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Abstract 
In order to understand how humans learn speech imitation 
without access to detailed articulatory data of other talkers, 
simulated speech acquisition experiments between two virtual 
agents were carried out with the goal of maintaining the inter-
action between the two as natural as possible. As an outcome, 
a novel model of infants’ vowel acquisition is presented. In the 
experimental setup, a virtual infant learns vowels in interaction 
with a virtual caregiver: it babbles vowels randomly, the care-
giver answers every babble with an utterance that contains the 
vowel uttered by the infant in addition to other vocalic content, 
and the infant associates its own productions to the caregiver’s 
responses. The infant and the caregiver have different vocal 
tract sizes, and hence the acoustic qualities of the same vowel 
differ between the infant and the caregiver. The infant learns 
on line to map acoustic qualities of its caregiver’s speech onto 
its own vowel articulations, allowing for instant imitation of 
the caregiver’s vowel sounds when recognized. As opposed to 
previous computational studies of vowel acquisition, the infant 
does not need initial mappings, initial vowel primitives, or 
knowledge of the caregiver’s vowel categories. 
Index Terms: speech acquisition, vowel learning, imitation 

1. Introduction 
Speech inversion techniques aim to find underlying articulato-
ry trajectories from acoustic speech signals. Humans generally 
perform well when inverting their native language, which also 
shows as an ability to imitate speech. Since human infants 
learn the skill of speech imitation at a young age without ac-
cess to exact information about articulation, we have decided 
to approach speech inversion related issues naturally from the 
point of view of infant speech acquisition. In this work, by 
speech inversion we mean human-like reproduction of heard 
speech, possibly with a different vocal tract (= imitation), in-
stead of finding detailed articulations of individual speakers. 

In [1], we showed how an initially naive Learning Virtual 
Infant, LeVI, equipped with an articulatory model could learn 
to produce and recognize native phonemes in interaction with 
a virtual caregiver, CG, who had already mastered the Finnish 
phonetic system. Importantly, the learned phonemes were 
learned during CG-supervised babbling phase, and thus the 
phoneme categories, in terms of which the caregiver’s speech 
was later recognized, were primarily articulatory by nature. 
Speech inversion thus happened as a by-product – when LeVI 
recognized a phoneme in CG’s speech, LeVI had immediate 
access to the underlying articulatory phonetic gesture.  

In this work, we describe a novel scenario of vowel acqui-
sition where the interaction between CG and LeVI is made 
more natural for improved cognitive plausibility. Our results 
could have repercussions for adaptive speech recognition, but 
are also meant to provide insight into the cognitive processes 
of speech production, perception, and acquisition. 

1.1. Models of articulatory learning and automatic 
speech recognition 

Modern speech recognition systems use certain features and 
representational units extracted from acoustic speech signals 
as a basis for word recognition. However, the used features are 
mainly chosen due to their performance in the prevailing 
speech recognition architectures so that they perform well in 
speech-to-text conversion, most often leading to the use of tri-
phone HMM-models together with MFCCs, RASTA-PLP, 
LPC, or other fixed-frame spectral features [2]. These systems 
work properly as long as they have narrowly defined goals, but 
their limitations become clear when dealing with more com-
plex levels or aspects of language. How humans learn the im-
portant features in speech signals, what the sub-word level 
representations that humans use to code speech are (c.f., [3]), 
and what the role of speech production mechanisms in human 
speech recognition is, are often given less attention. 

It is likely that human infants start learning longer, word-
like sequences from speech signals, but later words can be 
parsed as shorter building blocks, such as syllables, diphones 
or phones, on which combinatorial speech structures can also 
be produced [4]. Since speech communication is not only 
hearing and understanding, but also speaking, it is possible 
that children gradually learn to analyze acoustic speech signals 
for features that most robustly serve all the aspects of speech, 
including combinatorial production and grammatical require-
ments. Since speech production explicitly requires discrete 
choices between different motor actions, it may also play a 
role in the organization of the sub-word level perception of 
speech, and provide means to associate acoustically varying 
percepts into linguistically meaningful phonetic categories.  

