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Abstract—This work presents an approach for modeling statistical dependencies in multivariate discrete sequences by using 

hyperdimensional random vectors. The system takes any number of parallel sequences as inputs and learns to predict the future states 

of these streams using the mutual dependencies between the inputs. Performance of the system is tested in an activity recognition task 

with data from multiple worn sensors. The results show that the approach outperforms the existing baseline results in the task and 

demonstrate that the system is capable to account for the varying reliability of different input streams.  

Index Terms—activity recognition, hyperdimensional computing, machine learning, multimodal processing 

I. INTRODUCTION 

ODELING statistical dependencies between multiple streams of data is relevant to many areas of signal processing and 

machine learning such as multisensory processing. In contrast to traditional sensor or classifier fusion (e.g., [1]), this work 

takes a novel perspective to the task of generic associative learning between multiple data streams by utilizing the benefits of so-

called hyperdimensional computing (HDC) [2]. In the proposed HDC-based predictor (HDCP), the cross-modal context of each 

individual state ws,t+1 in stream s at time t is represented as a single high-dimensional context vector cs,t that encodes the current 

and preceding states of all concurrent input streams s ∈ {1, …, S}. These context vectors are associated to the states ws,t+1 by 

using a simple matrix memory that is learned from a set of training samples. As a result, the HDCP enables the estimation of the 

probability distribution P(ws,t+1|X) for any s given the currently observed multivariate discrete input X. 

Instead of performing matrix or tensor decomposition [3], [4], or using quaternion-based statistical analysis [5] across the 

multiple input dimensions, HDC makes use of the quasi-orthogonality of high-dimensional random vectors and the associated 

encoding operations that enable feed-forward encoding of structural relations between signal states within a fixed-dimensional 

vector space [2], [6]–[8]. The main advantage of the present approach is that it can automatically account for the varying 

reliability of different input dimensions at different temporal delays, utilizing signal states only when they have predictive power 
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with respect to the presently predicted state in the dimension of interest. This allows the inclusion of multiple potentially 

beneficial inputs to the prediction task without risking a loss of performance if some of the inputs turn out to be uninformative. 

In addition, the system learns on-line. This makes it suitable for computational devices with limited storage and processing 

capability. For example, HDCP can be used as an adaptive recommendation engine in a mobile phone, enabling prediction of 

desired user actions in advance based on the available sensor and system inputs.  

A. Hyperdimensional computing 

HDC refers to computing with very large dimensional (d > 1000) random vectors, sometimes also referred to as Vector 

Symbolic Architectures (VSAs) [2], [6]-[11]. The basic idea behind HDC is that distances between concepts in our minds 

correspond to distances between points in a high-dimensional space [2]. Due to the high dimensionality, basically all randomly 

drawn hypervectors of the hyperspace are quasi-orthogonal with each other as the pair-wise distances of the vectors are tightly 

concentrated around the expected value of the chosen distance metric [2], [9], [10]. This means that the representations encoded 

by the vectors are highly tolerant against noise and gradual degradation.  

Importantly, HDC provides a link between distributed and symbolic computing. For any two hyperdimensional random 

vectors vi and vj with zero mean and unit variance (or alternatively, ternary -1, 0, 1 vectors), their dot product is likely to be 

approximately zero, i.e., vi
Tvj ≈ 0 (i ≠ j) [2]. This means that a set of discrete items {A, B, C} can be encoded as the sum vABC = 

vA+vB+vC so that the codes of the individual items still correlate with the set code (vA
TvABC ≈ vB

TvABC ≈ vC
TvABC >> 0) while all 

other codes are orthogonal to the code (e.g., vD
TvABC ≈ 0). This type of sum-coding is referred to as “chunking” and it can be used 

to store tens or hundreds of items with gradual degradation of recall fidelity. As the vector dimension d increases, the number of 

vectors that can be discriminated from the sum increases exponentially while the number of vectors that can be simultaneously 

stored in the sum increases linearly [6]. All subsets such as vAB will also have non-zero positive correlation with vABC, enabling 

decoding of the constituent vectors from the set code. Due to  

 

