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Abstract 

Statistical learning of patterns from perceptual input is an 
increasingly central topic in cognitive processing including 
human language acquisition. We present an unsupervised 
computational method for statistical word learning by analysis 
of transitional probabilities of subsequent phone pairs. Results 
indicate that word differentiation is possible with this type of 
approach and are in line with previous behavioral findings.  
Index Terms: computational language acquisition, speech 
segmentation, speech clustering, statistical learning  

1. Introduction 
Child language acquisition is a central topic in several fields of 
scientific research. It can be investigated from several 
perspectives, e.g., by organizing follow-up studies with regular 
linguistic skills assessments, using modern brain imaging 
techniques for observation of neural activation in linguistic 
tasks, or by conducting psychological experiments that assess 
behavioral responses of the test subjects to specific stimuli. The 
common goal of these different approaches is to create a 
uniform and coherent understanding of human language 
learning and language related cognitive processing  

In the past few decades development in technology has 
enabled the use of computational models for testing and 
development of more accurate hypotheses regarding human 
cognition and behavior. Several models for speech perception 
and working memory have been successful in imitating several 
aspects of human cognitive functions, although they also all 
have their limitations. While a good test of the plausibility of 
any theoretical model is to test it by implementing it as a 
functional algorithm, experimental models can also be used for 
hypothesis development that can be further verified with 
behavioral studies. Modern brain imaging techniques also 
provide important information regarding the processing that 
takes place in our brains. However, it is not a straightforward 
task to determine the direct mappings between neural processes 
and their behavioral and computational counterparts. In the end, 
if computational models are to be considered descriptive, they 
should support behavioral data and should not contradict that 
what is known about neurological processes existing in the 
primate brain.   

In the Acquisition of Communication and Recognition 
Skills (ACORNS) project the central aim is to develop 
computational mechanisms for creating an artificial agent that 
is capable of acquiring human verbal communication behavior. 
The area of focus is on dynamic learning by interaction with the 
environment, or more precisely, multi-modal learning where 
acoustic input is coupled with conceptual information about the 
learner’s surroundings. Unlike many traditional ASR systems, 

the learning agent (LA) is expected to imitate child language  
acquisition and possibly supply new insights to the wide 
theoretical framework of human language processing.  

In this paper we present one possible approach for creating 
inner representations from the acoustic speech input waveform of 
that has many analogies to cognitive aspects of language learning. 
Bottom-up speech segmentation yielding phone-sized units and 
segmental data clustering enable the statistical analysis of phones. 
We will show that the use of only transitional probabilities of sub-
sequent phone pairs enables differentiation of words from the 
speech stream. 

2. Theoretical background 
It is well-established that infants are capable of distinguishing 
phonetic contrasts of basically any language during their first 
months of their lives [1]. However, as the child matures this 
ability endures only in the languages that the infant is 
continuously being exposed to [2,3]. Interestingly enough, the 
contrast resolution capability is recovered very quickly for non-
used languages if the infant interacts for even short periods of 
time face-to-face in a language immersion situation [4]. If infants 
are exposed to only the sound stream without face-to-face 
interaction, no changes in resolution capability occur. This is 
closely related to a mutual necessity of context and speech that is 
considered as a prerequisite for word learning in humans [5], and 
may also be referred to as multimodal learning since our 
knowledge about our surroundings is obtained only through 
sensory input. 

How does the infant acquire the necessary skills for 
perception of speech? Saffran and her colleagues have shown that 
infants exploit the statistical properties of speech signals for 
learning. In one of their studies they showed that infants use 
transition probabilities of neighboring speech sounds for 
segmentation of words from fluent speech [6]. Later, they 
determined that this type of statistical learning is not only 
confined to linguistic material in infants and adults, but also that 
acoustic tone stream segmentation can be performed by using 
similar statistical cues [7]. Infants also learn word-like units from 
artificially generated non-sense word sequences [8] and even 
statistical dependencies of non-adjacent units [9]. This type of 
statistical learning can take place without conscious awareness, 
which does not exlude the idea of exploiting phone- or syllable-
level units in speech processing even when, e.g., illiterate adults 
may not be able to distinguish syllables from speech [10]. This 
seems to suggest that there is a general learning process that 
extracts information from the recurrent patterns found in the 
sensory input in order to construct structural descriptions of the 
surrounding world.  

