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Abstract 
Word count estimation (WCE) from audio recordings has a 
number of applications, including quantifying the amount of 
speech that language-learning infants hear in their natural 
environments, as captured by daylong recordings made with 
devices worn by infants. To be applicable in a wide range of 
scenarios and also low-resource domains, WCE tools should 
be extremely robust against varying signal conditions and 
require minimal access to labeled training data in the target 
domain. For this purpose, earlier work has used automatic 
syllabification of speech, followed by a least-squares-mapping 
of syllables to word counts. This paper compares a number of 
previously proposed syllabifiers in the WCE task, including a 
supervised bi-directional long short-term memory (BLSTM) 
network that is trained on a language for which high quality 
syllable annotations are available (a “high resource 
language”), and reports how the alternative methods compare 
on different languages and signal conditions. We also explore 
additive noise and varying-channel data augmentation 
strategies for BLSTM training, and show how they improve 
performance in both matching and mismatching languages. 
Intriguingly, we also find that even though the BLSTM works 
on languages beyond its training data, the unsupervised 
algorithms can still outperform it in challenging signal 
conditions on novel languages. 
Index Terms: language acquisition, syllabification, word 
count estimation, daylong recordings, noise robustness 

1. Introduction 
Automatic word count estimation (WCE) is the task of 
estimating the total number of words spoken in an audio 
recording. For instance, it can be used to investigate social 
dynamics or speaker characteristics from large-scale audio 
recordings. Typical use cases include signal conditions, low-
resource domains, or computationally constrained 
environments where standard automatic speech recognition 
(ASR) may not be applicable or may not be the best 
performing solution for the task (see also [1] for an overview).  

One central use case for WCE is the study of infant 
language learning, where daylong recordings from infants’ 
natural environments are collected in order to study the quality 
and quantity of language input that the children hear (and later 
produce) in their normal daily lives (e.g., [2,3]). For instance, 
our ongoing Analyzing Child Language Experiences Around 
the World (ACLEW) project [4] aims to quantify how much 
speech children hear in a variety of cultural and 
socioeconomic environments. The goal is to understand how 
aspects of early language experience map to later 

developmental outcomes. A comparative project of this sort 
calls for efficient and unbiased WCE methods that can be used 
across a number of language and recording environments.  

In order to achieve comparable results for both high- and 
low-resource languages, and to function in signal conditions 
encountered in daylong recordings such as those collected 
with the wearable LENA® recording system [5], the WCE 
tools should be extremely robust against different types of 
noise. They should also be sensitive to near- and far-field 
speech in different indoor- and outdoor-environments, and 
require only minimal access to labeled training data in the 
target domain. In addition, the massive scale of the daylong 
recording datasets—often accumulating to hundreds or even 
thousands of hours of audio—imposes limitations to what can 
be computed in a reasonable time on non-dedicated computing 
environments (e.g., linguists or psychologists using the tools 
in Speech Recognition Virtual Kitchen described in [6], 
through which our ultimate WCE solution will be distributed). 

In earlier work on WCE and the closely-related task of 
speech rate estimation (SRE), the predominant approach has 
been to first estimate the number of syllables [1,7–9] or ASR-
based vowels and consonants [10] in a stretch of speech. A 
linear mapping from these units to the corresponding 
utterance-level word counts or speaking rate is then performed 
(but see also [11]). Since syllable nuclei correspond to local 
sonority peaks in the speech signal, the syllabification process 
can be carried out in an unsupervised manner (e.g., [12–16]). 
In addition, it is, in principle, applicable to any language and 
is robust against signal degradations due to the energetic 
nature of syllabic nuclei (see also [16] and references therein). 

Notably, the studies on WCE and SRE have all used either 
English [1, 7–11] or Dutch [14] speech only, and use matching 
corpora to develop, tune, and compare the systems. In 
addition, the existing WCE systems largely rely on 
unsupervised syllabification algorithms. Recently, a study in 
[17] reported promising results on the use of a supervised bi-
directional long short-term memory (BLSTM) network for 
syllable-based SRE. However, the method was only tested on 
English data. Whether the approach would also be applicable 
to WCE in low-resource domains, where syllabic annotations 
may not be available for model training, is unclear. 

In this paper, we go beyond the existing WCE studies by 
1) comparing three previously successful syllabification 
methods on multiple corpora, languages, and varying signal 
conditions, and 2) investigating the applicability of a 
supervised BLSTM syllabifier to mismatching languages, 
exploring training data augmentation strategies to improve its 
performance. The overall aim is to understand what type of 
syllabification approach would be the most applicable one to 
be used as an off-the-shelf solution for WCE. 