Fig.1. Left: An example encoding of the sentence “black cats and red balls” into a single hypervector (vsent. = vblack⊗vcats+vred⊗vballs+vand) so that the adjectives 

become bound to the correct nouns (⊗ takes priority over +). Right: Creating a composite multimodal vector vAB by chunking the hypervector representations vA 

and vB of the individual modalities (adapted from [11]). 
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the additive processing of zero-mean random vectors, the chunking operation also approximates the frequency distribution of the 

component vectors, the dot product vA
TvABC being proportional to the number of vA vectors added to the set vABC (e.g., 0 < 

vA
T(vA+vB+vC) < vA

T(2vA+vB+vC)). 

Since the chunking operation is commutative (vAB+vC = vCB+vA), it cannot represent sequential or hierarchical structure. This 

problem is solved with the “binding” operation ⊗ that can be realized as component-wise logical operation, matrix 

multiplication, circular convolution, or permutation of the operand vectors [6]–[8], [11]. For example, circular convolution of 

two hypervectors leads to a new quasi-orthogonal vector vAB = vA⊗vB with vAB
TvA≈ vAB

TvB ≈ 0. The resulting vector is of the 

same dimension as the inputs and the result is invertible [7], [8]. Importantly, both the chunking and binding are similarity 

preserving, so the code vA+vB+vC (or vA⊗vB⊗vC) is similar to v’A+v’B+v’C (or v’A⊗v’B⊗v’C) where v’ refers to a noisy version 

of v. When used together, binding and chunking allow recursive construction of similarity preserving compositional 

representations from input data (Fig. 1) so that the distances between representations and their parts are always defined within 

the hyperspace [6]. This also provides natural means of combining information not only across time, but also across input 

modalities. 

The earlier work on HDC (e.g., [2], [6], [9], [10], [12]–[19]) has mainly focused on the study and application of Kanerva’s 

Sparse Distributed Memory (SDM) [9], [10], that is a special case of an autoassociative or heteroassociative neural network. 

Beyond the SDM-specific studies, HDC has mostly received interest for its theoretical possibilities [6], [11], [20], in the well-

known random indexing (RI) algorithm [15], [21], used for on-line latent semantic analysis, and recently in univariate discrete 

sequence prediction [22].  

The current paper generalizes the initial idea of HDC-based sequence processing in [22] to account for prediction from any 

number of parallel data streams. Section 2 describes a mutual information-based time- and stream-dependent weighting scheme 

for HDC chunking. Performance of the HDCP is tested in an activity recognition task using data from worn sensors (section 3), 

showing that the proposed system is able to deal with inputs of varying reliability in the prediction task. 

II. METHODS 

The proposed HDCP system is based on modeling the state space of each input stream in the context of the concurrent and 

preceding states in the other input streams. Specifically, each time-varying input stream s is assumed to be quantized into a 

discrete state space (sequence) Xs = {ws,1, ws,2, …, ws,t} with each ws ∈ {1, …, Ns}. The overall goal of the HDCP is to derive the 

distribution P(ws,t+1|X) for any s of interest given the history of multivariate discrete observations X =  [wt-K, …, wt-1, wt] across 

the S streams. 
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The idea in HDCP is to represent each possible input state ws,t as a random unique hypervector vs of dimension d and then to 

combine these state-specific hypervectors across time and across modalities into an overall context-vector cs,t using the HDC 

chunking operation. Before the chunking, HDC binding operation is used to encode the temporal structure (order) of the states, 

leading to a unique quasi-orthogonal code for each unique state at each unique position. Also, the basic chunking operation of 

HDC is replaced by a weighted chunking of the form 

                 

€ 

vchunk = λ1v1 + λ2v2 + ... + λK vK                           (1) 

with coefficients λ  corresponding to the statistical dependency (predictive power) of each component in the sum code. With 

proper setting of λ , the relative importance of each input at each temporal distance can be encoded to the final cross-modal 

representation. Once the current cross-modal and temporal context is represented using the single hypervector cs,t, the vector is 

used to update a model ms,w of the next state ws,t+1 in the training data. During the prediction stage, the distribution of the 

forthcoming states in any s can be estimated by measuring the similarity of the current context vector cs,t to the learned models 

ms,w. 