When considering recognition of purely acoustic speech 
(i.e., not having access to the visual modality that importantly 
affects recognition as well), we do not believe that inverting 
speech and using the resulting articulatory representation 
brings additional gain to speech recognition when compared to 
recognition based on the acoustic signals, as long as the cor-
rect acoustic features are used in recognition: performing reli-
able inversion requires a proper set of acoustic features, and 
these features could probably be used directly to train speech 
recognizers. If the acoustic speech signals did not contain all 
the necessary information needed for recognition, humans 
would not be able to recognize speech robustly either. Instead, 
understanding and modeling the articulatory development 
through speech learning simulations using articulatory models 
may provide the necessary constraints for finding the best pos-
sible acoustic level descriptors for spoken language, used also 
by humans, as well as shed light on human speech learning 
mechanisms. In our current work, as well as in [1], phones are 
learned due to speech production, and acoustic signals are 
parsed for features that best discriminate between found phone 
classes. 



1.2. Previous research on infant speech acquisition 

When infants acquire speech, they find themselves facing a 
correspondence problem: which speech sounds created by 
their small and underdeveloped vocal tracts correspond to the 
sounds uttered by their caregivers? The acoustic qualities of 
the same speech sounds in these two differing bodies may vary 
drastically. Previous research (e.g. [5–11]) has shown that the 
caregiver can help the infant to draw the links between the two 
representations in imitative interactions. 

Research on infant language acquisition has shown that in-
fants cannot imitate their caregivers’ speech sounds before at 
least six months of age ([11,12]). According to [13], both in-
fants’ and mothers’ verbal imitation was almost nonexistent at 
10 months of age but exceeded all other imitative actions dur-
ing the second year. Mothers regularly imitated the infant 
more (vocally and verbally) than vice versa (see also [11]). 
Parents also regulate their feedback on infants’ babbles based 
on the quality of their vocalizations [14] and infants are shown 
to regulate their babbles based on parental feedback [15]. 

Several studies have investigated the mechanisms govern-
ing infants’ speech acquisition using computational modeling. 
However, in most of the studies, the learning situation is heav-
ily simplified from real-world speech learning situations, di-
minishing the cognitive plausibility of the models. The follow-
ing paragraphs list previous research on the subject, and their 
main drawbacks. Our work aims to simulate vowel acquisition 
without the initial assumptions used in previous research, as 
concluded in the last paragraph of this section. 

A number of papers provide possible methods of how 
speech of other speakers can be imitated without dealing with 
the problem of dissimilar bodies (e.g. [5,16]), i.e., assuming 
that the sound to be imitated is created with a vocal tract simi-
lar to the one of the imitator, which is not the case in real in-
fants’ language acquisition. In our work the vocal tract sizes of 
the interactors differ.[6–8,10] used dissimilar bodies and imi-
tation by the caregiver to approach the correspondence prob-
lem. In [7–8,10], the imitative utterance of the caregiver had 
the same phonetic content as the learner’s utterance. In [6] it is 
reported that the human caregiver imitated the infant with re-
productions if the utterances sounded native, otherwise they 
were ignored. In addition, [10] assumes that the language 
learning robot knows a predefined set of vocal primitives 
whereas [8] assumes that the robot knows the desired caregiv-
er’s vowel categories and has a rough estimate of the mapping 
function between the two acoustic domains.  

In [9], the caregiver and the learning robot have dissimilar 
bodies and the caregiver does not have to imitate the learner 
with exactly the same utterances. In training, a human caregiv-
er imitates the learner’s vowels with different probabilities. 
The learner is given 15 vowel primitives in the beginning, 
each having a probability of being recognized as the corre-
sponding vowel. The learner succeeds in learning at and above 
chance level of being imitated.  

