
INDIRECT ESTIMATION OF FORMANT FREQUENCIES THROUGH MEAN 
SPECTRAL VARIANCE WITH APPLICATION TO AUTOMATIC GENDER 

RECOGNITION 
 

U. K. Laine1, O. J. Räsänen1 
1Helsinki University of Technology, Department of Signal Processing and Acoustics, Espoo, Finland 

 
 

Abstract: A novel approach for estimation of speaker 
specific vocal tract properties is presented in this 
paper. Instead of using the well-known long-term 
average spectrum (LTAS) of speech, it is shown that 
the variance of the magnitude of the spectrum in each 
band is also suitable for estimation of formant 
frequencies. This representation, called mean spectral 
variance (MSV), is applied to an automatic gender 
classification task, where it is shown to achieve good 
classification accuracy in combination with the 
fundamental frequency of speech. The MSV is 
compared with LTAS and their similarities and 
differences are discussed. 
Keywords: Formant estimation, gender classification, 
long-term feature averaging 
 

I. INTRODUCTION 
 
Speaker dependent variability in vocal apparatus 

properties has a notable impact on the acoustic properties 
of speech signals. Cross-speaker variation in 
characteristic formant frequencies poses a difficult 
challenge for speech processing systems designed to 
work independently of speaker identity, while it also 
plays an important role in speaker identity detection [1] 
and gender classification (e.g., [2]).  

One possible approach for analyzing speaker and 
gender specific properties of the vocal apparatus is 
through long-term averaging of the acoustic parameters 
[3]. The long-term average spectrum (LTAS) has been 
widely studied in speaker recognition, and although its 
performance falls behind state-of-the-art Gaussian-
mixture models (GMM) using Mel-cepstral coefficients 
(MFCCs), the computational simplicity of LTAS is 
appealing for many applications [4-5]. In addition to 
LTAS, averaging of, e.g., autocorrelation-, LPC-, 
cepstral-, and reflection coefficients, have also been 
studied [6].  

However, all these studies have concentrated on the 
averaging of feature vectors per se, but none to our 
knowledge have studied modeling of feature variance in 

isolation of the spectral mean. In this paper we show that 
instead of utilizing the long-term spectrum directly, the 
spectral variability of speech signals also reflects the 
speaker and gender specific average formant structure. 
For estimation of speaker specific acoustic parameters, 
we introduce a straightforward method for estimating 
average formant frequencies (AFF) indirectly from 
continuous speech. More specifically, we show that the 
AFFs can be easily obtained by computing the mean 
spectral variance (MSV) separately for each frequency 
band during voiced speech. The basic idea behind our 
method is simple; while each formant is moving mainly 
around its mean value these movements should cause the 
largest spectral variance to occur around the mean as 
well.  

The MSV representation is compared to the well-
known LTAS, and it is shown that the methods contain 
complementary information regarding speech signals. 
The general quality and usability of the MSV method is 
assessed in a classification task where MSV templates 
and pitch of the speaker are combined as cues to perform 
automatic gender detection.  

 
II. METHODS 

 
A. Computation of mean spectral variance (MSV) 

 
The speech signal (fs = 16 kHz) is first pre-emphasized 

with a standard 1st order FIR-filter. Voicing is estimated 
using standard cepstral analysis and only voiced frames 
are preserved for further analysis. The signal is then 
windowed using a 6 ms Hamming window with 2 ms 
window shifts. The small window length causes the 
absence of pitch periodicity in spectral representations 
and leads to regularly good matches between window 
position and the maximal excitation of vocal tract 
resonances during glottal closure. Spectral tilt and mean 
are removed from each frame by fitting a line to the 
spectrum and the frames are normalized into unit vectors. 
All spectral frames are collected into a spectrogram and 
the mean spectral variance for each frequency band is 



computed over the entire set of frames to produce the 
MSV representation. The tilt and mean of the MSV are 
removed and then this vector is normalized to a unit 
vector. In addition to MSV, the long-term average 
spectrum (LTAS) is extracted from the speech material. 
The procedure for LTAS is identical to MSV except that 
the mean of the spectrum is taken over the spectrogram 
instead of the variance.  

Figures 1 and 2 illustrate the LTAS and MSV 
representations computed over several speakers from the 
TIMIT corpus. The average, gender specific, formant 
structure is readily seen. The AFF estimates provided by 
both methods are relatively close to each other as 
predicted. Two general observations can be made; first, 
both genders most actively utilize the frequency band of 
300-3400 Hz that was historically selected to be the band 
of analog telephone systems (see Fig. 1 bottom frame), 
and secondly, the shape of MSV between genders is very 
contrastive in the 1000-5000 Hz frequency band. 