During the first months of their lives, infants pay more 
attention to the short-term spectral and temporal properties of 



auditory (speech) signals. It has been suggested that as their 
inner language related representation becomes enriched, 
infants’ tendency to process larger temporal units starts to 
dominate [11,12] and the speech recognition process shifts from 
the statistical analysis of phones and syllables towards words. If 
statistical analyses are able to capture the essential content of 
small speech units (e.g., phones), and if it is possible to 
compress this information into new representations, then these 
representations can potentially be used as inputs for higher-
level statistical analyses that enable the discovery of larger 
scaled temporal dependencies, e.g., word-like units or 
grammatical regularities. Experimental evidence for this type of 
higher level statistical processing exists. For example, Saffran 
[13] has suggested that humans may use statistical information 
for acquisition of abstract components such as grammatical 
rules found in natural languages.  

From the neurological perspective, the statistical processing 
of incoming data is closely related to the plasticity of the brain 
(see, e.g., [14]) that is known to be most effective during early 
childhood and which degrades as a function of age. Neural 
plasticity and statistical learning offer a possible explanation for 
a so-called critical period of language acquisition. As the 
person becomes older, large-scale reorganization of the neural 
networks becomes more difficult as the neural connections have 
become strongly consolidated for specific statistical regularities 
(frequency effect). Statistical adaptation already takes place at 
the feature extraction level in the sensory input channel and can 
be exemplified, e.g., by the formation of a solely vertically 
sensitive visual cortex V1 found in cats that have grown-up in 
an environment containing only vertical contrasts [15]. These 
findings support the notion that front-end processing in 
perception adapts to the properties of sensory input in order to 
provide for an efficient mapping from environmental stimuli 
towards inner representative units that can be used in statistical 
analysis.  

One should keep in mind that many other mammalian 
species are able to process speech sufficiently well in order to 
discover the relations between human spoken commands and 
their ensuing actions (classical conditioning with verbal 
stimulus) even when their sound perception mechanisms are 
very differently specialized from human hearing. It may even 
be possible to hypothesize that this type of stimulus 
segmentation (extraction of coherent units), adaptation, and 
associative statistical learning is provided by universal 
mechanisms implemented in the cortical and/or sub-cortical 
structures and is shared by many if not all mammalian species.   

3. Computational approach to learning 
To model the language acquisition process from the statistical 
learning perspective, the system must be able to convert 
acoustic waveform signals into rich descriptive units that can be 
used for statistical analysis. The goal is to experiment with 
statistical pattern discovery for word recognition. Experimental 
evidence from [6] suggests that this can be accomplished using 
small functional units of speech: phones, or in this case, phone-
like units that are obtained from blind segmentation.  
 
3.1 Processing stages in machines and humans 
In this computational approach, the first stages of sound 
perception are approximated by a so-called blind bottom-up 
process where no external knowledge or previous stimuli 

intervene with the process: the system is “born” without any 
linguistic knowledge (the only a priori, innate aspect being the 
structure allowing the learning). Each incoming utterance is first 
segmented into phone- (or possibly diphone-) sized units by a 
blind speech segmentation algorithm (see [16]).  Segmentation 
output contains approximately 75 % of the boundaries within 20 
ms of the manual reference boundaries without notable over-
segmentation.  

The segments are described by their spectral properties as 
single units and clustered with an incremental clustering 
algorithm that uses the spectral cross-correlation of segments as a 
distance measure in order to create a coarse classification 
resulting in phone-like categories. This creates a symbolic 
sequence representation for each incoming utterance that can be 
used in statistical analysis and word discovery.  

This algorithmic phone segmentation process can be 
considered as a processing step that infants are innately capable of 
since it has been shown that they can discriminate phone contrasts 
already at birth [1] as well as extract statistical information from 
relations of neighboring sound units [6,7]. Mechanisms for 
spectral descriptions of sound segments are also innate, as 
frequency properties of sounds are extracted in separate bands in 
the cochlea ending up as tonotopic maps in the auditory cortex 
[17].  

To find an analogy between the clustering and cognitive 
processes, it may be useful to consider such incremental 
clustering as a sort of neural adaptation to properties of sensory 
input: processing of incoming stimuli is shaped by all previous 
inputs that continuously update the phonetic categories to which 
the incoming phones are mapped to. Categories are only created 
and sustained for those spectral segments that the system is being 
exposed to and unused clusters are pruned away if they are rarely 
activated. In other words, incremental clustering is an 
unsupervised mechanism for the categorical perception of sounds 
that builds discrete categories dynamically on the basis of 
acoustic input (N.B. nothing so far has been limited to speech 
alone, as the segmentation can be applied in principle to any type 
of sound material). This is especially interesting since categorical 
perception is a very central phenomenon in all aspects of human 
perception [18]. 

