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Abstract 

Existing models of infant word learning have mainly 
assumed that the learner is capable of segmenting words from 
speech before grounding them to their referential meaning, 
while segmentation itself has been treated relatively 
independently of meaning acquisition. In this paper, we argue 
that situated cues such as visually perceived concrete objects 
or actions are not just important for word-to-meaning 
mapping, but that they are useful in pre-linguistic word 
segmentation, thereby helping the learner to bootstrap the 
language learning process. We present a model where joint 
acquisition of proto-lexical segments and their meanings 
maximizes the referential quality of the lexicon, and where 
learning can occur without any a priori knowledge of the 
language or its linguistically relevant units. We investigate the 
behavior of the model using a computational implementation 
of statistical learning, showing successful word segmentation 
under varying degrees of referential uncertainty.  

Keywords: word learning; segmentation; meaning 
acquisition; computational modeling; synergies in word 
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Introduction 
One of the largest challenges faced by language learning 

infants is the problem of word learning. From a linguistic 
point of view, the problem is often posed as the question of 
1) how to segment the incoming speech input into words 
and 2) how to associate the segmented words to their correct 
referents in the surrounding environment in order to acquire 
meaning of the words. In this paper, we describe how these 
two tasks can be approached as a single learning problem. 

Several behavioral and computational studies have 
addressed the segmentation problem and it is now known 
that infants may utilize different cues, such as statistical 
regularities (Saffran, Aslin & Newport, 1996), prosody 
(Cutler & Norris, 1988; Thiessen & Saffran, 2003), or other 
properties of infant directed speech (Thiessen, Hill & 
Saffran, 2005), in order to find word-like units from speech. 
Similarly, computational modeling studies show that 
segmentation into recurring word-like units is possible at 
varying levels of language representation (e.g., Brent, 1999; 
Frank, Goldwater, Griffiths & Tenenbaum, 2010; Pearl, 
Goldwater & Steyvers, 2010; Räsänen, 2011). However, the 
main problem with these models is that they either require 
strong constraints or heuristics to drive the segmentation, or 
they assume representations of language such as phonetic 

transcriptions that are not available for an infant trying to 
bootstrap the language acquisition process.  

Likewise, the problem of associating segmented words to 
their referents has been widely addressed in earlier research. 
One of the prominent mechanisms in this area is the so-
called cross-situational learning (XSL; Pinker, 1989; 
Gleitman, 1990). According to the XSL hypothesis, infants 
learn meanings of words by accumulating statistical 
information on the co-occurrences of spoken words and the 
possible word referents (e.g., objects and events) across 
multiple communicative contexts. While each individual 
communicative situation may be referentially ambiguous, 
the ambiguity is gradually resolved as the learner integrates 
co-occurrence statistics over multiple such scenarios. A 
large body of evidence shows that infants and adults are 
sensitive to cross-situational statistics between auditory 
words and visual referents (see, e.g., Yu & Smith, 2012 for 
a recent overview) and that these statistics are accumulated 
and used incrementally across subsequent exposures to the 
word-referent co-occurrences (e.g., Yu, Zhong & Fricker, 
2012).  

In this work, we argue that, instead of looking at the early 
word segmentation and meaning acquisition separately, the 
two problems should be approached as one. Then the 
learning problem can be formulated as how to segment 
speech into meaningful units? When defined this way, there 
is no longer the implication that successful segmentation 
precedes meaning acquisition; rather, segment 
meaningfulness as such should be the main criterion for 
speech segmentation (for similar ideas, see ten Bosch et al., 
2009; Johnson, Demuth, Frank & Jones, 2010 and Fourtassi 
& Dupoux, 2014). Since word meanings are acquired 
through grounding of word forms to their referents, it would 
be natural to utilize the statistical regularities in the 
referential domain also in the acquisition of word forms 
themselves. 

