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Abstract 
Recent work has suggested that prominence perception could 
be driven by the predictability of the acoustic prosodic features 
of speech. On the other hand, lexical predictability and part of 
speech information are also known to correlate with 
prominence. In this paper, we investigate how the bottom-up 
acoustic and top-down lexical cues contribute to sentence 
prominence by using both types of features in unsupervised 
and supervised systems for automatic prominence detection. 
The study is conducted using a corpus of Dutch continuous 
speech with manually annotated prominence labels. Our 
results show that unpredictability of speech patterns is a 
consistent and important cue for prominence at both the lexical 
and acoustic levels, and also that lexical predictability and 
part-of-speech information can be used as efficient features in 
supervised prominence classifiers.  
Index Terms: sentence prominence, prosody, stimulus 
predictability, speech perception  

1. Introduction 
Prosody plays a central role in spoken communication, 
corresponding to the manner in which words are spoken and 
comprising information that may not be available in the lexical 
content of sentences. Prosodic prominence is a particularly 
important prosodic phenomenon that can be described as the 
property by which a linguistic entity is perceived to be 
standing out from its environment [1]. More specifically, 
sentence prominence can be generally defined as describing 
the perceived emphasis of one or more words during a 
sentence (see also [2–4] for related definitions).  

The role of prominence in discourse can be identified at 
many levels, making its production and interpretation critical 
for spoken communication. For instance, prominence can be 
indicative of information structure or lexical class (see [5] and 
references therein). Thus, methods for automatic prominence 
detection can have various uses in spoken language 
applications, such as during the development of text-to-speech 
(TTS) systems where it is particularly important to achieve a 
naturalistic production of speech (see, e.g., [6,7]). Similarly, 
there are various applications based on automatic speech 
recognition (ASR) systems such as that of spoken content 
retrieval [8] and topic tracking  [9]. 

It is well known that sentence prominence is highly 
correlated with prosodic acoustic features such as energy, 
fundamental frequency, and word duration. Recent work by 
Kakouros and Räsänen [10] suggests that perception of 
prominence might result from surprisal (unpredictability) in 

the suprasegmental features of speech instead of depending on 
certain (“fixed”) feature patterns or magnitudes as such. 
However, earlier work also indicates that predictability at the 
lexical level is related to word prominence (see, e.g., [11]), 
suggesting that prominence is a phenomenon that is reflected 
at multiple levels of speech and language. 

 In this paper, we analyze both bottom-up acoustic cues and 
top-down lexical cues in the task of automatic prominence 
detection. More specifically, we study both types of cues in 
isolation, and in combination, using both unsupervised and 
supervised systems for prominence detection. As a result, we 
show how predictability at multiple levels contributes to the 
impression of prominence in speech. 

1.1. Background 

Prosody is a property of speech that can be viewed from both 
the linguistic as well as the phonetic (acoustic) perspective. At 
the linguistic level, prosody refers to the phonological 
organization of segments into higher-level constituents (for 
instance, syllables, words, sentences) and the prosodic 
phenomena superimposed on them (for instance, prominence) 
(see, e.g., [12], for related definitions). At the phonetic level, 
prosody refers to the acoustic parameters that can best describe 
the prosodic events observed at the linguistic level (see, e.g., 
[12]). The latter also defines the physical correlates associated 
with the acoustic realization of prominence. Therefore, the 
variations in the acoustic domain that manifest perceptual 
differences with respect to prominence are typically the 
fundamental frequency (F0) (e.g., [13]), duration (see, e.g., 
[14]), energy [15], and spectral tilt [16] (see also [17]). In the 
case of sentence prominence, these variations result in relative 
differences in the perceived salience between the words in a 
sentence. As saliency is closely connected to perceptual and 
attentional orientation (see, e.g., [18] and references therein), 
an analogy can be drawn between prominence perception and 
the cognitive function of attention [19]. 

Saliency and attention can be computationally modeled 
based on a probabilistic formulation where low-probability, 
i.e., surprising, events are considered as prominent (see, e.g., 
[20]). In the context of speech, this means that we can model 
prominence by learning a model for typical prosodic features 
or feature trajectories from a set of unlabeled speech data and 
then evaluate the overall predictability of these features over 
time (see, e.g., [21,22]). Frequency and predictability effects 
are also known to play an important role in models of human 
language production and comprehension [23], thus, utilizing 
predictability at different levels of analysis in speech can be 
also very important in modeling prominence (see, e.g., 
[10,11]).  