In HDC, the hypervectors v can be binary-, ternary-, or continuous-valued with zero mean with the proportion of ρ ∈ [0,1] 

values being non-zero. In the HDCP, fully dense binary representations (all values being ±1, ρ = 1) are used as the experience 

from several different experiments suggests that the density is not critical as long as it is clearly above zero (e.g., ρ > 0.05 for d > 

1000). However, the vector density should be taken into consideration if some special memory architectures such as SDM [9], 

[10], are used instead of linear additive memory. Also, in practical implementations of the algorithm, the use of sparse vectors 

can provide significant advantage in computational speed.   

The next subsections will first describe how the temporal information from a single data sequence is encoded using the linear 

weighting scheme of Eq. (1). Then the formulation is extended to two or more parallel data streams. Finally, the use of a simple 

memory matrix for learning and prediction is described in 2.3 

A. Encoding sequences with hyperdimensional vectors 

Consider a univariate discrete sequence X = [w1, w2, …, wL]. In order to encode its structure, the first step is to represent the 

preceding context [wt-K, …, wt-1, wt] of each state wt+1 for each t using a single context vector ct of dimension d. First, a codebook 

of size N x d containing a hypervector v for each state w is generated by randomly assigning each element of each vector as +1 or 

-1. Given the codevectors, all the states up to a maximum lag K can be represented as a sum of the hypervectors corresponding to 

the states (c.f., chunking). However, this does not encode the temporal ordering of the states. Therefore, another set of K random 

vectors of dimension d is introduced to represent the relative temporal position attribute of each state with respect to current time 

t. These position vectors are referred to as pos1, pos2,…, posk. Encoding of the sequential order can now be performed as 
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€ 

X = {...,wt−K ,wt−K +1, ...,wt−1,wt}→
ct = (v t−K ⊗ posK ) + (v t−K +1 ⊗ posK−1), ..., (v t−1 ⊗ pos1) + v t                 

(2) 

where ⊗ denotes circular convolution, i.e., by binding each state with its positional attribute [7], [8]. What the binding effectively 

does is that it generates a unique code vector for each state w at each temporal lag k, leading to a unique ct for each possible n-

tuple of states. As a result, the ct will correlate with other encodings that share a subset or all of the same states in the same 

relative positions.  

However, the encoding in Eq. (2) is still not optimal as it will give equal representational power to the states at all temporal 

distances. Therefore, the Eq. (2) is revised as 

      

€ 

c t = λ0v t + λk (v t−k ⊗pos)k =1
K∑                           (3) 

so that each lag k becomes associated with a specific weighting coefficient λk. In principle, the weights λ  could be iteratively 

estimated using the performance of the entire HDCP-system as the target criterion. However, we propose a computationally 

efficient one-pass approximation to the problem, namely the degree that the joint probability of states wt-k and wt differs from 

total randomness (or statistical independence) at each lag (see also [22]). For sequential data, such measure is known as the 

mutual information function (MIF; [23]): 

    

€ 

λk = Pk (w, # w ) log2
Pk (w, # w )

P(w)P( # w )w, # w 
∑                          (4) 

In the equation, Pk(w,w’) is the joint probability for an ordered state pair {w, w’} with the states being k time frames apart from 

each other. The use of MI as the weighting coefficient is natural since it will decay to zero as the temporal distance increases to a 

point where no dependencies exist anymore. As a special case, the decay of MI will correspond to a geometric decay λk = λ0
k
 (λ0 

< 1) for a first order Markov process. In general, the more there is predictive power at the given distance, the more the 

corresponding states will contribute to the overall ct. 