We base our argument on the idea that the role of 
language is to describe the external world as accurately as 
possible, making all speech potentially referential. In this 
context, an effective learner is the one that finds maximally 
informative mapping from the initially ambiguous acoustic 
speech stream to the word referents that consistently co-
occur with the speech contents. Solving this mapping 
problem simultaneously solves the acquisition of word 
meanings (speech-to-referents associations) and word 
segmentation (mutually exclusive segments of speech). This 



provides the basis for a functional proto-lexicon (Nazzi & 
Bertoncini, 2003) that has functional significance to a 
language learner that does not yet master the phonological 
structure of the language, and upon which more 
sophisticated language processing and parsing can build. 

 Learning word segments through cross-
situational learning 

The idea of learning word segments and their referential 
meanings simultaneously is not new. Several computational 
models have made use of joint inference at both levels with 
(Roy & Pentland, 2002; Yu & Ballard; 2004) and without 
(ten Bosch et al. 2009; Aimetti, 2009; Räsänen, Laine & 
Altosaar, 2008; van Hamme, 2008) assuming phonemic 
representation of speech. Recent behavioral evidence also 
shows that consistent visual cues help in word segmentation 
(Thiessen, 2010; Glicksohn and Cohen, 2013; Shukla, 
White & Aslin, 2011). The goal here is to formalize the 
joint-problem from referential point of view and to show 
with concrete simulations how this leads to successful word 
segmentation under varying degrees of referential 
uncertainty.  

We will start by defining the referential quality of a 
lexicon. By making a simplifying assumption that there is 
no grammar (i.e., all words are independent of each other), 
the referential quality (or information value) of the lexicon 
can be measured using mutual information: 

Q = P(w,c)log2
P(w,c)
P(w)P(c)w,c∑ / max{log|C|, log|W |}   (1) 

In the equation, w ∈ W are the words known by the learner 
and c ∈ C are discrete referents (states of the world) that the 
language attempts to describe. P(w,c) is the probability of 
observing word w and referent c in the same context while 
P(w) and P(c) are the probabilities of observing them 
individually.  

What Q quantifies is that, given a set of words (e.g., an 
utterance), how much information we know about the state 
of the world. Q achieves its maximum value of one when 
each word w co-occurs only with one referent c, i.e., there is 
no referential ambiguity at all and all referents have been 
named, each word having deterministic consequence to the 
state of the world. On the other hand, Q approaches zero 
when words of the lexicon W occur independently of the 
referents, i.e., there is no coupling between the lexical 
system and the surrounding world. The max{}-term 
normalizes the base of the logarithm, ensuring that Q 
decreases if the number of words is larger than the number 
of referents and vice versa, indicating ambiguity or 
redundancy in referential capability of the vocabulary.  

From learning point of view, a referentially optimal 
language learner wants to discover a vocabulary of words 
W that maximizes Eq. (1), i.e., considering those speech 
patterns as words that are maximally coupled to the 
concurrent environment in each communicative situation.  

Let us assume that speech input to the learner is 
represented as a sequence of observations X = [x1, x2, …, 

xN]  (e.g., short-term spectra of speech or neural firing 
patterns of the auditory nerve) with subscripts denoting time 
indices. These observations can be uni- or multivariate, or 
they can also be discrete, but here we will use vectors xt for 
the purpose of generality. Moreover, each observation xt is 
paired with a set ct describing the present communicative 
context attended by the learner. In this case, the goal of an 
referentially optimal learner is to map X into a sequence of 
words f(X) à [w1, w2, …, wM] so that the Q in Eq. (1) 
becomes maximized. This can be seen as a segmentation 
and classification problem: how to find sequences of 
acoustic observations that consistently co-occur in specific 
communicative contexts.  

The first step in solving the optimization problem is to 
consider the direct coupling of the speech X with the 
referential context c through their joint distribution P(X, c). 
Importantly, unlike a generative latent lexicon W that would 
be responsible for generating sequences of words, and each 
word generating an acoustic realization, the distribution 
P(X, c) is directly observable to the learner. The challenge is 
to model the signal X so that it compactly and 
discriminatively captures the acoustic and temporal 
characteristics of speech in different referential contexts c.  

