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Abstract
Discovery of statistically significant patterns from data and
learning of associative links between qualitatively different data
streams is becoming increasingly important in dealing with the
so-called Big Data problem of the modern society. In this work,
a methodological framework for automatic discovery of statis-
tical associations between a high bit-rate and noisy sensory sig-
nal (speech) and temporally discrete categorical data with dif-
ferent temporal granularity (text) is presented. The proposed
approach does not utilize any phonetic or linguistic knowledge
in the analysis, but simply learns the meaningful units of text
and speech and their mutual mappings in an unsupervised man-
ner. The first experiments with a limited vocabulary of child-
directed speech show that, after a period of learning, the method
is successful in the generation of a textual representation of con-
tinuous speech.
Index Terms: statistical learning, associative learning, multi-
modal processing, unsupervised learning, self-supervised learn-
ing

1. Introduction
Conceptual learning in the human cognitive system never oc-
curs inside a single modality, but in terms of associations be-
tween representations in multiple perceptual modalities and mo-
tor outputs. As the events in our environment often provide
information through multiple modalities, the learning can also
occur through co-occurrences of structured activities at differ-
ent modal dimensions. In this context, pattern discovery in one
modality is basically only data segmentation or clustering and
the created clusters are meaningless without grounding through
multimodal associations.

The main purpose of this study is to develop general
methodology to analyze, discover, and model associations be-
tween two qualitatively different data streams. We demonstrate
how an unsupervised pattern discovery problem can be turned
into a self-supervised learning process where automatically de-
rived representations in one modality can be used to aid dis-
covery of patterns in another modality. The two “modalities”
used in the current work are spoken English utterances and tex-
tual representations corresponding to the utterance contents but
with all white spaces and special characters removed. Speech
and text are chosen as the data types for this study due to the
fact that despite their strong mutual interdependency, they are
clearly qualitatively different, have different temporal charac-
teristics, but the results of the associative pattern discovery are
still easy to evaluate. Most importantly, the basic units in text
(i.e., letters) do not have direct correspondence to any units of
speech that could be defined purely based on the raw acoustic
signal and the pronunciation of the letters depends on the lexical
context so that each letter becomes realized in various acoustic

forms. In general, one can hypothesize that the statistical con-
nection between structure of speech and text is most significant
at the level of word-like patterns of speech and text instead of
the low-level feature/letter representations of the modalities. In
order to learn the dependencies between the modalities, one has
also to learn these temporally spanning patterns first. Although
only text and speech are used in this study, the same proposed
concept should be applicable also to other pairs of sequential
data streams that model the same phenomena or are hypothe-
sized to have high correlation for some other reason.

Note that the current approach is in contrast to the automatic
speech recognition systems (ASR) that rely heavily on linguis-
tics and on recognition of phonemes or their combinations.
These linguistically motivated units are recognized mostly with-
out any semantic component or associations to other modalities
or information sources. To make a clear difference to such sys-
tems, it should be emphasized that the present approach is based
merely on the signal statistics within and between the two differ-
ent data streams, and not based on any prior phonetic or linguis-
tic expert knowledge. Similarly, a child learning multimodal
association does not have this kind of expert knowledge and is
still able to learn to speak and to understand spoken messages.

In the following sections, a self-supervised method for
building associations between two sequential data representa-
tions is proposed. Its performance is demonstrated with ex-
periments using orthographically annotated speech corpus with
limited vocabulary. In the experiments, the labeling for the pat-
terns in the speech signal is created from the annotation text
using three different variants of greedy grammar inference. The
three variants are compared by their respective speech-to-text
transcription capabilities.

2. Cross-modal statistical learning
Written English is not based on systematic coding of its sounds
to orthography, therefore, most of the time it is not possible
to transform temporal structures of continuous speech directly
into a sequence of characters. Continuous speech can be trans-
formed to a sequence of vector quantized (VQ)-indices each
representing a momentary spectral representation. However,
it is difficult to find any relevant associations between this in-
dex sequence and the corresponding orthography directly. Both
streams (VQ-indices and sequence of characters) must be first
pre-processed to discover patterns spanning larger intervals in-
side both streams. In continuous text these patterns are sub-
segments of utterances, or word-like units, resembling syllables,
words, or phrases. These statistically discovered word-like units
are then used in labeling of the speech signal in a weakly super-
vised learning process.

