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Abstract 
Segmental and fixed-frame signal 
representations were compared in different noise 
conditions in a weakly supervised word 
recognition task using a non-negative matrix 
factorization (NMF) framework. The 
experiments show that fixed-frame windowing 
results in better recognition rates with clean 
signals. When noise is introduced to the system, 
robustness of segmental signal representations 
becomes useful, decreasing the overall word 
error rate. It is shown that a combination of 
fixed-frame and segmental representations yields 
the best recognition rates in different noise 
conditions. An entropy based method for 
dynamically adjusting the weight between 
representations is also introduced, leading to 
near-optimal weighting and therefore enhanced 
recognition rates in varying SNR conditions. 

1 Introduction 
Structural characteristics of signal representations 
are an important aspect in all pattern discovery and 
speech recognition tasks. There are numerous 
different methods for describing speech signals 
that use different types of signal transformations, 
including, e.g., FFT, cepstra and LP-coefficients. 
These approaches describe local spectral properties 
of the signal as feature frames at a specific point in 
time. However, it is well known that also the way 
that temporal aspects of the signal are included in 
the analysis is important. Most approaches in 
speech recognition, including state-of-the-art 
HMMs, use fixed-frame windowing where the 
chosen features are extracted from approximately 
20-25 ms long windows at fixed temporal 
intervals, e.g., every 10 milliseconds (see Gales 

and Young, 2008).  
Speech signals, however, have a very special 

temporal structure, which can be described in 
terms of hierarchically organized linguistically 
motivated units like utterances, words, syllables 
and phones. This structure has to exist in the 
speech signal in order for the receiver to be able to 
decode it. For example, human listeners are able to 
locate and segment phone-like segments in speech 
signal, although the reliability and accuracy of the 
location of phone-phone boundaries is often quite 
inaccurate (+/- 20 ms at best).  Phone structure, or 
at least phone-like units, can then also be detected 
automatically using automatic segmentation 
algorithms that often use information about 
spectral changes in the signal in order to provide 
hypotheses about possible phone-boundary 
locations. These phone-like segments can then be 
described with chosen features to next levels of 
processing instead of fixed windowing, or the 
phone boundary information can be utilized in 
processing of fixed frame representations as was 
done in this study to form segmental 
representations. The way that temporal 
information is embedded in the feature stream has 
important implications for the next steps in the 
processing of the signals.  

The aim of this paper is to present findings from 
comparison of fixed-frame and segmental based 
vector quantized representations of the speech 
signal in a NMF-based word learning and 
recognition task (Van hamme, 2008a; Van 
Hamme, 2008b; Ten Bosch et al., 2008), where a 
weakly supervised speech recognition system is 
trained with these two types of signal 
representations and then tested in word recognition 
accuracy.  



1.1 Properties of signal representations 

In theory, the use of temporal segmental 
information should have several advantages. It 
synchronizes the feature stream to phonetically 
meaningful units in speech and the features can be 
extracted from desired temporal locations aligned 
with each segment. Phonetic synchrony facilitates 
the co-occurrence of subsequent phonetic units in 
temporally coherent manner (or at fixed lags in 
NMF) as the temporal deviations resulting from, 
e.g., different speaking rates or badly aligned 
windows are removed. This may aid pattern 
discovery methods, including NMF, in detection of 
recurring patterns (see Stouten et al., 2008). 
Segmental knowledge can be also used for 
compression of the feature data describing the 
signal, since each segment can be represented with 
a fixed number of features that incorporate all 
essential aspects of a segment. Segmental 
descriptions have the potential of being more 
robust in noisy situations when compared to fixed-
frame representations, as they can integrate 
spectral information over large temporal units.  