In our previous work [1], LeVI learned to map acoustic 
characteristics of Finnish phonemes (including consonants), 
spoken by CG, to its own articulations in a dissimilar body in 
an imitation scene where erroneous associations were also al-
lowed to a certain extent. Before the imitation phase, LeVI had 
already learned the articulatory gestures corresponding to the 
native phones in a supervised learning phase, where CG 
awarded more adult-like babbles. However, learning of the 
exact articulation of phones using only reinforcement is a 

strong assumption – human caregivers are not likely to distin-
guish, and maybe do not even pay attention to, very small dif-
ferences in the infant’s articulation of phones if the acoustic 
output is sufficiently close to a known phonemic category. In 
our work this was possible because CG recognized LeVI’s 
speech based on directly provided articulatory data. In the cur-
rent study, CG’s recognition is based on LeVI’s acoustic 
speech output and the supervised learning phase is discarded. 
Similarly in [17], a robot learns to map vowel sounds of hu-
man caregivers, presented in utterances with additional vow-
els, onto articulatory vowel categories that were previously 
learned in a reinforcement learning phase. 

In an elegant study, [18] proposes that an infant can learn a 
mapping between the differing adult’s and infant’s acoustic 
spaces by clustering the two spaces separately and using the 
topological correspondence between them. Non-imitative adult 
feedback on the infant’s attempted imitations is used to find 
the best topology for the clustering. The clustering is per-
formed on synthesized sets of speech data created in a similar 
babbling procedure for both speakers, leading to the assump-
tion that the distribution of speech sounds is similar for both 
speakers at the moment of the clustering – i.e., the correct 
mapping does not evolve gradually “on-line”. Also, Plummer 
[19] has studied vowel normalization by aligning perceptual 
manifolds created for the caregiver’s and infant’s vowel spac-
es based on imitative interactions. The interactions are as-
sumed to consist of the infant’s imitations of the caregiver’s 
vowels, confirmed correct by the caregiver, but in practice 
imitation data is selected manually for the interactors.  

In the current study we simulate LeVI’s vowel acquisition 
when: LeVI and CG have vocal tracts of different sizes, CG 
imitates LeVI’s babbles using his native language but not ex-
actly matching phonetic content (imitations include several 
additional phonemes), no initial vocal primitives or reinforce-
ment learning phases are used but the vowel categories are 
learned online during the simulation, no initial “rough” map-
pings are used, LeVI does not know the number of CG’s vow-
el categories nor does it know how to articulate phonemes be-
fore learning. The minimal amount of initial assumptions and 
the speech recognition method, make this work a novel contri-
bution to related research. 

2. The method 
In this work, every interaction between LeVI and CG consist 
of the following steps. First, LeVI babbles an open vocal tract 
configuration, which CG hears and interprets as one of his al-
ready known native vowel prototypes (using the perceptual 
magnet effect [20]). LeVI compares the auditory perceptual 
characteristics of its babble to those of its previous babbles, 
and based on the perceptual distance, adds the articulatory 
configuration of the babbled speech sound to an already exist-
ing vowel category or a completely new category. CG imitates 
LeVI using a string of phonemes, of which one is the native 
vowel as which LeVI’s babble was interpreted. LeVI associ-
ates the acoustic features found in CG’s imitative answer to 
the vowel category activated during its own production. LeVI 
will learn several vowel categories, but after multiple interac-
tions, they end up being the most sensitive towards those fea-
tures in CG’s speech that occurred most frequently concurrent-
ly with the babbled categories: CG’s knowledge of the vowel 
domain is thus transferred to LeVI based on CG’s imitations 
of LeVI’s initially meaningless babbles. The method is de-
scribed with more technical detail in section 2.3. 



2.1. Used assumptions and methods 

LeVI and CG produce sounds using an articulatory synthesizer 
developed and described in earlier work [21]. The look-ahead 
model of articulation aims to reach articulatory target positions 
defined in a 9-dimensional articulatory space, with additional 
parameters controlling the dynamic characteristics of the artic-
ulatory movements. The model is able to produce vowels, na-
sals and consonants, as well as to synthesize strings of pho-
nemes. In the current experiments LeVI babbles using a vocal 
tract of 10 cm in length and a fundamental frequency varying 
slightly around 250 Hz. CG has a vocal tract length of 17.5 cm 
and a fundamental frequency around 120 Hz. 