The proposed learner for cross-modal associations operates
offline. The goal of the learning is to maximize the predictabil-
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ity of the text stream given the speech stream. First, a context-
free grammar (CFG) is inferred from the text stream. After the
CFG is inferred from a collection of utterances, it is used to
extract contextual label(s) for each individual utterance. The
labels are the root nodes of CFG bottom up parse trees (Fig.
1). Then, these labels, each corresponding a non-terminal sym-
bol, can be used also as indices and are needed for concept ma-
trix concept matrix (CM) algorithm [1], a weakly supervised
pattern discovery and recognition algorithm for sequential data.
The CM attempts to find the relationship between the text pat-
terns and their acoustic counterparts. The CM algorithm is used
in this study because it is already proved to be effective in the
weakly supervised pattern discovery with weakly aligned con-
textual labeling. The grammatical inference for text stream is
selected for the generative property of CFG and its usefulness
in the study of discrete sequences.

The prediction capability, the ability to build hypotheses,
is acquired only to one direction (speech-to-text) because CM
algorithm is not generative. This leads to the definition of the
patterns in the both streams: the patterns in the text representa-
tion are exact segments of the stream itself and in speech stream
they are statistical models of element-to-element transitions in
VQ representations. The grammatical inference and the CM
algorithm are presented in the following subsections.

2.1. Greedy grammatical inference of patterns from text

In order to first discover patterns inside the text modality, a CFG
in Chomsky normal form is inferred from the textual representa-
tions of utterances in an unsupervised manner. The production
rules are selected along agglomerative compression of the tex-
tual representations: during each iteration, a symbol pair akal is
selected and every instance of the pair in the data is replaced by
a new non-terminal symbol an. The corresponding production
rule an → akal is appended to the CFG. The idea of this type of
agglomerative compression was first presented by Solomonoff
[2], who proposed that the pair with the highest frequency of
occurrence (Freq) should be always selected, resulting in max-
imal data compression. However, always selecting the highest
frequency pair for the agglomeration does not necessarily pro-
duce a grammar that is optimal for pattern recognition purposes.
In addition to using frequency of the pairs as the criterion, other
possibilities include, e.g., mutual information (MI) information
gain (IG), or increase in entropy-rate [3] as the criteria for selec-
tion of the coded pair. It has been pointed out in [4] that MI is
susceptible to estimation errors especially when the frequency
of occurrences both symbols are rare. The IG, as formulated in
[5], could alleviate the problem since it measures the amount
of information in a symbol (in bits) when both left- and right
contexts of the symbol are taken into account.

IG(ak, al) =

P (ak, al)log
P (ak, al)

P (ak)P (al)
+ P (ak, āl)log

P (ak, āl)

P (ak)P (āl)
+

P (āk, al)log
P (āk, al)

P (āk)P (al)
+ P (āk, āl)log

P (āk, āl)

P (āk)P (āl)
, (1)

where P (ak, āl) = Freq(ak)−Freq(ak,al)
N−1

and P (āk, āl) = 1−
P (ak, āl)− P (āk, al).

As the CFG estimation proceeds, the sequence is gradually
compressed. Along the compression and the increase of the to-
tal amount of different symbols in the grammar, the reliability of
statistical estimator for probability of a symbol pair P̂ (ak, al)

deteriorates. The low reliability indicates that the new produc-
tion rules included in the grammar are no longer based on reli-
able structural information in the data, and therefore the good-
ness of statistics can be used as an automatic stopping criterion
for the inference. Lesne et al. [6] have defined the reliability of
pair statistics in the following form :

max P (ak, al)Neff � 1, (2)

where Neff is the effective length of the compressed utterance:

Neff =
Nh

lnK
(3)

where N is the actual length of the compressed utterance, h
the entropy rate and K number of the unique symbols in the
compressed sequence. In this work, this criterion is used to stop
the inference process when Eq. (2) is no longer satisfied (N was
required to have a value of> 20 in order to continue inference).