The use of fixed frame representations, on the 
other hand, has several advantages, too. It provides 
a stable stream of information about the speech 
signal without being affected by the underlying 
signal content. For example, in situations where a 
segmentation algorithm misses transitions from 
phone to another and therefore leads to deletions in 
the label sequence, the fixed frame representation 
provides systematical information of the spectral 
content in the transient signal. Temporal resolution 
of fixed frames is also good if the window step 
size is sufficiently small, which means that the 
quantized label sequences can describe short-term 
details in the signal whereas segmental information 
is often an ‘average’ description of the content of a 
detected phone-like unit. 

2 Algorithms used in experiments  
2.1 Signal representations 

For the experiments, fixed-frame signal 
representations were first created using vector 
quantization (VQ) and then segmental information 
was utilized to derive segmental version of the 
representations. The signals were first pre-
emphasized and then MFCC-features were 
extracted every 10 ms. Quantization of the signal 

frames was performed using codebooks created by 
k-means algorithm: one codebook for static 
MFCCs, one for Δ-, and one for ΔΔ- coefficients. 
Corresponding VQ codebook sizes were 150, 150 
and 100 labels, respectively. Each codebook was 
used as a separate input stream to the system. 

Segmental information was provided using a 
blind segmentation algorithm that tracks sudden 
changes in the spectral content of the signal using 
cross-correlation of spectral frames. The algorithm 
detects approximately 75 % of the segmental 
boundaries defined in a manually annotated 
reference of a test-set in the TIMIT corpus (with 
maximum deviation of ± 20 ms; Räsänen, 2007). 
Segmental representations were created using the 
information about segmental boundaries to group 
fixed-frame representation into segments, and then 
compressing these groups of VQ labels in each 
stream into overall descriptions of the segments. In 
order to do this, a number of labels had to be 
chosen to represent each segment according to 
some decision criteria. Preliminary experiments 
indicated that the best method for picking up N 
labels for each segment was to take the mode of 
labels (the most frequent label) inside each of the 
N pre-defined sub-segment. This smoothens out 
small variability inside segments and picks only 
the most dominant label for the chosen sub-
segment. When one label was chosen to represent a 
segment, the mode was taken from labels between 
5 % and 95 % of the entire segment duration. In 
case of two labels per segment, the segment was 
divided to two sub-segments from 5 % to 45 % and 
from 55 % to 95 % of segment duration and modes 
were taken from these sub-segments. In case of 
three labels, corresponding sub-segment ranges 
were from 5 % to 40 %, from 30 % to 70 %, and 
from 60 % to 95 % in terms of segment duration. 

2.2 Word-learning algorithm 

The utilized non-negative matrix factorization 
(NMF) algorithm for word recognition is described 
in detail in the work of (Van hamme 2008a). The 
NMF in general is a mathematical technique to 
decompose a complex high-dimensional data-
matrix as a product of two lower-dimensional 
matrices (see Lee and Seung, 2001). It has shown 
to be a powerful language-learning algorithm, 
capable of acquiring and robustly detecting at least 
a dozen keywords (see Van hamme, 2008a; Ten 
Bosch et al., 2008; Van hamme, 2008b). 



The idea of the method is as follows. Firstly, 
speech utterances are converted to a vectorized 
form by accumulating the co-occurrences of labels 
from a single stream (statics, velocity and 
acceleration) in the signal at different time offsets 
(lags) and putting them in a histogram.  The 
histograms determined on the different label 
streams can be concatenated into a single high-
dimensional vector. This representation, which is 
called the Histogram of Acoustic Co-occurrences 
(Van hamme 2008a), is very convenient for 
performing NMF, due to the non-negativeness of 
its elements and the fact that it is by approximation 
entirely composed of non-negative subparts, 
namely the HAC-representations of the words 
constituting the original utterances. Concretely, the 
NMF algorithm can be written as: 

V ≈ W H   (1) 
in which V is a matrix, each column of which is 
the HAC-representation of an utterance from the 
input data. The columns of W contain non-
negative parts that make up the data, and the 
columns of H contain the extent to which each of 
these parts is present in each utterance. If the inner 
dimension (i.e. the number of columns in W) of the 
factorization is cleverly chosen, typically a bit 
higher than the total number of different words to 
be learned in the data, the non-negative parts 
contained in the columns of W will approximately 
model the HAC-representations of those words 
after convergence (Van hamme, 2008a; Van 
hamme, 2008b). 