LeVI learns to recognize CG’s speech based on statistical 
distributions of vector quantized MFCC-features, whereas 
LeVI’s speech sounds are categorized using the two first for-
mant frequencies, extracted with linear predictive analysis 
from vocal tract impulse responses. In the preliminary experi-
ments, formant representation for LeVI’s acoustic domain is 
used because it allows easy visualization of the emergent vow-
el space as well as easy visual evaluation of CG’s categorical 
vowel perception. The same MFCC-representation could pre-
sumably be used for both parties for better cognitive plausibil-
ity, but this is left for future work. MFCC-features are used for 
the caregiver’s speech because we do not want to assume that 
LeVI is able to extract formant frequencies from continuous 
caregiver’s speech also including consonants. Thus, a more 
general auditory perceptual representation is preferred. This 
representation also makes LeVI’s speech recognition mecha-
nism more robust for future experiments with real recorded 
speech signals. The distance between two formant vectors is 
calculated as Euclidean distance, with weighting factors of 
1/1500 and 1/4500, denominators estimating the maximum 
values of F1 and F2 correspondingly, to compensate for the 
bigger range of F2 values. 

LeVI’s recognition of CG’s speech is based on a variant of 

the concept matrix (CM) algorithm [22], a weakly supervised 
pattern recognition algorithm that approximates temporal 
structures of higher-order Markov processes. CM is used as its 
training is one-pass and computationally straightforward. LeVI 
recognizes CG’s speech in terms of activations of clusters 
C={c1,c2,…,cC} storing articulatory configurations for vowels 
learned during the simulation. The acoustic correspondents in 
CG’s speech for each cluster are learned based on CG’s imita-
tions and consist of distributions of transitions between acous-
tic features (vector quantized MFCC-vectors) at different lags. 
The vector quantization, training and recognition of the CM-
recognizers are described with more detail in Appendix A. 

2.2. Initial training of the caregiver’s perceptual cat-
egories 

In order to have CG recognize LeVI’s vocalizations in a simi-
lar way to a human listener, an initial training phase was per-
formed for CG. LeVI was set to babble1 1000 CVCV utteranc-
es. The first author listened to every utterance and annotated it 
with the perceived consonants and vowels. In 758 cases out of 
the 1000, a clear vowel was perceived and annotated. The def-
inition of a “clear” vowel here is of course highly subjective: 
in almost all cases, a vowel was categorized as one of the 
Finnish vowels, but some productions sounded like borderline 
cases between two vowels or simply sounded incorrectly pro-
nounced and thus they were left unannotated. However, the 
annotation process results in a clear F1-F2 vowel triangle with 

 
Figure 2. A flow chart of the interactive learning process 

Figure 1. 758 vowels babbled by LeVI and annotated into 
Finnish vowel categories 

                                                                    
2 Categorization of the perceived consonant sounds was al-

so experimented with, but they turned out to be much more dif-
ficult to categorize automatically with simple rules into the cor-
rect categories in both the articulatory and the acoustic sense. 
Even though in many cases the place of articulation was a clear 
indication of a consonant class, in some cases the effect of oth-
er gestural parameters, for example velocities of the articula-
tors, can cause the percept to change into a category that would 
not be obvious looking just at the place of constriction. For ex-
ample, in some cases, percepts of /k/ could be created with the 
tongue tip. These effects can be partly caused by lack of natural 
detail in the articulatory model, but they can also be normal 
”ventriloquist” effects, just not used in normal Finnish speech. 
Because we were not yet able to teach the virtual caregiver hu-
man-like consonant recognition for LeVI’s speech, the current 
work focuses on vowel acquisition. 