2.2. Associative learning between text patterns and audio
patterns

The raw speech data is continuous valued by nature and is
not suitable for the CM algorithm, which requires sequential
data with a finite alphabet. For the CM algorithm, the speech
samples are preprocessed. First, the original speech samples
are downsampled to 16 kHz. Second, 12-dimensional Mel-
frequency cepstral coefficient (MFCC) vectors are extracted
from 32 ms long Hamming widowed sub-segments of the
speech signal using a window shifts of 10 ms. Then, the MFCC-
vectors are clustered to NA = 128 clusters with the k-means
clustering with Euclidean distance measure. The initial cluster-
ing was performed on a random subset of 15,000 MFCC vec-
tors from the training set and then all of the vectors from all
utterances were assigned to a their closest centroids. Finally,
every vector is replaced by their cluster id’s. This results the
VQ representation of the speech signal at 100 Hz symbol rate
and alphabet size of NA.

In order to discover the mapping between the text and the
audio, the CM algorithm [1] is trained with VQ sequences and
categorical contextual information related to the VQ sequences.
The algorithm learns to extract important segments of the VQ
sequences by accumulating element-to-element transition prob-
ability statistics for different contexts. The learned models for
each context are normalized transition probabilities from a VQ
element to another at different lags k in the context of different
labels c. For example, a lag of two means that the analyzed ele-
ments are separated by one undefined element in between. The
alignment between a context and a VQ sequence does not need
to be exact. It is enough that the consecutive VQ elements re-
lated to the context are somewhere in the sequence. The relevant
element-to-element transition probabilities start to stand out in
the model of the context as more evidence is accumulated.

In the recognition, for a given VQ sequence, the CM model
provides for each element-to-element transition a conditional
probability that the actual transition belongs to certain context.
The probabilities are given for each trained lags (within each
context) and combined to produce model activation A(c, t) for
each trained label c at each time frame t for the final recogni-
tion/classification [1].

In this study the contextual labels c for individual spoken
utterance are the root nodes (non-terminals) of the CFG bottom
up parse trees (Fig. 1). These contexts could be used as either
unordered or ordered set in the input for the CM algorithm [1].
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Since the two streams (speech and text) are different representa-
tions of the same phenomena, we use some a priori knowledge
in that the patterns are in the same order in both representations.
VQ representations can be segmented in order to discard the VQ
elements that are almost surely not related to the text pattern.

It is hypothesized that the pattern boundaries are approx-
imately in the same relative positions in the both representa-
tions. Due to the nature of English language and the existence
of silence periods in speech, it cannot be guaranteed that all
the relevant VQ elements are between the boundaries suggested
by the corresponding text pattern (the dashed vertical lines in
Fig 1). For this reasons the length of VQ sequence used in the
training together with a text pattern is extended by experimen-
tal factor of 1.4 . For example if a VQ segment suggested by
the text pattern is vivi+1 . . . vi+n−1, where v is a VQ element
and n is the length of the segment, then the extended segment is
vi−0.7n . . . vi+1.7n−1 (the highlighted portion of the sliced bar
representing VQ sequence in Fig. 1).

Figure 1: The text patterns are recognized from the root nodes
(the C’s) of CFG bottom up parse trees. The CM is trained
with longer segments of VQ representation than text the pattern
suggests. The segment is extended 70 percents from both ends.

2.3. Hypothesizing the context labels from a VQ sequence

The recognition process for a VQ sequence consists of first se-
lecting an ordered set of labels based on model activations pro-
vided by the CM algorithm. Second, the labels are transcribed
to the corresponding text patterns and final hypothesis is formed
by concatenation of the patterns.