From Eq. (1) we can infer that, in order to maximize Q, 
the co-occurrence matrix P(w,c) should be a sorted diagonal 
matrix, i.e., there would be one word for each unique 
referent and they only occur with each other as this 
minimizes the referential uncertainty. The easiest way to 
ensure that the size of vocabulary equals to the number of 
referents (|W| = |C|) is to have a separate model for speech X 
occurring in the context of each possible referent c, 
capturing the cross-modal statistical dependencies between 
the two.  Formally, an acoustic model with parameters θc is 
introduced for each referent c,  
P(c | X)∝P(X | c,θc )P(c) ,    (2) 

capturing the probability of observing referent c given 
speech input X and therefore constituting the meaning part 
of the model. This model θc can be any algorithm or rule 
that maps from X to c, but the overall quality of the lexicon 
will depend on the accuracy and consistency of these 
mappings. Learning of the words is then a parameter 
estimation problem with the aim of finding the set of 
acoustic model parameters θ* that maximize the joint 
probability of the concurrent referents across all speech X:  
θ*= argθ max{P(X | c,θ )P(c) |∀X,c}
= argθ max{P(c | X,θ )P(X) |∀X,c}

  (3) 

From referential quality point of view, by replacing the 
discrete words w with the probabilistic models θc of referent 
c during speech X, i.e., setting P(w,c) = P(c | X,θc )P(X) , we 
get 

 



Q = P(c | X,θc )P(X)log|C|
P(c | X,θc )P(X)

P(X)P(c)X,c∑

= P(c | X,θc )P(X)log|C|
P(c | X,θc )

P(c)X,c∑

= P(X | c,θc )P(c)log|C|
P(X | c,θc )
P(X)X,c∑

 (4) 

where P(X) replaces P(w), being the probability of 
observing the speech-signal state X. Now, since P(X) and 
P(c) are independent of the model parameters θ, optimizing 
the solution for Eq. (3) will also optimize the referential 
value of the lexicon. Informally put, the overall quality of 
the lexicon depends on how well the model θc discriminates 
different referents c in different speech inputs X, giving 
more importance to referents occurring more often.  

As for the segmentation, the major consequence of the 
above formulation is that word segmentation emerges as a 
side product of learning of the acoustic models P(X | c, θc) 
for the referents. The relative probability (or familiarity) of 
word w occurring at time t in the speech input is given 
simply by the corresponding acoustic model θc: 
P(w, t) = P(c, t | x0,...,xt )∝P(c, t | x0,...,xt,θc )  (5) 

where x0, …,xt refer to speech observations up to time t. 
Input can be parsed into contiguous word segments by either 
1) assigning each time frame of analysis into one of the 
known referents (proto-words) with word boundaries 
corresponding to points in time where the most likely 
referent changes, or 2) thresholding the probabilities in 
order to make a decision whether a known word is present 
in the input at the given time or not.  

Note that the learner never explicitly attempts to segment 
the incoming speech into words as a separate stage from 
meaning acquisition. Instead, the learner simply performs 
maximum-likelihood decoding of referential meaning from 
the input, and this dynamically leads to the emergence of 
word boundaries in time. 

In contrast, if the processes of segmentation and word-
referent mapping are to take place independently of each 
other, the ultimate referential quality of the lexicon cannot 
recover from potential errors in the segmentation without 
further corrective mechanisms. Also, the “pre-segmented” 
vocabulary W is of no practical value before meaning is 
attached to the words, making at least explicit attempts to 
solve the segmentation problem alone questionable for an 
infant that doesn’t even know what kind of entities words 
are. Language has functional value only when the words 
carry some significance with respect to the states of the 
world as perceived by the language user. 