Given an utterance from the test set, W can be 
used to calculate an activation level for each 
trained word. If our objective is to detect one 
single keyword in the utterances of the test set, the 
answer for each utterance will consist of the word 
that is maximally activated by this utterance. 

3  Experiments 
3.1 Material 

A corpus recorded as a part of the ACORNS 
project1 was used. The chosen subset of the corpus 
(UK Y1) consists of 4000 English utterances 
spoken by four different native English speakers 
(two males). The sentences in the material simulate 
linguistic input to infants less than one year of age. 
Each utterance contains a keyword surrounded by 

                                         
1 http://www.acorns-project.org  

a carrier sentence (total 11 different keywords: 
bath, book, bottle, car, daddy, mommy, nappy, 
shoe, telephone, Angus, Ewan). Each utterance is 
also paired with a meta-tag that indicates the 
presence of a keyword in the utterance. This 
simulates a multimodal information source in a 
situation where there is an object of interest in the 
environment and the learning agent is paying 
attention to it, making it possible to model acoustic 
content in association to some other information 
source. The training material consisted of 2999 
randomly selected utterances and the test material 
of the remaining 1000 utterances (one signal was 
removed due to an apparent recording problem). In 
the evaluation, the algorithm had to provide most 
likely keyword for each utterance that was then 
compared to the manual annotation. 

3.2 Baseline experiments 

After training the system with the 2999 utterances 
in the training material using 10 ms fixed-frame 
VQ-labels, a baseline result of 0.1 % WER was 
obtained for word recognition. When information 
about segmental boundary locations was utilized, 
keyword recognition accuracy depended on the 
amount of labels used for describing each segment. 
WER of 3.2 % was obtained using 1 label per 
segment. Interestingly, with two labels, only WER 
of 3.3 % was obtained after profuse experimenting 
with parameters, whereas for three labels the WER 
decreased to 2.8 %, being slightly below one label 
condition. 

While it is not exactly clear why the error rate 
does not decrease when two labels are used instead 
of one, a possible explanation may be that the co-
occurrence of labels becomes disturbed when the 
mode of labels is chosen from relatively large 
temporal areas that mainly represent left and right 
phone transitions (from the previous phone to the 
current phone and from the current phone to the 
next phone), whereas selecting one label per 
segment smoothens out these left and right 
transitions into one overall segmental description. 
However, transitional information should be still 
somewhat systematic at least for those phones that 
are not in the beginning or at the end of the word 
that is being modeled. Despite this, it may be that 
one overall description is better than two more 
context dependent descriptions, since counting co-
occurrences of context-dependencies of adjacent 
phones may be more sensitive to variations in, e.g., 



speaking rate and long-range phonetic context. 
In case of three labels per segment, the 

segmental description contains both left and right 
context and a sort of “locus” description from the 
middle of each segment that seems to carry 
important information regarding the underlying 
phonetic content. This is still significantly worse 
than the 0.1 % WER baseline with fixed frame 
representation.  

This concludes that the compression to 
segmental level descriptions loses some fine 
details in the speech signal that are meaningful in 
order to differentiate between words. Three labels 
per segment yields the best recognition results for 
segmental based signal representations but falls 
still far behind fixed frame accuracies.  

However, using only one label per segment has 
a noteworthy impact on computational complexity 
of further processing, since the signal 
representation is compressed into approximately 
1/11 (9.1 %) of the original 10 ms fixed-frame 
size. The accuracy with this approach is almost as 
good as with three labels per segment, but due to 
data reduction, it speeds up execution of the NMF 
algorithm greatly.  