First, in the process of selecting the labels, instantaneous
model activation values are median filtered with decay factor
γ = 6 to smoothen the results. Then, a short-term sliding win-
dow is used to sum the filtered activation value outputs A(c, t)
into local pattern probability estimates. The integral of activa-
tion values for pattern c at time t with window length T is:

Atot(c, t) = Σ
t+T/2

t−T/2A(c, t) (4)

The label that has the highest integral across the window is se-
lected for the hypothesis for the short time interval. A sequence
of label hypothesis is acquired by selecting a hypothesis every
Ts frames for duration samples. Removing consecutive dupli-
cates from the sequence of label hypotheses forms the final or-
dered set of labels. The sliding window size T and the step size
Ts are user defined parameter values and they are estimated
from the training set of utterances.

3. Experiments
In the current experiments, the learning algorithm is given a
training set of utterances with the textual and VQ representa-
tions in order to build the statistical association across the two

representations. The measure of the success of pattern discov-
ery and associative learning is the fidelity of the textual repre-
sentations that are derived from the given audio utterances of a
disjoint test set.

3.1. Used material

The material used in the experiment is taken from the CARE-
GIVER corpus [7]. The corpus contains infant directed spo-
ken utterances in multiple languages and speakers. Along the
speech signals there are corresponding orthographic transcripts
of each utterance. From the Y2-version of the corpus 2397 ut-
terances of a single English speaker are randomly divided to
disjoint training and testing sets of sizes 2000 and 397 utter-
ances respectively. The orthographic annotation of each utter-
ance was modified into a continuous text string by removing all
the special characters, including the whitespaces.

3.2. Extraction of label - VQ sequence pairs for the CM al-
gorithm

The textual representations of utterances in the training set are
concatenated, and the grammatical inference, described in the
subsection 2.1, run until the stopping criterion in the Eq. (2)
is met. The resulting CFG is used in bottom up parsing of in-
dividual utterances. The root nodes representing the word-like
units of text are then used as labels in the CM algorithm. The
information about the portions that the recognized patterns oc-
cupy in the textual representations is used in segment extraction
from the corresponding VQ representations. The label recogni-
tion and segmentation of VQ representation is illustrated in Fig.
1. The extraction is performed to all training utterances and the
CM matrices are trained with resulting label-VQ segment pairs
using lags: k ∈ {1, . . . , 13}.

3.3. The measure of predictability

A variant of Levenshtein distance [8] between hypothesized tex-
tual representation of utterance and corresponding reference is
used as the measure of predictability. The Levenshtein dis-
tance is the minimum amount of single character edits (inser-
tion, deletion, and substitution) needed to convert a string to
another string. Here, a variant referred as edit distance is used
where the weight of insertion and deletion is one and the weight
of substitution is two. The measure of predictability of a set of
utterances given the corresponding speech signals is the sum of
the edit distances (SED) of individual hypotheses in the set.

3.4. Estimation of optimal parameter values

The optimal parameter values for sliding window length and for
the step size are evaluated from the training set with 5-fold eval-
uation. In the each fold a disjoint set of utterances are used as
the evaluation set. The SEDs of the evaluation sets are com-
puted with different parameter values and averaged over the
5 folds. The estimates for optimum parameters values are the
ones that give the minimum average SED.

3.5. The results

The experiments were run with three different variants of CFG.
In each variant the selection criteria for the symbol pairs in the
grammatical inference was varied. The best results, given by
IG, are presented in detail, and the results given by MI and Freq
are just briefly summarized. The MI measure is the first term of
the IG in the Eq. (1).
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The averaged SEDs over the 5-fold evaluation with differ-
ent parameter values are presented in Fig. 2. The minimum
SED in the evaluation is reached with a sliding window of size
48 samples and a step size of 17 samples. The SED across the
test of 397 utterances with the estimated parameter values is
1868. The success of the estimation is evaluated by comparing
the SED given by the estimated parameter values to the opti-
mal SED given by parameter values that are optimized for the
test set. The optimal SED for the test set is 1826 given by 46
and 17 samples long window and step size respectively. The
heat map for parameter optimization in the test set is left out,
but it largely reminds Fig 2. That implies the robustness of the
parameter evaluation.