Approximating the ideal model with TPs 
In order to demonstrate the feasibility of the joint model 

of segmentation and meaning acquisition, a simple 
computational implementation of the model was created by 
utilizing the idea of using transition probabilities (TPs) to 
perform statistical learning on language input (c.f., e.g., 
Saffran et al., 1996), but now conditioned on the referential 

context. This is not to suggest that humans would actually 
utilize TPs over discrete representations of speech. Instead, 
the discrete domain analysis should be simply seen as a 
practical tool for analyzing statistical regularities of speech 
that, in the general case, reside in a much more complex 
multidimensional acoustic or perceptual space. 

Let us start by assuming that speech input X is represented 
as a sequence of discrete acoustic events X = [a1, a2, …, aL], 
where each event a belongs to a finite alphabet A (a ∈ A). 
These events can be any descriptions of a speech signal that 
can be derived in an unsupervised manner, and they are 
assumed to be shorter in time than any meaningful patterns 
of the language. Eq. (4) states that the quality of the lexicon 
is proportional to the probability that speech X is observed 
during referent c. By substituting X with the discrete 
sequence representation, the maximum likelihood estimate 
for P(c | X, θc) is given as 

P(c | X,θ ) = P(c | a1,...,aN ,θ ) =
F(a1,a2,...,aN | c)
F(a1,a2,...,aN | c)c∑

 (6) 

where F(a1, a2, …, aN | c) is the frequency of observing the 
corresponding sequence a1, a2, …, aN concurrently with 
referential context c. In the general case, this solution is 
infeasible since the distribution P(a1, …, aN | c) cannot be 
reliably estimated from any finite data for N >> 0 in the 
presence of variability characteristic to normal speech. 
However, Eq. (6) can be approximated as a mixture of TPs 
between adjacent and non-adjacent states (see Räsänen & 
Laine, 2012, for details): 

P(c, t | X)∝
P(at | at−k,c)k∑
P(at | at−k,c)c,k∑

=
F(at,at−k,c)k∑
F(at,at−k,c)

at∈A
∑

c,k
∑

 (7) 

Eq. (7) also makes a further simplifying assumption that 
P(c) is a non-informative uniform distribution. Note that 
with k = 1, c = constant, and A being the set of syllables in 
the language, this model becomes equal to the basic TP-
model used by Saffran et al. (1996). 

In order to decode model information in terms of 
contiguous patterns instead of doing it frame-by-frame, the 
activation A(c,t) of a referent (word) c at time t is given as 

A(c | Xt1,...,Xt2 ) ≈
1

t2 − t1 +1

P(at | at−k,c)k∑
P(at | at−k,c)c,k∑t=t1

t2
∑
$

%

&
&

'

(

)
)

 (8) 

i.e., by simply integrating the context-dependent TPs over 
the time-window of analysis from t1 to t2 (see also Räsänen 
& Laine, 2012). Once the activation curves for referents 
have been computed, temporally contiguous above-chance 
activation of a referent c can be seen as a candidate word 
segment, or cluster, that is both familiar to the learner and 
that spans across both auditory and referential 
representational domains. In the experiments of the current 
paper, decoding in Eq. (8) is always performed in a sliding 
window of 250 ms. TPs are always estimated from lags k  = 
{1, 2, …, 25}, corresponding to temporal distances of 10-
250 ms, as this time-scale captures the statistical regularities 



of speech available at the low-level acoustic features (see 
Räsänen & Laine, 2012). 

Simulations 

Data and evaluation 
The model was tested on pre-recorded continuous speech 

by using the Caregiver UK Y2 corpus (Altosaar et al., 
2010). The material contains spoken utterances paired with 
visual tags denoting the concurrent presence of visual 
referents for the “keywords” (nouns, verbs, adjectives) in 
each sentence. In addition to the 1–4 referential keywords 
per utterance (mean 2.9), the utterances also contain 
additional words, such as function words (e.g., “a woman 
takes the yellow cookie”, referential keywords emphasized), 
leading to an average utterance length of 5.4 words. The 
main section of the corpus contains 2397 utterances for each 
talker, spoken in enacted, child-directed speaking style. 
There are a total of 50 unique keywords and corresponding 
visual referents in the corpus.  