 
B. Automatic gender detection based on formant 

structure and pitch 
 
There are notable structural differences in the vocal 

tracts for men and women, and therefore the average 
formant information can be utilized for automatic 
detection of speaker gender (e.g., [7]). In addition, vocal 
fold structure can be considered as at least partially 
independent of vocal tract length (cf., e.g., source-filter 
modeling), and it also serves as a reliable cue to gender 
identity. Therefore the mean pitch of a speaker is also 
utilized in the recognition process. 

In the training of the recognizer, MSV vectors vm and vf 
are computed across several speakers from the TIMIT 
training set (N = 560 for both genders) in order to 
estimate the average male and female spectral structures 
with formant peaks. The common mean vc=(vm+vf)/2 of 
the vectors is subtracted from both vm and vf in order to 
maximize contrast: 

€ 

vg
' = vg − vc     (1) 

Finally, the obtained templates are normalized to unit 
vectors.  

Only variation in the frequency band of 1000-5166 Hz 
is used for recognition, since it was found to lead to 
maximal performance. The use of this frequency band is 
also in line with the work of Mendoza et al. [5], who 
performed a statistical discriminant analysis of male and 
female voices and found that gender specific differences 
in LTAS are concentrated in the frequency region of 0.8 – 
5 kHz.   

 

 
Figure 1: Average LTAS (top) and MSV (bottom) 

according to gender from the TIMIT training corpus. 

 
Figure 2: Gender specific cumulative probability 

distributions for pitch (left) and MSV & LTAS (right). 
 
Once the template vectors for both genders are created, 

the training set is processed again and the distance dg 
between MSV of the analyzed utterance and the 
templates is measured by cross-correlation. Distributions 
of dg values from male utterances to the male template 
and female utterances to the female template are modeled 
as a cumulative normal distribution (fig. 2, right). Pitch is 
also modeled for both genders as two separate cumulative 
Gaussian distributions estimated from the training data 
(Fig. 2, left).  

In the classification phase, MSV is computed from the 
input utterance according to section 2.A and vector vc is 
again subtracted from the representation. The mean pitch 
of the utterance is also extracted. Ultimately, the 
probability for a gender is estimated using the trained 
probability distributions and by assuming the 
independence of probabilities: 



€ 

P(gender) = P( f0 gender) *P(dg gender)  (2) 
 
where f0 is the mean pitch of the utterance and dg is the 
cross-correlation between the gender specific MSV 
template v’g and the MSV representation estimated from 
the utterance. When LTAS is used for comparison, the 
same training and classification procedure is used to 
obtain gender templates and respective cross-correlation 
distributions. 

 
III. RESULTS 

 
A. The templates 

 
Fig. 3 shows the obtained limited-band templates used 

for gender classification for both MSV and LTAS. The 
structure of both features clearly differentiates between 
male and female speakers. Although the behavior at 
higher frequencies is quite similar for both MSV and 
LTAS, there are notable differences in the region between 
1 and 2.5 kHz. One major difference is that the male 
LTAS contains two peaks at approximately 1300 Hz and 
2300 Hz, whereas the male MSV has only one wide peak 
in between centered around 1800 Hz. Since the range of 
male F2 is usually between 900 Hz and 2300 Hz, and F3 
receives values between 1700 Hz and 3000 Hz [7], this 
may suggest that MSV computed from sub-pitch periodic 
windows reacts more strongly to the movement of 
formants (describing their frequency range) whereas 
LTAS indicates mean formant locations. MSV peaks are 
slightly wider than LTAS peaks also at higher 
frequencies, thus supporting this assumption.  

It is also well known that active articulation mainly 
affects the three lowest formants (especially the second), 
whereas higher formants are more stationary, reacting 
relatively passively to articulatory movements. This is 
also reflected in both the LTSA and MSV templates, 
where the shape of normalized mean and variance models 
approach each other at higher frequencies.  

 
Figure 3: MSV and LTAS templates used in 

recognition. 
 

B. Baseline classification results 
 
When gender classification is evaluated with the 

TIMIT test set (56 males and 56 females, 10 utterances 
per speaker, 1120 utterances in total), a correct 
classification rate of 98.6 % is achieved (Table 1). This 
compares well with the approaches reported in the 
literature. For example, Zeng et al. [8] achieved a 98.2 % 
gender classification accuracy using a GMM based 
approach. Vergin et al. [2] achieved a classification rate 
of 85 % with a different corpus by using the average 
values of the two first formants as reference values for 
gender classification. Interestingly, they reported that no 
improvement was gained by including the higher 
formants, whereas the current approach leads to optimal 
results when the analyzed frequency region includes 
formants F2-F4 (1000 Hz – 5166 Hz) but not F1.  