2. Data 
Five speech corpora were used in the experiments to compare 
syllable estimation methods across languages and signal 
conditions: 1) FinDialogue Corpus of Spontaneous Finnish 
Speech [18], having studio quality dialogues from 4 talkers (2 
male; 64 minutes of speech in total), 2) Phonetic Corpus of 
Estonian Spontaneous Speech (“EstPhon”; [19]), consisting 
of a studio dialogue section of 21 talkers (310 min) used for 
BLSTM training, and a fieldwork recording section of 10 
talkers (100 minutes) collected with headsets and used for 
method comparisons, 3) Switchboard (“SWB”) corpus of 
spontaneous American English telephone conversations [20], 
using a syllable-annotated ICSI transcription project subset 
(>10 talkers, 159 minutes), and 4) Brent&Siskind corpus 
(“Brent”) of American English infant-directed speech [21], 
using the so-called “Large Brent” subset force-alignment 
annotated in [22] (4 talkers, 103 min). All these syllable-
annotated subsets of the full corpora were used since we were 
also interested in syllabification performance (not reported 
here; see also [16] for details on the data).   

 In addition, we used extracts from 5) daylong recordings 
made with children from a rural Tseltal Mayan 
community, collected by the third author using lightweight 
stereo digital voice recorders (either an Olympus® WS-832 or 
WS-853) that was worn on the target child’s chest in an elastic 
vest [23]. The current subset consists of recordings from 10 
children between 2- and 36-months old who live in households 
with 3 to 11 other people. From the original 10–11 hour 
daylong recordings of each child, nine randomly sampled five-
minute chunks were manually annotated for utterance 
boundaries, orthographic transcription, and talker identity 
information. In the present experiments, we included all 
utterances from all male and female adult talkers for which the 
transcripts were fully unambiguous in terms of the number of 
words spoken, corresponding to 6458 utterances (191 min of 
speech out of 450 min total audio). Note that the dataset still 
contains overlapping speakers, background noise from the 
ambient environments, and mainly far-field speech (often in 
reverberant environments), making these data extremely 
challenging in comparison to standard corpora.  

Overall, the data represents three rhythmic families 
(stress-timed English, syllable-timed Finnish and Tseltal, 
mixed-timed Estonian), adult- and infant-directed speech, and 
signal qualities ranging from studio quality to highly noisy 
daylong recordings from wearable microphones. 

3. Methods 
The basic WCE pipeline in the present study follows that of 
[1], and is shown at the top of Fig. 1. A complete WCE system 
would typically be expected to work on utterances extracted 
using a speech activity detection (SAD) algorithm. However, 
here we examine the performance of different WCE methods 
under ideal segmentation by using true utterance boundaries 
from manual annotation. This lets us to compare performance 
without added SAD error and, additionally, allows us to 
benchmark on corpora with readily segmented utterances.  

In the present WCE, the speech signal xu for utterance u is 
first transformed into a syllabic (“sonority”) envelope yu using 
one of three alternative methods: 1) thetaSeg that was 
originally developed to study infant syllable segmentation 
using perceptually motivated entrainment to sonority 
fluctuations in speech [16], 2) A method by Wang & 
Narayanan [8] (“WN”), originally developed for SRE and 

 
Figure 1: Block schematics of the WCE system (top) and the 
three primary syllable envelope estimators compared in the 
experiments. Threshold θL and LMSE parameters estimated 
for each target language L are shown with red font. 
 

optimized for SWB, and 3) a BLSTM network following the 
approach in [17]. However, we replaced the original 
modulation spectrum and PLP feature set with 24-channel log-
Mel features, having four hidden LSTM layers instead of two 
(2 forward, 2 backward), and doubling the number of LSTM 
cells to 60. These changes were done to provide more capacity 
for representation learning in the hidden layers, as this was 
found to improve performance in our initial experiments. 
Basic processing steps in each of the three methods can be 
found in Fig. 1, and implementation details are available in the 
respective papers. WN was used with the default parameters 
optimized for Switchboard in [8], while thetaSeg was used 
with the optimal parameters for multi-language syllable 
segmentation described in [16]. All envelopes were linearly 
scaled to have maximum value of 1 for each utterance to 
ensure consistency across signal conditions and sound levels, 
assuming that the maximum peak in the envelope corresponds 
to the most sonorous speech sound in the signal. 