                                                                    
1 Throughout this work, a babbled vowel is defined as a 

random vocal tract configuration in the 9 dimensional articula-
tory space with a minimum allowed cross-sectional area of 0.1 
cm2 and a babbled consonant as a vocal tract configuration 
where a complete closure was obtained. The randomization of 
eight parameters is slightly biased towards the extreme values 
of the articulators, helping the infant to explore its full range of 
articulations. One of the nine parameters, the velum, is always 
set to either fully open or closed. 

 



reasonably clear boundaries between the vowel categories (see 
Figure 1). The obtained categorization was used in the further 
simulations by making CG recognize LeVI’s future vowel 
sounds2 using a k-nearest neighbor (kNN) classifier (k = 6 
neighbors used for majority voting) based on these initially 
annotated babbles, using the Euclidean distance between the 
weighted two first formant frequencies as a distance measure.  

2.3. LeVI’s learning of vowel categories and their 
mapping to the caregiver’s vowels 

The learning process of LeVI goes on with the following steps 
(see Figure 2). 1) LeVI babbles a vowel sound with a probabil-
ity of 0.5, or tries to reproduce one of the already learned 
vowel clusters with a probability of 0.5. In the latter case, Le-
VI always chooses a randomly stored articulatory parameter 
vector from the selected cluster with the smallest number of 
possible articulations stored in it. This is done in order to ac-
tively attempt to find the matching sound from CG’s speech 
when a new category is learned. In order to introduce a small 
random error to LeVI’s intended reproductions, uniform ran-
dom noise from a range of [-0.1, 0.1] is added to the 9 parame-
ter values when the parameters’ coordinate values are linearly 
scaled into a range [0, 1]. 2) LeVI extracts the two first for-
mant frequencies of its production. 3a) If this is the first pro-
duction by LeVI, a new cluster centroid is placed in the F1-F2 
space in the corresponding location, and the articulatory pa-
rameter vector that created the vowel is stored in this cluster 
and selected as the cluster centroid. An empty frequency ma-
trix F is created for the cluster centroid for the CM-recognizer 
(see Appendix A). 3b) If there already exist cluster centroids 
in LeVI’s memory, the distance of the obtained F1-F2 vector 
is calculated to all the cluster centroids using the weighted Eu-
clidean distance (see section 2.1.). If the distance to the closest 
cluster exceeds a threshold of tc = 0.1, a new cluster is created 
similarly as in 3a. Otherwise the new articulatory parameter 
vector is stored in the closest cluster. In both cases, 3a and 3b, 
the updated cluster is called the activated cluster cA. 4) CG 
extracts the two first formant frequencies of LeVI’s babbled 
vowel sound and uses the kNN algorithm to classify it in a 
vowel category (see section 2.2). This is performed in order to 
obtain “human-like” perception of the correct vowel category. 
5) CG creates an utterance consisting of P Finnish phones, 
where phones alternate between consonants from a set of {/k/, 
/t/, /p/, /g/, /d/, /b/, /s/, /m/, /n/, /ŋ/, /v/, /f/, /l/} and vowels from 
a set of {/a/, /e/, /i/, /o/, /u/, /y/, /ä/, /ö/}. CG places the recog-
nized vowel of LeVI’s babble into one random vowel position 
in the utterance. Thus, the CG’s answer might look like 
/abikutup/, when P = 8 and the bolded /u/ is the recognized 
vowel from LeVI’s babble. 6) CG speaks the created utter-
ance. 7) LeVI hears the acoustic signal of CG’s utterance, and 
extracts vector quantized MFCC-features from it using the 
method described in the Appendix A. 8) LeVI updates the fre-
quency matrix corresponding to the cluster cA with the transi-
tions present in the complete observed VQ-sequence, as de-
scribed in the training phase in Appendix A. 