Figure 2: Heat map for parameter evaluation in the IG variant.
Each tile’s color represents the average SED in the evaluation
sets of 400 utterances with corresponding step and sliding win-
dow sizes. The estimates for parameter values are the ones that
give minimum SED. The optimum is reached with sliding widow
size 48 and step size 17.

The results of each CFG variant are summarized in the ta-
ble 1. All the estimated parameter values and the correspond-
ing SEDs are compared to the corresponding optimized values.
In all variants the parameter values are quite reliably estimated
since the SEDs given by those estimated values differs only
2.4%-5.1% from the optima. In terms of SED the IG variant
outperforms the MI variant by 8.7% and the Freq variant by
40.6%. More comprehensive results are presented in [9].

Table 1: Summarized results with the three variants. The table
includes the parameter values estimated from the training set
and the corresponding SED in the test set. For comparison the
optimized parameter values for the test set and corresponding
SED are also presented

window size step size SED of the test set
IG estim 48 17 1868
IG optim 46 17 1826
MI estim 48 14 2045
MI optim 47 17 1942
Freq estim 47 1 3144
Freq optim 48 7 3044

The individual edit distances with the estimated parameter
values of IG variant are examined in more detail. 26,7% of the
hypotheses produced by the variant were correct. In order to
compare edit distances of utterances with different lengths, in-
dividual edit distances are normalized with the corresponding
reference utterance length. The resulting measure is referred as
relative edit distance (RED). In the Fig. 3 the REDs are ordered
to ascending order by the reference utterance length. The varia-
tion in the recognition of single word utterances is large. Many
of the hypotheses are correct and some are way off. In general
the length of the multi-word utterances does not have a remark-
able effect to the prediction accuracy. This is illustrated in the

Figure 3: relative edit distances ordered by the corresponding
reference utterance lengths. The individual edit distances are
plotted with thin blue line. The bold dashed line is median fil-
tered smoothing with 30 samples long window. The straight line
is the median of relative edit distances in the test set. Note that
x-axis is not linear, the tick labels denote the length of the refer-
ence utterance in that index.

figure by moving median of 30 samples (bold dashed line) and
the median over the whole test set (0.182, solid straight line).
This means that on the average over 80% of the characters in
the hypothesized utterances are correct.

4. Discussion and summary
The results of these first experiments are promising, although
there is still some room for improvement. Optimizing the seg-
mentation of VQ representations in the training phase and trying
different filtering methods of the CM output in the recognition
could improve the results.

If the presented methodology would have been treated like
ASR a statistical language model could have been created for
the recognition. The model would include for example esti-
mated conditional probabilities of the text patterns given the
previous pattern. The usage of a such model would allow the
creation of multiple hypothesized text pattern sequences and se-
lecting the most probable. For example there are some cases
where two text patterns, that both exist only in the beginning
of utterances in training, are hypothesized to the beginning of
an utterance: “hereihereisa. . . ”. At least these kind of errors
would be eliminated.Creation of a language model was not tried
because the domain expertise was kept to minimum and the
methodology as general as possible.

The nature of the corpus was potentially beneficial. The vo-
cabulary is statistically balanced. The utterances are grammati-
cally correct but not necessarily sensible or logical. Since there
are less word-to-word dependencies, it is more likely that the
grammatical inference first discovers the text patterns match-
ing real words and then joins them, rather than discovering text
patterns spanning over two incomplete words.

A novel method for discovering associations between two
co-occurring and qualitatively different sequential data streams
was presented. The self-supervised method is based on first
discovering patterns with grammatical inference from textual
representation and then using them as labels in weakly super-
vised learning in the vector quantized speech representation.
The method was shown to acquire promising predictability of
the textual representation when given the corresponding speech
signal.
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