For each run of the simulation, half of the corpus (N = 
1199 utterances) from Talker-01 was randomly assigned as 
the training data while the remaining half (N = 1198) was 
used to test the word-referent recognition performance of 
the model. The experiment was performed separately with 
the original referential information and with varying degrees 
of additional referential uncertainty by randomizing 20%, 
40%, or 80% of the original visual referents to any of the 50 
referents in the data. During the training stage, referents of 
the spoken keywords were always shown to the algorithm.  

For each test utterance, the M words with the highest non-
concurrent maxima in activation (Eq. 8) were chosen as the 
referent hypotheses, where M is the true number of referents 
associated with the utterance. The overall recognition 
performance was measured as the proportion of correct 
hypotheses across all test utterances and across five 
independent runs of the simulation. 

Speech pre-processing 
In order to represent speech in terms of short-term 

discrete events, Mel-frequency cepstral coefficients 
(MFCCs) representing the short-term spectrum of the 
speech were first computed from the speech signals using 
25-ms sliding window with 10-ms steps. 10,000 randomly 
chosen MFCC-vectors were then clustered into 64 unique 
categories in an unsupervised manner using the standard k-
means algorithm. Finally, each MFCC vector was assigned 
to the nearest cluster, leading to a discrete sequential 
representation of X = [a1, a2, …, aN] with a ∈ [1, 64] with 
one element at occurring every 10 ms (see, e.g., Räsänen, 
2011 for more details). 

Results 
Fig. 1 shows an example of the model output for an 

early stage of the learning and after processing of the full 
training set and without added referential noise. As can be 
observed from the middle panel, the activation of each 

referent, given the audio, is relatively noisy after observing 
only 60 utterances (recall that there are 50 different referents 
and 1–4 referents per utterance in the dataset). In the bottom 
panel, the words “small” and “tree” have been successfully 
associated to their corresponding referents after training,  

 
Figure 1: An example of the basic model output for the 
sentence “Do you have a small tree?” (keywords with visual 
referents emphasized). Top: The original waveform. 
Middle: The model output after exposure to 60 sentences. 
Bottom: The model output after exposure to 1199 sentences. 
The different colored curves represent probabilities of 
different visual referents. The vertical lines show the true 
word boundaries extracted from the corpus annotation.  
 
leading to clear activations that approximately correspond to 
the temporal extent of the underlying linguistic word forms, 
thereby also leading to segmentation of the input into word-
like units. On the other hand, words without a visual 
referent (e.g., “a”) do not have distinct activation segments. 
Also, activation of the referent {to have} extends to across 
the entire phrase “do you have” as it almost always occurs 
within this phrase in the corpus. 

Top panel in Fig. 2 shows the word-referent recognition 
performance as a function of the number of utterances 
perceived by the learner. The result is shown for the original 
referential information where referents always correspond to 
the keywords in the spoken utterances. In addition, results 
with 20%, 40% and 80% of the original referents 
randomized are also shown in order to analyze model 
behavior under varying degrees of referential uncertainty. 
As can be seen from the results, the basic model 
successfully learns the word-referent mappings from the 
continuous utterances, achieving a mean referent 
recognition rate as high as M = 89.5% (SD = 0.4%) across 
all 50 keywords in the data. The final results for the three 
noise levels are M0.2 = 89.1% (SD0.2 = 0.8%), M0.4 = 88.3% 
(SD0.4 = 0.5%), and M0.8 = 59.4% (SD0.8 = 1.9%) in the 
order of increasing uncertainty. This shows that the model 
copes well with referential uncertainty since nearly 90% of 
the word tokens are associated to their correct referents even 
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when almost half (40%) of the attended referents are not 
related to the speech contents during learning. Even in the 
case of only 20% of referents being related to the words in 
the utterances, the performance is still 59.4% and would 
likely keep increasing with more training data. 