3. Results 
During the simulation, LeVI’s success in recognition is meas-
ured for every interaction between LeVI and CG. The meas-
urement is made in order to see LeVI’s progress in interpreting 
the CG’s vowels during the learning process, and it is per-
formed by a “third-party observer” that does not affect the 
learning process itself. First, 200 test probes are synthesized 
with CG’s vocal tract, each probe consisting of a sequence of 

17 phones alternating between the 8 Finnish vowels and ran-
dom Finnish consonants. This is done in order to test LeVI’s 
recognition of vowels in varying phonetic contexts depending 
on the surrounding consonantal gestures. At every iteration of 
the acquisition process, LeVI’s frequency matrices are normal-
ized using the equations (A1) and (A2), and a randomly cho-
sen test probe is recognized using equations (A3) and (A4). 
This results in activation scores of LeVI’s current vowel clus-
ters for the test probe based on how LeVI is trained so far. The 
most activated LeVI’s clusters at the time instants of the 8 
vowels, 𝐭!"#$%& (stored for sake of the recognition measure-
ment during the synthesizing of the probes), in the recognized 
test probe are found as argmax! 𝐴!"##$! 𝑐!, 𝐭!"#$%&  (see 
Appendix A) and the formant frequencies corresponding to the 
cluster centroids are transformed into vowel classes by kNN 
clustering with the initial annotated data by the author, as de-
scribed in section 2.2. If the obtained vowel classes match 
with the vowels in the test probe, it means that if LeVI were to 
imitate the CG’s vowel sounds using the articulations corre-
sponding to the most activated cluster centroids, the resulting 
acoustic signals would again be interpreted as the same vowels 
by CG. However, if the most activated LeVI’s phonemic cate-
gory crosses a border between two or more of the CG’s per-
ceptual categories, not all of the articulations stored in the 
cluster will lead to correct imitation as judged by CG, but gen-
erally LeVI’s categories of these kinds will have weaker acti-
vations for the CG’s vowel sounds and are less likely to be the 
most activated centroids (depending on the range of LeVI’s 
categories defined by the threshold tc). The score for each in-
teraction is obtained by the number of the matching vowels 
divided by the total number of vowels (8). 

Two simulations were run until 3000 babble-answer inter-
actions were reached. In the first simulation, CG answers us-
ing 6 phonemes (P = 6) and in the second one, using 10 pho-
nemes (P = 10). Figure 3 shows the development of LeVI’s 
vowel recognition accuracy during the simulation, as well as 
the number of clusters obtained by LeVI. The final numbers of 
clusters are 43 and 39, respectively, and the final recognition 
accuracy for the vowels present in the probes is about 95% 
when they are recognized based on the classification of the 
cluster centroid. Somewhat unexpectedly, there does not seem 
to be significant difference in the learning rates between the 
two individual runs. Presumably there is big variance between 
different runs of the simulation caused by the differing posi-
tions of LeVI’s phonemic clusters and, on average, we expect 

Figure 3. Running average over 400 interactions, showing Le-
VI’s recognition accuracy of all 8 vowels for P=6 (blue solid 
line) or P=10 (red dotted line), when LeVI imitates using ar-
ticulations corresponding to cluster centroids. The lines with 
step-like shape show the number of obtained categories (P=6 
with the green solid line and P=10 with black dashed line). 
The purple dashed line shows the success of LeVI’s imitation 
when P=10 and LeVI chooses a random articulation from the 
recognized cluster instead of the cluster centroid. 



that the learning rate is smaller when the proportion of match-
ing phonemes in CG’s answers is larger. 

Figure 4 shows the vowel triangle and the vowel proto-
types of CG, as well as LeVI’s final vowel triangle when P = 
10. The activations of LeVI’s phonemic clusters are indicated 
as letters when CG utters the corresponding vowel in isolation. 
The font size is related to the activation of the corresponding 
cluster. A small amount of displacement in the F1-F2 dimen-
sions is added for every cluster activation for every CG’s 
vowel in order to show activations for different clusters more 
clearly. It is clear that the CG’s vowels activate LeVI’s clus-
ters in corresponding areas, and that several clusters situated 
close to each other obtain large activations for certain of CG’s 
vowels. This indicates that some clusters could be joined to-
gether based on their simultaneous activations, thus reducing 
the final number of LeVI’s phonemic categories. 