Statistical learning can be built upon categorical activations. 
Cluster based categories form a symbolic alphabet if a unique 
label is chosen for each category (e.g., 1, 2, 3… N). Each new 
acoustic utterance produces a sequence of symbols that contains a 
discrete description of signal content and simultaneously causes 
slight adaptations to take place in the mapping process from 
waveform to categories. Different pattern discovery methods can 
now be applied for detecting structures in the symbol sequences. 
These structures can be reused for statistical analysis to obtain 
higher-level descriptions in a hierarchical manner. To move 
towards this goal, this paper presents a very simple finite state-
machine that is capable of differentiating words by exploiting the 
transitional probabilities of subsequent cluster pairs (cf., [6]).  

From the cognitive point of view this pattern discovery 
process may represent subsequent neural processing steps that are 
involved in categorical perception, or, it may be the interaction 
between activation in categorically related substrates and a 
general mechanism responsible for building statistical models. 
However, learning and language capability in general are very 
complex problems in terms of cognitive processing, and it is not 
very well understood what mechanisms truly underlie implicit 
statistical learning.  



3.2 The bottom-up algorithm 
The blind segmentation algorithm that is currently under 
development uses a linear frequency (FFT) representation of a 
signal for the detection of segment boundaries. The signal is 
first windowed into short 6 ms frames and the cross-correlation 
of frames is utilized to enable detecting sudden changes in the 
signal. Segment boundaries are hypothesized to exist at 
locations where the change in the spectral properties exceeds a 
manually defined threshold level. For feature extraction, 
spectral tilt and mean energy are removed from the FFT frames 
and the vectors normalized to zero mean unit vectors. Each 
segment is divided into onset and final sections (initial 40 % 
and final 60 % of the duration) and the algorithm picks the five 
most contrastive spectral vectors for both sections and averages 
them into two spectral representations for each segment.  

These segmental descriptions are then clustered using a 
simple incremental algorithm that computes the cross-
correlation of the incoming segment’s spectral vector to all 
existing clusters and merges it to the best match if the merging 
threshold dmin is exceeded. If no suitably close matching cluster 
is found, a new cluster is created. Clusters retain information 
only about their cluster centroid that is the mean spectrum of all 
merged segments. The initial and final sections of the segments 
are clustered into separate spaces and lower thresholds are used 
for the final sections to avoid sparseness, as phone endings are 
more dependent on context and contain more variation. A 
numerical label is assigned for each cluster to provide for a 
symbolic sequential description of the input. A more 
comprehensive description of the segmentation and clustering 
algorithm and its performance can be found in [16].    

4. Experiments 
4.1 Training procedure 
A computational experiment to examine word learning via 
cluster transition probability analysis was conducted. Speech 
material used in the experiments was recorded as part of the 
ACORNS project and consisted of two thousand Finnish 
utterances spoken by two different female speakers. Each 
utterance consisted of a carrier sentence containing an 
embedded keyword. In total there were nine identical Finnish 
keywords (e.g., vaippa (eng. diaper), kylpy (bath), isi (daddy), 
äiti (mother), etc.) for both speakers and one unique keyword 
(the infant’s name) for each speaker, keywords recurring 200 
times for each speaker. Half of the utterances were recorded as 
infant directed speech (IDS) and half of them as adult directed 
speech (ADS) but no distinction between these two modes was 
made in this experiment.  

Multimodality that enables associative learning was 
simulated through contextual tagging: in the training phase, in 
addition to the spoken utterance, a symbolic tag corresponding 
to a keyword was simultaneously presented to the system. This 
simulates a situation where the caregiver is talking to the infant 
and directs the child’s attention to a salient object, e.g., by 
saying “Look, a bottle” and showing a bottle simultaneously.  

Speech is first automatically segmented into phone-like 
units and features for each segment are extracted. A cluster 
space is created for the onsets and the final sections of segments 
by presenting all the utterances from the test material to the 
system. This simulates a situation where the infant is exposed to 
large amounts of native speech that enables adaptation to 
properties of the language specific sounds before learning 

actual words begins. Small clusters, defined as clusters containing 
less than two segments, are removed. Clusters that have moved 
closer to each other than a specified merging threshold are 
merged. This approach resulted in approximately 100 clusters, 
each typically containing hundreds to several thousands of 
segments. Finally, the speech material was clustered into this pre-
formed cluster-space again, leading to a symbolic sequence being 
generated for each utterance.  

To calculate and store the phone transition probabilities, a 
simple finite state machine was implemented. The algorithm takes 
one symbol sequence U of an utterance at a time and reads the 
corresponding keyword tag from a metafile. If the keyword has 
not been seen before, the algorithm creates a new “concept 
matrix” C of size M x M where M is the size of the cluster 
alphabet. This matrix is a (stochastic) transition matrix where 
transitions between each two subsequent symbols in the 
corresponding sequence are added. All transitions occurring in the 
training data are added to the matrices in a similar manner and the 
transition probabilities from phones are normalized to sum up to 
one. Every time a keyword tag appears in the data, the transition 
probabilities for the corresponding matrix are updated. This 
process leads to Nk concept matrices where Nk is the number of 
keywords in the training material.   
 