Syllable envelope estimation is followed by syllable count 
estimation using a peak-picking algorithm that has a language-
specific threshold θL ∈ [0, 1] for the required difference 
between the peak and the previous minimum, thereby 
controlling the sensitivity of the process. The resulting syllable 
counts su are then mapped to word counts using a linear model 
whose slope aL and intercept bL are also optimized for the 
target language L. The three parameters (θL, aL, bL) are jointly 
optimized for L by testing the full range of θL values and 
finding the best least-squares linear mapping (LMSE) for each 
threshold based on RMSE word count error across all 
utterances on orthographically transcribed training data for L. 
The best parameter triplet is then chosen for that language and 
used for estimating word counts on novel test data. 

Note that all three syllabifiers are used without their 
additional mechanisms for pruning erroneous nuclei, as we 
focus on comparing envelope estimation techniques with a 
common envelope decoding stage, and since some of the 
techniques (e.g., F0-based pruning in WN) are difficult to tune 
properly for generic use across corpora and SNRs.  Therefore 
our results will only reflect the envelope representations of the 
compared methods, not the full pipelines reported in the 
original papers. 

Also note that, for infant daylong recordings, the typical 
time-scales of interest can be the number of words heard 
during an interaction scenario, across some hours, or even 
over a full day. Therefore the key for good performance in the  
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Figure 2: Performance of alternative BLSTM training strategies as a function of the amount of speech observed. Bottom right panel 
shows the overall relative performance of each variant across the five corpora (at 300 s), where word RMSEs (%) have been z-score 
normalized across the BLSTM variants before averaging (smaller is better). Horizontal bars denote SEs over the corpora.  
 

present type of WCE pipeline is to have a robust and 
systematic syllable envelope estimator across speakers and 
recording environments. The estimator can under-segment or 
over- segment as long as the behavior is consistent over the 
time-scales of interest. Any constant errors can be overcome 
during the linear mapping from the syllable counts to word 
counts, assuming that the mapping itself is also unbiased. As 
the length of the estimation window increases, any unbiased 
estimator will eventually converge to zero error.  

3.1. BLSTM training and data augmentation 

The BLSTM training was carried out similarly to [17] but now 
using the studio section of the EstPhon corpus with clean 
wide-band speech from multiple talkers and high-quality 
manual labels for syllables and phones. Syllable annotation of 
the training data was used to create target output signals at the 
same frame rate (100 Hz) as the input log-Mel features. A 
Gaussian-shaped pulse with maximum amplitude of 1 was 
centered on each syllable nucleus with its standard deviation 
corresponding to one third of phone duration at the nucleus 
position, other signal values being 0. The BLSTM was then 
trained with RMSprop optimizer [24] to minimize the error in 
mapping log-Mel features into the syllabic targets using binary 
cross-entropy loss, early stopping, and minibatch size of 100.   

To improve generalization beyond clean Estonian speech 
(“CLEAN”), we tested additive noise-augmented (“ADD”), 
channel-augmented (“CHAN”), and ADD&CHAN-augmented 
training (combined in the given order). For ADD, we sampled 
random segments from daylong recordings taken from the 
ACLEW starter set [25] that could contain any sounds from 
the at-home environments of infants across the world. The 
noise was then added to the original utterances with SNR 
randomly sampled from [-10, 20] dB, three copies of the 
signal corrupted with different random noises. For CHAN, we 
created three copies of each utterance, each filtered with a 10-
point FIR filter (at 16 kHz) with filter coefficients randomly 
sampled from a normal distribution ~Ν(0, 1), as this produced 
perceptually sensible variation to the channel properties.  

We also tested training without dropout and with 50% 
dropout in the hidden layers following the merging of forward 
and backward streams. The results reported for each BLSTM 

variant correspond to the average performance across three 
identically specified models trained with random parameter 
initialization for each, thereby reflecting the expected 
performance in new domains without further model selection. 

4. Experiments 
4.1. Experimental setup 

N-fold evaluation procedure was used for all corpora, always 
using data from N-1/N of the talkers (or recorded infants for 
Tseltal and Brent) to estimate θL, aL, and bL for the fold, and 
testing generalization to the last 1/N of the subjects. The 
number of folds was set to 10 for Tseltal and to 4 for Brent 
and FinDiag to match the number of unique subjects. Six folds 
were used for the EstPhon fieldwork section and Switchboard, 
which had many more subjects (section 2). Following [10], 
WCE accuracy was measured for 30-, 60-, 90-, 150-, and 300-
second chunks of speech. The corresponding estimated and 
true word counts were obtained by concatenating outputs for 
temporally subsequent utterances until the desired signal 
duration was reached. We report the average word count 
RMSEs across the folds for these time-scales. 

As a baseline, we also computed duration-based results 
simply by replacing the nuclei counts su with the 
corresponding utterance durations in the pipeline (see Fig. 1).   