4. Conclusions 
A method allowing a learning virtual infant, LeVI, to acquire a 
vowel system based on imitative interactions with a virtual 
caregiver, CG, was introduced. LeVI and CG have different 
vocal tract sizes, and thus the acoustic vowel spaces of the two 
are dissimilar. The phonetic content of the imitative answer by 
CG does not have to match exactly the content of LeVI’s ini-
tial babble, and LeVI does not have previous knowledge on 
the number or characteristics of CG’s phonemes, nor the char-
acteristics of its own productions. The results suggest that a 
caregiver simply repeating a vowel, initially babbled by the 
infant, in a longer utterance may be sufficient for infants to 
learn an initial set of vowel categories. 

Since the infant’s vowel categories are learned while pro-
ducing speech sounds, they are articulatory by nature. This 
means that in this work the entities into which acoustic events 
in the caregiver’s speech are recognized, exist only in the ar-
ticulatory domain. When the caregiver’s speech sounds are 
recognized, articulatory configurations stored in the activated 
vowel cluster can be directly used for imitation. If infants learn 
speech sound categories due to speech production, and learn to 
parse acoustic signals for the acoustic features that co-occur 
with these produced categories (be they phones, or underlying 
gestures of individual articulators, for example), we could ex-
pect that hearing these acoustic features activate the articulato-
ry domain. Some studies have shown that listening to speech 
indeed activates speech production related motor areas in the 
brain [23]. 

The proposed method of associating articulations with 
CG’s speech in this study is purely distributional in nature – 
the infant does not try to detect the imitative part in the care-
giver’s utterance, but simply assumes that the babbled vowel 
exists somewhere in the utterance. Although in real language 
acquisition, other cues such as intonation or rhythmic patterns 
may help to locate the part imitated by a caregiver (see [17]), 
making learning of more complex utterances feasible, the cur-
rent results show that even with very minimal assumptions, the 
basic sound system of a language can already be acquired.  

In these experiments LeVI also explores its acoustic space 
merely by babbling on its own. In more advanced simulations 
the infant might use a slowly emerging mapping between the 
acoustic domains of the infant and the caregiver to make hy-
potheses on the locations of heard caregiver’s vowel sounds in 
its own acoustic space, and try to produce them systematically, 
speeding up the articulatory exploration. 

In this work, LeVI learns a significantly bigger number of 
phonemic categories than the caregiver has vowel categories. 
This is not considered a problem, since when the learning con-
tinues, activations in different phonemic categories of LeVI 
that are interpreted as the same vowel by the caregiver will 
eventually get similar activation matrices due to similar con-
tent in the imitations (this appears in Figure 4 as several of 
LeVI’s vowel clusters situated next to each other gaining max-
imal activations for the same caregiver’s vowel), and could 
presumably be reliably clustered together in later phases, thus 
reducing the final number of LeVI’s phonemic categories. 

So far we have not analyzed the characteristics of the ar-
ticulatory parameter vectors stored in the learned phonemic 
clusters. Due to the many-to-one characteristic of articulatory-
acoustic mappings, there exist several possibilities to pro-
nounce each of the learned vowel categories. The current goal 
was not to find one “correct” way to pronounce each pho-
neme: people are known to utter the same phonemes slightly 
differently depending on adjacent phonemes [24]. Allowing a 
range of different ways to pronounce phonemes may explain 
several speech related phenomena, such as speech rate effects 
or compensatory articulation, e.g., in case of constrained artic-
ulations using bite blocks [25,26]. Excessive articulatory effort 
could be used to rule out some improbable articulations be-
longing to the same phonemic category. Although having 
some freedom in articulatory parameters therefore seems real-
istic, we would like to explore the effect of clustering of the 
obtained articulatory configurations in future work. 

This study has shown that a simple distributional learning 
algorithm may be sufficient for infants to learn the mapping 
between the vowel productions of two dissimilar vocal tracts 
with a minimal amount of initial assumptions. In reality, the 
interactive situation between the infant and the caregiver may 
contain several additional cues to make the learning process 
faster and more robust. 