 
Figure 2: Top: Word-referent recognition performance as a 
function of the number of sentences with which the model is 
trained and for different levels of referential noise. Middle 
panel: The mean distance from annotated word boundaries 
to the model-generated boundaries (points where the 
winning referent changes) as a function of word recognition 
performance. Bottom panel: The mean duration of the 
model-generated and correctly associated word segments as 
a function of word-recognition performance. The black, red, 
blue, and magenta colored lines show the results with 
referential noise of 0%, 20%, 40%, or 80% of the original 
referent labels randomized to any of the 50 possible 
referents, respectively. The horizontal dashed line shows the 
chance level performance in the top panel and the true mean 
word length in the bottom panel. The error bars correspond 
to ±1 SE.  
 

Middle panel in Fig. 2 shows the corresponding 
segmentation accuracy for all hypothesized word segments 
with respect to underlying word-level annotation and the 
bottom panel shows the segment length for correctly 
recognized words as a function of word-referent recognition 
performance. In all noise conditions, the model shows 
improvement in segmentation accuracy as more training 

data is observed and the final error of approximately 60 ms 
is small in comparison to the typical word durations.  

Finally, bottom panel in Fig. 3 shows the mean segment 
length that approaches the true mean keyword length of 
~400 ms as the recognition performance improves. In 
addition, the segment lengths of the correctly learned words 
are nearly identical at all referential uncertainty levels. This 
suggests that the learner first starts to discriminate different 
referential contexts based on short snippets of speech that 
are acoustically prominent in these contexts and then 
gradually learns the overall extent of the word-like units as 
more evidence is accumulated. In all, the model 
distinguishes different referents based on segments that are 
distinct in different referential contexts, ultimately 
converging to words or phrases that have referential 
meaning (also seen in Fig. 1). 

Discussion and conclusions 
In the present paper, we argued that language learners could 
utilize referential cues in communicative contexts by 
segmenting speech into units that are guaranteed to have 
referential significance. We provided a mathematical 
framework for joint-model of word segmentation and 
meaning acquisition by connecting referential value of the 
learned lexicon to the segmentation task. We tested the 
model in a word-learning simulation, showing that the 
model can successfully learn words from continuous speech. 

The present results converge with earlier modeling studies 
using visual referential information for perceptual 
grounding of acoustic patterns (e.g., Räsänen et al., 2008; 
van Hamme, 2008; Aimetti, 2009; ten Bosch et al., 2009). 
All these models exhibit successful word learning after 
sufficient exposure to the language without any a priori 
linguistic knowledge, and the present mathematical 
framework explicates why this is the case, i.e., why the 
cross-modal strategy is valid for early word learning.  

The idea of learning a referentially meaningful proto-
lexicon without any phonological decoding of speech 
converges with the definition of proto-lexicon by Nazzi and 
Bertoncini (2003). Also, according to PRIMIR framework 
of language acquisition (Werker & Curtin, 2005) and recent 
work on learning of phonological categories (Feldman et al., 
2013), it is likely that language learners have to acquire 
lexical knowledge before or in parallel with phonological 
representations instead of learning the sound system of the 
language before word learning. The present model provides 
one possible approach for bootstrapping the learning process 
by starting from proto-lexical learning that already results in 
meaningful representations of the language and thereby 
enables (receptive) language use before more sophisticated 
language skills emerge.  

From a machine learning point of view, the present model 
can be characterized as weakly-supervised learning. The 
referential context provides labeling for the speech input, 
but the labels are noisy and inaccurate due to the referential 
ambiguity in each communicative situation. Efficiency of 
the learning is dominated by the learner’s ability to limit the 
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number of possible referents in each communicative 
situation, possibly driven by attentional and social cues in 
case of real infants.  

In general, it is likely that learners use a number of 
different strategies to bootstrap their word learning. This 
also involves the use of purely bottom-up cues to words and 
word boundaries (see the introduction). However, the 
essence of language is in the word meanings. An optimal 
language learner will therefore take the meanings of 
potential word segments into account when trying to make 
sense of the auditory world. 
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