indicates that the
present experimental setup with a limited number of trials per
category lacks the statistical power to properly reveal more de-
tailed differences in intelligibility (e.g., [39] used 33 times more
trials per category on grid corpus data, which was infeasible for
our current setup). However, the results do indicate that the in-
telligibility of the mapping methods lie in between the reference
normal and Lombard, and the general pattern follows that of the
instrumental test. Finally, the CMOS scores show that the Cy-
cleGAN is significantly worse in quality than the low Lombard
variant, and significantly better than the high Lombard variant
of the augmented CycleGAN. The different variations of the
augmented CycleGAN are increasingly worse in quality with
increasing degree of Lombardness. Example sound files are
available2.

6. Discussion and Conclusions
The results indicate that the proposed system with an Aug-
mented CycleGAN is capable of SSC with a controllable degree
of Lombardness. Moreover, the system achieves equal speech
quality with the baseline CycleGAN system when the degree of
Lombardness is similar in the two systems. While the pattern
of increased degree of Lombardness as a function of the latent
space variables is evident in the SIIB-based objective intelli-
gibility metrics, statistical power of the listening test was not
able to reveal detailed differences in intelligbility rates. How-
ever, the listening tests also indicate that the Lombardness of the
Augmented CycleGAN-mapped utterances is statistically indis-
tinguishable from Lombard speech. The reason why the system
fails to reach the level of natural Lombard speech intelligibility
in listening tests but exceeds that in instrumental metrics needs
to investigated in future work, but may be related to the inher-
ent degradations in signal quality due to vocoding and statisti-
cal mapping. Overall, the study shows that Augmented Cycle-
GANs are a highly potential extension to the CycleGAN frame-
work for speech conversion problems where non-deterministic
controllable mappings are desirable.
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