 
 

 
Figure 1: Schematic diagram of the processing steps of the 
unsupervised algorithm consisting of an acoustic model and a 
language model and where H denotes the word hypothesis and 
S the word score.  

In earlier studies, predictability at the level of individual 
lexemes has been shown to be a consistent indicator of pitch 
accent placement in speech [11]. Specifically, Pan and 
McKeown [11] evaluated the relative informativeness of 
words using measures such as the negative log-likelihood of a 
word in a corpus and found that there is a positive correlation 
between the informativeness of a word and its pitch accent 
placement. In a later study, Pan and Hirschberg [24] assessed 
the effect of word collocation information and accent 
placement using measures such as the log-conditional 
predictability and mutual information. Their results indicate 
that the more predictable a word is based on its local context, 
the more likely it is to be deaccented (see also [25]).  

In all, it seems that word predictability can be used for the 
prediction of prominence, but the interactions between lexical 
predictability and acoustic predictability are currently unclear. 
So far, according to our knowledge, the only computational 
algorithms combining both lexical (predictability) and acoustic 
cues are the studies of Rosenberg et al. [26] and Fernandez 
and Ramabhadran ([27]) that used bigram word probabilities 
and standard acoustic features for supervised prominence 
detection. However, those studies did not investigate the 
relative impact of different features on the overall performance 
of the systems.  

In the present study, we investigate the contribution of 
bottom-up acoustic and top-down lexical cues in both 
supervised and unsupervised systems for prominence 
detection. Supervised methods provide a performance 
benchmark for the different features being evaluated and are 
expected to lead to the best overall performance. The 
unsupervised method provides a cognitively plausible proposal 
based on the predictability framework described in [22] that 
can be used for prominence detection without prosodically 
labeled training data. The results are evaluated on a set of 
annotated data of Dutch continuous speech with performance 
of the unsupervised method being close to that of supervised 
methods on the same task. 

2. Methods 
A number of acoustic and lexical features were computed and 
used in an unsupervised (section 2.2) and supervised setups 
(section 2.3) for prominence detection. In the unsupervised 
approach, no prominence labels are used in the training of the 
system. Instead, the algorithm evaluates the overall 
unpredictability of speech input at both the acoustic and 
lexical levels on the basis of two models: (1) a language model 
(LM) that provides the predictability of each word in a certain 
lexical context and (2) an acoustic model (AM) for prosodic 
features, providing frame-by-frame estimates of prosodic 
predictability (Figure 1). As a result, words with low acoustic 
and/or lexical predictability are considered as more prominent 
than highly predictable words. In the supervised setup, two 
standard classifiers, support vector machines (SVMs) and k-
nearest neighbors classifier (KNNs) were tested using word-
level acoustic descriptors and language model probabilities as 
well as part-of-speech tags as features in the classification.  

2.1. Features 

2.1.1. Acoustic features 

F0, energy (EN), spectral tilt, and duration (dur) were used as 
the main acoustic features. For this purpose, speech data were 
first downsampled to 8 kHz. F0 estimation was carried out 
using the YAAPT algorithm [28] with a 25-ms window and 
10-ms step size. The pitch tracks were linearly interpolated 
across unvoiced segments in order to preserve continuity of 
the features. Energy was computed similarly in 25-ms 
windows using a 10-ms step size, and spectral tilt was 
extracted as the first Mel-frequency cepstral coefficient from 
standard MFCC computation using the same windowing 
procedure [29]. Word durations were extracted from the 
annotations of the Dutch corpus while syllable durations were 
automatically estimated using the sonority-envelope based 
algorithm described in [30]. 

For supervised classification purposes, five word-level 
statistical descriptors were calculated for F0, EN, and tilt, 
namely:  (i) mean, (ii) max, (iii) min, (iv) variance, and (v) the 
mean first-order difference during the word. These word-level 
feature descriptors were only used in the supervised 
classification scenario while the original continuous-time F0, 
EN, and tilt were used in the unsupervised model (section 2.2).     
2.1.2. Lexical features 

Part-of-speech tags (POS) and word n-gram statistics were 
used as the two primary lexical features. POS tags were 
extracted directly from the corpus annotations while n-gram 
statistics from unigrams to 5-grams were computed using the 
Dutch language models described in the next sub-section 
(2.2.1). Log-probabilities for all five n-gram orders were used 
as features for each word, thereby quantifying the relative 
surprisal of each word given the preceding context of n-1 
words. For supervised classification, the POS tags (13 unique 
classes) were expanded into 13-dimensional binary feature 
vectors for each word, one dimension for each POS class.  