4.2. Results 

Figure 2 shows the results of the BLSTM variants for each 
five corpora as a function of the amount of speech observed. 
In addition, the average relative performance of each variant 
across all corpora is shown in the bottom right panel. The 
numbers in the final panel correspond to averages of corpus-
specific z-score-normalized RMSEs (%) at 300 s of speech in 
order to normalize the scale of errors across corpora.  

As can be observed, the best training strategy depends on 
the corpus in question. On average, combined additive noise 
and channel augmentation outperforms clean training with and 
without dropout, but using only additive noise seems to work 
well in most cases. Interestingly, the channel augmented 
training works the best for the most difficult scenario, the 
Tseltal corpus. It also helps on Estonian field recordings  
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Figure 3: Performance of the baseline systems and three main BLSTM variants in different corpora as a function of the amount of 
speech observed. Bottom right panel shows the overall relative performance of each variant across the five corpora (at 300 s).  
 

compared to clean training, whereas its benefits for the other 
corpora are more limited. As for dropout, the results are 
surprisingly mixed, considering that each BLSTM variant was 
re-trained three times and results are averaged across these 
runs. In case of clean training, dropout always helps except for 
FinDiag. In case of noise-augmented training, dropout has 
substantial benefits on the matching Estonian language with 
new speakers and recording environments. However, for other 
corpora, dropout does not help when augmentation is used. 

Figure 3 shows the corresponding results for the two 
unsupervised methods together with the three main BLSTM 
variants using data augmentation (no dropout) and the 
duration baseline. As can be observed, all supervised BLSTMs 
clearly outperform the unsupervised approaches on the 
EstPhon corpus that matches the training language of the 
BLSTMs. In addition, BLSTM performance on Switchboard is 
among the best, and would likely win at longer time-scales of 
analysis. However, the comparison also reveals that the 
unsupervised syllable envelope estimators also perform well. 
The most consistent performer at longer estimation windows 
on all but Estonian data is the thetaSeg algorithm. On 
EstPhon, thetaSeg seems to have problems in finding an 
unbiased mapping from syllable nuclei to word counts, visible 
as the lack of improvement as a function of more speech data. 
WN also works well on Switchboard, Brent, and Tseltal at 
shorter time-scales, but, for currently unknown reasons, does 
not converge towards zero-error as quickly as the thetaSeg as 
more speech is observed, suggesting that the errors made by 
WN are more correlated with each other than in thetaSeg. 

Another interesting finding is that the duration-based 
baseline performs relatively well, especially on Tseltal, but 
also to some degree on Switchboard. While the former can be 
explained by the extremely challenging signal conditions 
where accurate syllable detection is prone to errors due to 
overlapping sounds and generally poor SNR, the latter could 
be due to the relatively regular syllable and word rates in 
telephone conversations compared to, e.g., the Brent data 
(everyday communication between infants and caregivers), 
which has very low accuracy for the duration baseline. 

5. Conclusions 
In a first effort to compare existing WCE systems across a 
diverse range of language and recording contexts, the present 

results suggest that a supervised BLSTM syllabifier with 
training data augmentation has the potential to be used for 
WCE across languages and mismatching signal conditions. 
We also demonstrated that a simple random-FIR approach to 
varying-channel data augmentation can improve 
generalization performance from clean training, suggesting 
that such an approach could also be useful for other speech 
technology applications. That said, the results also show that 
despite the aggressive overfitting prevention through noise 
augmentation and dropout training, unsupervised approaches 
to syllabification still outperform the BLSTM in languages for 
which syllable-level training data are not available. 

However, it is also clear that the BLSTM approach is 
highly recommendable as long as data from a matching 
language are available for training of the system, supporting 
the findings of Landsiedel et al. [17]. BLSTM is also 
potentially more flexible than the compared unsupervised 
systems in terms of adapting the model to new domains and 
languages, as long as some kind of syllabic annotations or 
their proxies can be derived for the target domain. Thus, future 
work should investigate different adaptation or even end-to-
end strategies for the BLSTM, given access to orthographic 
information that is needed anyway to tune the language-
specific mapping parameters. Multi-language training of the 
BLSTM should also be investigated, given suitable corpora 
with high-quality syllable annotations in different languages. 

One limitation of the present study is that all experiments, 
although necessary for the present cross-corpus comparisons, 
assume ideal segmentation of speech into utterances. In actual 
WCE scenarios with daylong recordings, SAD-based utterance 
segmentation is likely to contain errors. Tolerance of the 
present algorithms against such errors is currently unknown, 
and should be investigated on the daylong data in the future.  
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