 
Table 1: Gender classification results for the full 

TIMIT test set (560+560 utterances). 
gender F0+MSV F0+LTAS LTAS MSV F0 

male 99.3 98.8 82.9 85.7 98.6 
female 97.9 97.3 87.0 84.3 95.7 
mean 98.60 98.05 84.95 85.00 97.15 

 
While MSV and LTAS both carry information regarding 
gender identity, their overall effect is small compared to 
F0, which alone leads to an over 97 % classification rate.  

 
C. Feature combinations and noise  

 
To gain a better insight of feature performance in 

different signal conditions, the gender classification task 
was performed separately for each possible combination 
of the three features (F0, MSV and LTAS) using a subset 
of 300 + 300 utterances (30 + 30 speakers) from the 
TIMIT test set. Three different noise conditions were 
used: the clean signal, and SNRs of 20 dB and 10 dB 
(Table 2).  

The results indicate that MSV + F0 again yield the best 
recognition results (98.5 %), although the differences to 
LTAS + F0 and MSV + LTAS + F0 are not large. 
Although the recognition result at 10 dB SNR is still 
above 90 %, the noise robustness of this approach falls 
behind a GMM-model using F0 and RASTA-PLP 
features, where gender recognition rates of 97.9 % for an 
SNR = 20 dB and 97.5 % for an SNR = 10 dB have been 
reported [8]. The results obtained with solely LTAS are 
in line with previous gender recognition systems (e.g., 
[9], where the LTAS above 1 kHz was used for 
classification).  



Table 2: Gender recognition results for different 
feature sets in noise (TIMIT test, 300 + 300 utterances). 

Features Male Female Mean 
Clean speech (SNR = ∞) 

MSV + LTAS + F0 99.1 97.0 98.05 
LTAS + F0 98.7 96.3 97.50 
MSV + F0 100.0 97.0 98.50 
MSV + LTAS 89.0 88.3 88.65 
MSV 89.7 86.7 88.20 
LTAS 87.0 85.3 86.15 
F0 99.0 93.3 96.15 

White noise (SNR = 20 dB) 
MSV + LTAS + F0 98.0 97.3 97.65 
LTAS + F0 98.0 97.0 97.50 
MSV + F0 99.0 96.0 97.50 
MSV + LTAS 91.7 83.3 87.50 
MSV 90.0 76.7 83.35 
LTAS 88.7 82.3 85.50 
F0 97.3 94.0 95.65 

White noise (SNR = 10 dB) 
MSV + LTAS + F0 86.0 97.7 91.85 
LTAS + F0 86.0 97.3 91.65 
MSV + F0 87.3 96.0 91.65 
F0 87.7 95.3 91.50 
MSV + LTAS 80.0 79.3 79.65 
MSV 78.0 72.3 75.15 
LTAS 77.7 83.3 80.50 

 
A closer error analysis revealed that while MSV and 

LTAS have a similar overall performance on clean 
speech, they do not always make errors in the same 
utterances. In 76 cases of the total 600 utterances (clean 
speech), MSV and LTAS were giving contradictory 
information, i.e., one of the two was supporting the 
wrong gender hypothesis. However, the probabilistic 
framework used in the recognition compensates for this 
by assigning small probabilities to features that do not 
match either of the models. When the SNR drops to 10 
dB, MSV performs significantly worse than LTAS, 
which is a reasonable result since white noise has a larger 
impact on the variance than the mean.  

 
IV. CONCLUSIONS 

 
A straightforward and efficient method for estimating 

the average formant frequencies (AFF) through mean 
spectral variance (MSV) from continuous speech was 
presented in this paper. As predicted, the MSV method 
provides comparable AFF estimates compared with those 
of long-term average spectrum (LTAS).  

The usefulness of this approach was demonstrated in a 
gender classification task where speaker-specific MSV-
information and pitch were combined in a straightforward 
manner as cues for gender identity. In addition, MSV was 

compared and combined with LTAS. The achieved 
gender classification rate compares well to other 
approaches reported in the literature (e.g., [2], [8]) and 
MSV performance was slightly higher than LTAS for 
clean speech. However, and as can be expected, MSV is 
not a particularly robust feature for long-term averaging 
in severe white noise. The obtained gender classification 
results are also in line with previous literature, showing 
that F0 alone is a very strong cue to gender identity in 
speech. 
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