2.2. Unsupervised prominence detection system 

2.2.1. Language (top-down) model 

Five Dutch LMs were used in our model to provide word 
predictability estimates. The training material for the LMs 
consisted of newspaper and magazine articles (1.3B word 
tokens in total), that were pre-processed in three steps for the 
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purpose of speech recognition: normalization, spelling 
correction and filtering (see [31]). During text normalization, 
punctuation was used to determine sentence splits and was 
then removed; words containing a number and an alphabetic 
segment (e.g. 100-jarige) were split; numbers, measure words, 
web addresses, abbreviations, etc., were written in full and text 
segments that were likely to be trash were removed. In the 
next step, incorrectly capitalized words (at the beginning of a 
sentence) were corrected if the word occurred more often with 
lowercase than with uppercase in the corpus, and words with a 
hyphen were split (based on inter-corpus statistics). Spelling 
variants were detected by looking for words that had 
comparable bigram statistics and a maximum Levenshtein 
distance of two. These were also manually verified. In the 
filtering step, duplicate sentences along with sentences with 
many uncommon words were removed.  

The pre-processed data were then used to train n-gram LMs 
using the SRILM toolkit [32]. We trained models with n-gram 
orders ranging from 1 to 5, a vocabulary of the 400k most 
frequent words and count cut-offs of 1 (for 1- and 2-grams) 
and 2 (for 3-, 4- and 5-grams). All models were smoothed 
using modified Kneser-Ney [33], except for the unigram 
model that was smoothed with Good-Turing [34]. 
2.2.2. Acoustic (bottom-up) model 

Analogously to the language model, the acoustic model 
provides the probabilities of the acoustic prosodic trajectories 
and is based on the work described in [10]. Specifically, for 
energy, F0, and spectral tilt, the raw features were initially 
min-max normalized and quantized to Q = 16 discrete levels 
using the k-means algorithm. The discretized feature values 
were then used to train n-gram models of different orders. The 
probabilities P’(t) of the discrete n-tuples at time t (at… at-n+1) 
were then computed by summing the log-probabilities over the 
features (ψ) of interest (Eq. (1)). The resulting frame 
probabilities were modulated based on syllable duration d(t) 
and acoustic word scores SAM were computed according to Eq. 
(2) where tstart and tend denote the start and end of the word, as 
extracted from the annotation (see [10] for a more detailed 
description). 

 
!P (t) = log10 Pψ (at | at−1, ...,at−n+1)( )

ψ
∑   (1) 

 
SAM (wij ) = P '(t)× ed (t )t=tstart

tend∑  (2) 

Note that syllable durations d(t) are measured in seconds, and 
therefore ed(t)

 results in a nearly linear scaling for typical 
syllable lengths with a min value of 1 for very short syllables. 
2.2.3. Prominence hypotheses generation 

The prominence hypothesis H(w) for each word i in utterance j 
was evaluated based on whether the word-level score (S(wij)) 
falls below a detection threshold ri:  

 
H (wij ) =

1, S(wij )< ri ,
0, S(wij ) ≥ ri

"
#
$

 (3) 

 ri = µi −σ iλ   (4) 

The threshold is defined locally at the utterance level based on 
the mean (µ) and standard deviation (σ) of the word-level 
scores across the utterance. The hyperparameter λ controls the 
overall sensitivity of the detection process. For the top-down 
lexical model, the word score was represented by SLM(wij) = 
log10(P(wij | wi-1,j,…,wi-n+1,j), i.e., the language model output for 
n-gram order n, while for the bottom-up case, the 

corresponding score is SAM(wij) in (Eq. (6)). Finally, for their 
combination, the summed scores represent the contributions of 
both models, that is, SAM+LM(wij) = SAM(wij) + SLM(wij) (note 
that the scores are in log-probability domain, corresponding to 
multiplication of probabilities). In the experiments, the 
resulting detection accuracies are reported for the optimal λ 
value in each condition. 