Since speech is produced by combining more or less dis-
crete articulatory building blocks, we propose that during the 
learning of combinatorial speech production in infancy, hu-
mans learn to parse continuous acoustic speech signals for fea-
tures that best categorize them in these discrete, production-
conditioned, categories. Current ASR systems use features that 
are refined to work best in limited tasks when compared to 
human capabilities. We propose that simulating human-like 
speech learning processes may help to define acoustic features 
that work best in robust, human-like speech recognition tasks. 

 
Figure 4. LeVI’s cluster activations for the 8 vowels of the 
caregiver and the caregiver’s prototype vowels, plotted over 
the caregiver’s vowel triangle (top right corner). 



5. Appendix A 
Vector quantized MFCC representation. In order to be able to 
vector quantize CG’s speech in discrete labels, LeVI first lis-
tens to 250 synthesized grammatically correct, but lexically 
randomized, Finnish sentences, from a vocabulary of 34 
words. MFCC-features (coefficients 1 to 12) are extracted 
from every sentence with a step size of 5 ms and a window 
length of 25 ms using Hamming windowing. When the listen-
ing process is finished, 50,000 MFCC-feature vectors are ran-
domly chosen from all MFCC-vectors and clustered into 150 
clusters using a standard k-means algorithm. Then the MFCC-
features of CG’s further speech are quantized into these 150 
categories and labeled with corresponding integer numbers. 
Training of the CM recognizers. Given a sequence of  CG’s 
answer’s VQ-indices X = [xt, xt+1, …, xt+m], energy at every 
analyzed window E = [et, et+1, …, et+m] (normalized so that the 
maximum energy in the signal gets a value one) and LeVI’s 
activated cluster cA, occurrences of element pairs in X at lags l 
= {l1, l2, …, lL} are counted and added into frequency matrices 
𝐅!,!! . A transition at lag l corresponds to a transition from xt to 
xt+l. In this work the value added to 𝐅!,!! 𝑥! , 𝑥!!!  is equal to 
et+l in order to diminish the effect of training on weak parts of 
the signal. This work uses L = 20 lags l={-9, -8, …, 10}, and 
in the end of the training there will be L×C matrices of size 
NV×NV, where C is the final number of clusters known by Le-
VI and NV = 150 the number of VQ labels used. 
Recognition with the CM recognizers. When the training of 
the models is complete, all frequency matrices are normalized 
to represent the joint probabilities of their element pairs (vi, vj): 

 𝐏 𝑣! , 𝑣! , 𝑐, 𝑙 = 𝐅𝒍,𝒄 !!,!!
𝐅𝒍,𝒄 !!,!!

!!
𝒚!𝟏

!!
𝒙!𝟏

      (A1) 

The obtained probability matrices are normalized over all clus-
ters, providing a maximum likelihood estimate that a lagged 
element pair (i, j) occurs for cluster cn, when a uniform prior 
probability is assumed for c: 

 𝐏𝐂 𝑐!|𝑣!,𝑣! , 𝑙 = 𝐏 !!,!!,!! ,!
𝐏 !!,!!,!! ,!!

!!!
      (A2) 

A new input VQ-sequence X = [x1, x2, …, xM] provides an ac-
tivation for each cluster at time instant t by 

  𝐴 𝑐!, 𝑡 = !
!!"!#$

𝐏𝐂 𝑐!|𝑥! , 𝑥!!!! , 𝑙! ∙ 𝑒 𝑡 + 𝑙!!
!!!       

(A3) 
with 𝑡 + 𝑙! > 0 and 𝑡 + 𝑙! ≤ 𝑀. 𝐿!"!#$ is the number of lags 
that could be used in the current window and limits the activa-
tion values at each time window between zero and one. The 
model activation curves are smoothed by summing activations 
in a sliding window of 20 time steps (120 ms): 
 𝐴!"##$! 𝑐!, 𝑡 = 𝐴 𝑐! 𝑖!

!!!!!"       (A4) 
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