4.2 Testing procedure 
A sequence U corresponding to the utterance being tested is 
windowed using a sliding window, providing a sub-sequence Si,l 
for each step. Taking into account all transitions from a phone to 
the next one in Si,l and summing up the corresponding values 
from concept matrices Ck leads to a probability for each concept k 
for each sub-sequence Si,l. If the probability for a transition in a 
concept matrix is zero, a small penalty to the probability sum is 
introduced. The process is repeated for every possible sub-
sequence window location in U and for several different sub-
sequence lengths l = l0,…,L of Si,l where l0 and L are chosen 
manually. The computation is made in parallel for both the onset 
and final sections of the segments and the transition probabilities 
of these two are combined. The concept corresponding to the 
largest probability is chosen as the word hypothesis. If the word 
hypothesis corresponds to the tag existing in the annotation, the 
word is considered as correctly recognized. The recognition 
accuracy was estimated using a N-fold approach where utterances 
were randomly divided into training and evaluation material and 
the results were averaged over several trials.  
 
4.3 Findings 
The best results were obtained with a relatively low merging 
threshold (in terms of phone differentiation; dmin = 0.4 for onset 
and dmin = 0.25 for endings). Higher thresholds led towards overly 
sparse transition matrices where different realizations of the same 
word started to follow entirely different paths. Lower thresholds, 
on the other hand, started to affect the required ability to 
differentiate between different phones.    

The first experiment was conducted using 2000 utterances 
from a single speaker. The algorithm learns the transitional 
probability structure very quickly, leading to significantly above 
chance accuracy even when only a few utterances per each 
keyword have been seen (fig. 1). Recognition accuracy achieved a 
74.5 % correctly recognized keyword level when 1800 (90 %) of 
the utterances were used for training and the remaining 10 % 
were used for evaluation. The increase in recognition accuracy as 
a function of trained utterances did not seem to saturate even at  



 
Figure 1: Recognition accuracy. 

 
this point, but the amount of training material available for a 
single speaker dictates the upper limit for this type of 
experiment, an issue that may be addressed by future 
development of the speech corpora.  

When material from two speakers are combined (a total of 
4000 utterances) the clustering process, using the same 
thresholds as with one speaker, creates a slightly larger 
symbolic alphabet due to the increased variety of speech 
existing in the material. This also increases the sparseness of 
the transition matrices. When utterances from different speakers 
are mixed in a random order (fig 1., dashed line) the algorithm 
again achieves a very similar recognition accuracy (74.3 %) 
where 90 % of the utterances were used for training. Also, the 
recognition accuracy is only ≈10 % worse when a similar 
number of utterances are used for training as in the single 
speaker case.  

5. Conclusions 
It was shown that blind speech segmentation producing phone-
like segments, segment feature extraction, followed by segment 
clustering, leads to a relatively simple description of the 
underlying speech signal that can be used for statistical 
analysis. By taking into account only the transitional 
probabilities of subsequent phone pairs, and ignoring large-
scale temporal order, and, e.g., prosodical aspects of speech, it 
is still possible to obtain relatively high word recognition 
accuracies with a limited vocabulary. This effect is notably 
similar to behavioral results obtained in [8,9] regarding implicit 
statistical learning in which infants were able to segment words 
from fluent speech by using the statistical relationship between 
neighboring sounds after only two minutes of exposure to the 
artificial speech stream.  

A similar approach for unsupervised word discovery was 
reported earlier by ten Bosch & Cranen [19]. The main 
difference between the algorithm presented here and their 
approach is that they used a DTW matching technique for word 
discovery, in which a new sequence was compared to previous 
sequences to find the most likely path. They also used k-means 
clustering for labeling, which leads to a more accurate 
classification of the prevailing data, but requires the presence of 
all classifiable data during the initial clustering process if the 
number of clusters is kept constant. Despite these differences, 
their results also strongly support the idea of bottom-up 
statistical learning without pre-defined linguistic constraints.  

Finally, it should be noted that the computational system 
used in these experiments is still under development. Finding 
more sophisticated approaches for all levels of processing will 
be one of the main goals along with the development of an 

entirely self-directed learning mechanism. The potential of 
accessing higher level linguistic structures such as syntax- or even 
semantics by hierarchical unsupervised statistical learning will 
also be an interesting research subject in the future.   
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