2.3. Supervised classification 

KNN and SVM classifiers were used to analyze the 
contribution of acoustic and lexical cues in a supervised 
classification scenario. For KNN, the number of nearest 
neighbors was set to k = 13 since this provided the most 
consistent performance in preliminary testing. SVMs used 
radial basis function with a scale factor of σ = 12.08 and box 
constraint C = 100, as these were previously optimized in the 
context of acoustic features with the same data [35]. 

Using the five word level descriptors described in section 
2.1.1, all possible combinations of energy, F0, spectral tilt, 
word probability, and POS features were tested separately with 
both classifiers. All five n-gram orders were always used as a 
feature vector for lexical predictability of each word. 

3. Experiments 
3.1. Material 

The Spoken Dutch Corpus (Corpus Gesproken Nederlands; 
CGN) was used in our experiments. CGN is a database of 
contemporary standard Dutch as spoken by adults in the 
Netherlands and Flanders containing nearly 9 millions words 
(800 hours of speech). The database includes manually 
generated or verified annotations such as phonetic 
transcriptions, word level alignment, and prosodic annotations 
(see [36] for a more detailed description). The Dutch news 
broadcast (“component k”) section of the corpus was used in 
the current experiments, consisting of 5088 news broadcasts 
(≈27.4 hours of speech data) spoken by 29 speakers (22 male 
and 7 female). The prosodically annotated subset of the 
section consists of 134 news broadcasts spoken by 10 different 
speakers (9 male and 1 female) (≈44.3 minutes of speech data) 
that were hand-labeled using binary (prominent/non-
prominent) markings by two trained annotators, containing a 
total of 7438 word tokens.  

A 10-fold evaluation process was used in the experiments. 
In the unsupervised case, the full broadcast section plus nine 
talkers from the prosodically annotated section were always 
used for training while the remaining talker from the annotated 
subset was used for evaluation. For the supervised condition, 
only the labeled section of the corpus was used for training.  

3.2. Evaluation 

All evaluations were carried out at the word level, i.e., 
comparing the manually labeled prominence markings to the 
word-level hypotheses provided by the algorithms, both 
represented as binary decisions for the presence or absence of 
prominence in the words. Precision (PRC), recall (RCL), their 
harmonic mean (F-value), and accuracy (ACC) were used as 
the main measures: 

RCL = tp / (tp+ fn)    (5) 
PRC = tp / (tp+ fp)     (6) 
F = (2×PRC×RCL)/(PRC+RCL)   (7) 
ACC = (tp+ tn) / (tp+ fp+ fn+ tn)   (8) 



where tp denotes the true positives, tn the true negatives, fp the 
false positives, and fn the false negatives. In addition, we 
report results using Fleiss kappa that measures the degree of 
agreement between two or more annotators on a nominal scale 
of κ ∈ [-1, 1].  Fleiss kappa yields κ = 0 if the agreement is 
equal to chance-level co-occurrences in the data and κ = 1 if 
all annotators fully agree. Finally, we also report accuracy for 
the supervised system (% of tokens correctly classified) since 
this is commonly used in the literature, although accuracy is 
not very informative in comparison of results between 
different corpora due to its sensitivity to the underlying class 
distribution in the data. All results are computed using an 
annotation reference including all words that either or both of 
the annotators labeled as prominent. 

3.3. Results 

For the unsupervised system and for each fold, five orders of 
the acoustic n-gram models (n = 1, 2, 3, 4, and 5) were trained 
for energy, F0, and spectral tilt, on speech data from 28 
speakers, always keeping 1 (out of 10) of the annotated 
speakers for evaluation. In order to evaluate performance for 
different threshold levels, hyperparameter λ was varied 
between [-2, 2] with steps of 0.05 for the lexical, acoustic, and 
combined models (see [10,35] for examples on the effect of λ). 
Table 1 presents the results for the independent features and 
the most relevant combinations, as well as the combined 
model (acoustic+lexical) performance. For the acoustic model, 
results are shown only for the acoustic bigrams as they were 
the best performing n-gram order. 

Both the acoustic and lexical models independently reached 
high performance in prominence detection in the unsupervised 
system. The acoustic model alone reached ACC = 86% based 
on a combination of EN and F0, while the lexical model also 
performed well, achieving ACC = 82% using unigrams. 
Higher orders of the lexical n-grams seem to deteriorate the 
performance of the lexical model. Overall, it seems that 
predictability of the speech stream is a strong cue for 
prominence at both the lexical and acoustic levels. However, 
the combination of lexical and acoustic information adds only 
a small increase in the overall system performance, leading to 
an accuracy of 87%. Note that the performance of the 
unsupervised system is significantly higher than that of other 
unsupervised methods reported in the literature (ACC = 78.1% 
in [18] and 80.61% in [37]) using different feature 
combinations. However, direct comparison is not possible due 
to the different corpora used in different studies. 