B. Representing crossmodal contexts 

In the case of multiple data streams s ∈ {1, 2, …, S} and the associated discrete multivariate input X = [X1
T, X2

 T, …, XS
T], the 

goal is to represent the temporal and crossmodal context of each state ws,t in each stream s at time t by taking into account the 

recent history of the states in all of the input streams. By performing chunking also across the parallel input streams, Eq. (3) can 

be generalized as 

            
      

€ 

cs2,t = λ0
s1|s2

v s1,t
# 

$ 
% 

& 

' 
( 

m=1

M
∑ + λk

s1|s2 (v s1,t−k ⊗ posk )
# 

$ 
% 

& 

' 
( 

k=1

K
∑

s1=1

S
∑                      (5) 
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i.e., as the sum of all states at all temporal lags up to the maximum lag K and across all parallel streams S. Since the statistical 

dependencies between any two data streams depend on the stream contents, the lag-specific weights λk have been generalized to 

a form λk
s1|s2 where k is the number of time steps that s2 is delayed with respect to s1 (note that λk

s1|s2
 ≠  λk

s2|s1 if s1 ≠ s2). Also, cs,t 

is now also dependent on s as different streams have different predictive power with respect to each other. 

In the multi-stream case, the MIF-based weights can be computed according to 

    

€ 

λk
s1|s2 = Pk (ws1

, # w s2
)

ws1
, # w s2

∑ log2
Pk (ws1

, # w s2
)

P(ws1
)P( # w s2

)
/H s1

                   (6) 

with Pk(ws1, w’s2) denoting the joint probability for a cross-stream ordered state pair {ws1, w’s2} with the states being k time 

frames apart from each other. In Eq. (6), the normalization factor     

€ 

Hs1
is the entropy of stream s1: 

    

€ 

H s1
= − P(ws1

)ws1
∑ log2 P(ws1

)                            (7) 

The use of entropy ensures that     

€ 

λk
s1|s2 always scales between 0 and 1 despite the type of quantization and the number of states in 

each stream, making the weights comparable across different pairs of data streams. 

C. Predicting with context hypervectors 

The goal of the learning stage is to associate the context vectors cs,t to the following states ws,t+1 in order to enable prediction. 

Instead of applying a parametric model to the conditional distribution P(ws,t+1| cs,t), the chunking principle is again utilized. More 

specifically, a prototype model vector ms,w  of dimension d is constructed for each state ws ∈ {1, …, Ns} as the sum of the context 

vectors cs,t preceding the ws in the data: 

               

€ 

ms,w = cs,tt=1
T∑ δ(ws,t+1 = ws )                              (8) 

In Eq. (8), t runs across the entire training data and δ(ws,t+1 =ws) = 1 iff ws,t+1 = ws, . Due to the quasi-orthogonality of the vectors 

cs,t, the model ms,w approximates the distribution of the context vectors cs,t preceding ws similarly to the word-context modeling in 

RI [15], [21] (see also [6]). 

Finally, a pseudo-probability distribution (p ∈ [-1, 1]) for the state ws,t+1 can now be obtained by comparing the currently 

observed cs,t with all ms,w corresponding to the possible states ws. If the ms,w are stored as rows of a memory matrix Ms of size Ns 

x d and the rows and cs,t are normalized to unit vectors (denoted with 〈x〉), the distribution for the next state can be obtained by 

taking the inner product 

ps,t = 〈Ms〉〈cs,t〉                                   (9) 
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with the most likely next state ws,t+1 defined as 

      

€ 

argws
max( ps,t,ws

∈ps,t , ws ∈{1, 2,..., N s}).                        (10) 

TABLE I  

RESULTS FOR DIFFERENT DATA STREAM COMBINATIONS. UARN REFERS TO THE HDCP WITHOUT THE MI-BASED WEIGHTS OF EQ. (6). GREY BACKGROUND 

REFERS TO STATISTICALLY SIGNIFICANT DIFFERENCE BETWEEN UAR AND UARN (P < 0.05, PAIRED T-TEST).  