Table 2 shows the performance measures for the supervised 
classifiers in the same task. Only the most relevant feature 
combinations are shown for the sake of consciseness. 
Performance of all other combinations was within the 
performance range of the shown results. As can be observed, 
both acoustic and lexical features are informative also in the 
supervised case, acoustic features being slightly better when 
used alone. F0 seems to be the most informative as a sole 
feature, closely followed by duration. This is in contrast with 
the unsupervised system where predictability of energy was in 
fact more useful than F0, equaling supervised F0-based 
classification in performance.  As for the classifiers, SVM 
always outperforms or equals to KNN in every condition. In 
practice, n-gram probabilities and word durations had a very 
strong inverse correlation (r = -0.81, rank-cor) and performed 
similarly in combination with other features. This replicates 
the well-known finding that common (highly predictable) 
words also tend to be shorter (e.g., function words).  

Table 1: Results for the individual features and selected best 
performing combinations in the unsupervised experiments. 
 

 
 

Table 2: Results for the individual features and selected best 
performing combinations from the supervised classification 
experiments. 

 
 

Overall, the supervised performance of the best feature 
combination is close to the result of ACC = 89.03% reported 
in the literature using Bidirectional Recurrent Neural networks 
[26], although, as mentioned, experiments with different 
corpora are not directly comparable. The performance is also 
higher than many other recent approaches using a variety of 
features and classifiers [18,38,39,40,41].  

4. Conclusions 
This study presented an investigation of the contribution of 
bottom-up acoustic and top-down lexical features in both 
unsupervised and supervised setups. Overall, the findings 
suggest that predictability is a strong cue for prominence at 
both the lexical and acoustic levels, leading to prominence 
detection accuracy of 87% at the word level using a system 
trained without prominence labels. Moreover, a combination 
of word predictability and part-of-speech information proved 
to be useful for standard supervised classification of 
prominence, especially when combined with acoustic features, 
providing high agreement with manual annotations of 
prominence in the CGN data. Future efforts will investigate 
the contribution of bottom-up and top-down cues in different 
languages. 
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FEATURES κ F ACC FEATURES κ F ACC
1-gram 0.63 0.80 0.82 EN+F0+1-gram 0.72 0.84 0.87
2-gram 0.51 0.72 0.76 EN+F0+2-gram 0.70 0.83 0.85
3-gram 0.43 0.68 0.72 EN+F0+3-gram 0.69 0.83 0.85
4-gram 0.42 0.67 0.71 EN+F0+4-gram 0.69 0.82 0.85
5-gram 0.42 0.67 0.71 EN+F0+5-gram 0.68 0.83 0.84

combined 0.50 0.73 0.75 EN+F0+comb. 0.70 0.83 0.85
EN+F0+tilt 0.70 0.83 0.85
EN+F0 0.72 0.84 0.86
F0 0.67 0.79 0.82
EN 0.69 0.83 0.85
tilt 0.60 0.82 0.84
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FEATURES κ F ACC κ F ACC
EN+F0+dur+POS+n-grams 0.77 0.87 0.88 0.74 0.86 0.87

F0+tilt+POS+n-grams 0.77 0.87 0.88 0.73 0.85 0.87

EN+F0+dur+POS 0.76 0.87 0.88 0.74 0.85 0.87

EN+F0+POS+n-grams 0.76 0.87 0.88 0.74 0.85 0.87

POS+n-grams 0.71 0.84 0.85 0.69 0.83 0.84

n-grams 0.63 0.80 0.81 0.61 0.79 0.81

POS 0.62 0.78 0.81 0.62 0.78 0.82

EN+F0+tilt+dur 0.74 0.86 0.87 0.71 0.84 0.86

EN+F0+tilt 0.73 0.85 0.87 0.67 0.82 0.84

EN+F0 0.72 0.84 0.86 0.69 0.82 0.85
F0 0.69 0.82 0.85 0.69 0.82 0.85

dur 0.67 0.82 0.84 0.66 0.81 0.83

EN 0.63 0.79 0.82 0.59 0.77 0.80

tilt 0.60 0.78 0.81 0.57 0.76 0.79
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