 

 

TABLE  II 

 THE CONFUSION MATRIX FOR ACTIVITY RECOGNITION ACCURACIES (UAR %) ACROSS ALL THE TWELVE TEST SUBJECTS. ROWS: GROUND TRUTH. COLUMNS: 

HYPOTHESIZED CLASS. 

 

 

III. EXPERIMENTS 

The performance of HDCP was tested in a context recognition task where the inputs consist of four parallel body-worn sensory 

signals and a fifth labeling stream related to the concurrent physical activity of the test subject. The task of the system is to learn 

the correspondence between sensory inputs and the physical activity. 

A. Material and evaluation 

Palantir Context Data Library 2004 [24], [25], was used in the experiments. The data consist of approximately 68 hours of 

recordings from 12 test subjects wearing a large number of sensors while performing a number of physical activities in 

controlled and uncontrolled conditions (see Table 2 for the activities). The following sensors were used in the current study: 3–D 
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accelerometers from the hip and wrist, skin temperature, and two respiratory inductive plethysmogram (RIP) belts worn around 

the waist and thorax.  

The data were divided into 12 folds for training and testing, always training HDCP with 11 subjects and testing with the 

remaining one. For each signal frame of the test set, HDCP was asked to provide the most likely activity using the concurrent 

sensor information. The overall performance was measured in terms of unweighted average recall (UAR). As in [24], sitting and 

standing activities were combined into a single class as the sensor placement used in the data recording does not differentiate 

between these two [24], [25].  

B. Pre-processing of sensor data 

The sensors were used to form four distinct input streams: s1: acceleration from the wrist (x-, y-, and z-directions), s2: 

acceleration from the hip (x, y, z), s3: skin temperature, and s4: a combined 2–D signal from the waist and thorax RIPs. All 

signals were downsampled to 50 Hz and the FFT spectrum was computed for each signal dimension of each stream using a 

sliding Hamming window of 1 s with 100-ms window shifts (10 Hz rate). The spectra across the signal dimensions in each 

stream (e.g., x, y, and z acceleration) were then concatenated into one long feature vector and PCA was used to compress the 

dimensionality of the vectors so that 95% of the variance was retained in the features.  

Finally, the features of each stream were vector quantized into 132 unique states ws ∈ {1, 2,…, 132}, s ∈ {1, 2, 3, 4}. The 

codebooks were created using the k-means algorithm, first making individual codebooks for each activity class using 3000 

random feature vectors of training data and then combining the class-specific codebooks into a single large codebook. The fifth 

data stream s5 consisted of the physical activity labels (Table 2) synchronously sampled with the sensory data. The preceding 

activity states were never included in the context vector so that the activity prediction was always performed purely on the sensor 

data. 

C. Results  

The experiment was run with HDCP using hypervector dimension of d = 2000, a maximum lag of K = 10 (1 sec), and across 3 

trials with new random codevectors.  Table 1 shows the mean UAR (%) for different subsets of the four sensors with and without 

the weighting in Eq. (6). Table 2 shows the confusion matrix across all folds using all sensors. The mean UAR of 82.2% 

compares well against the previous state-of-the-art result of 75.4% reported in [24] using the same dataset and after comparing 

multiple standard classifiers in the task (the best result in [24] was obtained using a hybrid of a decision-tree and a multilayer 

perceptron systems). Importantly, the HDCP performance increases or stays the same with increasing number of sensors, 

confirming that the MI-based weighting is able to account for varying reliability of different inputs and ensuring that the 

performance does not degrade due to the addition of non-useful inputs (skin temperature in this case). 
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IV. CONCLUSIONS 

An HDC-based generic framework for modeling dependencies across multiple parallel data streams was presented in this work. 

The system was tested in an activity recognition task using wearable sensors, achieving state-of-the-art recognition performance 

using multiple sensors channels and showing systematic improvement due to the inclusion of additional sensors. The result 

suggests that the system is successful in utilizing different inputs according to their relevance in the prediction task, making it 

robust for applications where a priori sensor selection may not be feasible. 
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