3.3 Introducing noise 

In order to see how well the representations and 
NMF perform in noise, two different types of noise 
were introduced to the system: 1) white noise 
added to the acoustic input, and 2) artificial noise 
added to the already quantized label sequences. In 
these experiments, the fixed frame signal 
representations were compared with segmental 
labels with one label per segment (mode of fixed 
frame symbols inside the segment).  

In the first noise condition, five levels of (white 
Gaussian) noise were added to the acoustic input 
before signal quantization. Corresponding signal-
to-noise ratios were baseline level (set to 60 dB for 
visualization purposes), 40 dB, 30 dB, 20 dB, and 
10 dB, mean noise level being computed over each 
utterance, including small silent portions in the 
beginning and in the end of the signals. For the 
remaining of this paper, this type of noise shall be 
called acoustic white noise (AWN). 

The second type of noise, which shall be called 
channel noise (CN), was introduced to the 
recognition process by directly scrambling the 
label sequences at random indices. A manually 
defined percentage of labels were changed to a 

random label from the VQ codebook (using a 
uniform distribution). Five levels of SNR2 were 
used: ∞, 22dB, 8.5dB, 0dB, and -8.5dB (SNR = 
10log([1-pscrambled]/pscrambled), where p 

! 

"  [0,1]). 
This type of scrambling simulates noise originating 
from somewhere inside the system, e.g., by errors 
in the transmission channel, and can be used to 
examine the nature of representations needed for 
reliable pattern discovery.  

It was also of interest whether fixed frame and 
segmental representations would contain 
complementary information. Therefore activations 
of keyword representations in NMF were 
combined together with a formula: 

! 

actcombined =" # act fixed + (" $1) # actsegmental    (2)  
where 

! 

" #  [0,1] and actfixed and actsegmental are 
word activations caused by fixed-frame input and 
segmental input, respectively.  

In addition, reliability of segmentation in noisy 
conditions is also a central issue in this type of 
comparison. Boundary detection accuracy of the 
used segmentation algorithm has been found 
reasonably robust at least down to 0 dB SNR, 
however leading to increase in over-segmentation 
rate as the noise becomes more dominating (still 
approximately 75 % of boundaries are correctly 
detected at SNR = 20 dB with less than 10 % of 
over-segmentation; Räsänen, in preparation). In 
order to confirm these findings in word recognition 
experiments instead of previous comparison to 
reference annotation, the segmentation was also 
performed in parallel with both noisy input and 
clean input to see differences between these two 
situations.  

3.4 Experiments with acoustic white noise 

The system, including VQ codebook and NMF 
representations, was first trained using clean 
speech and then tested in word recognition with 
VQ-labels produced at different levels of AWN. 
Figure 1 displays the results at different SNR 
levels. As can be seen, the results are very similar 
for both representations at SNR = 40 dB, but as the 
SNR goes further down, the segmental 
representation of the signal performs significantly 
better than the fixed 10 ms frames approach. 
Increasing and varying the lag parameter of NMF  

                                         
2 Note that SNR is here defined as a ratio of corrupted 

versus uncorrupted VQ-labels instead of using momentary 
noise and signal amplitude or power. 



 
Figure 1: Word-error rates as a function of SNR for 
fixed frames labels every 10 ms, segmental labels (one 
label per phone-like segment) and these two combined 
in case of acoustic white noise. Combination of these 
representations has complementary value and increases 
the recognition accuracy. 

 
Figure 2: Word-error rates shown for different SNR 
levels (acoustic white noise) as a function of 
representation weighting factor alpha. The left edge 
(alpha = 0) shows results for pure segmental 
representation whereas the right edge (alpha = 1) shows 
results using only fixed frame information.  

did not affect the WER significantly from the 
original 50 ms and 90 ms lags in fixed-frame 
condition. 

When word model activations from both 
representations are combined using eq. 2, WER 
further decreases, suggesting that they contain 
complementary information at all noise levels 
(alpha optimized separately for each SNR level). 
Figure 2 displays the word-error rates for 
combined representations at different SNR levels 
as a function of alpha, both with segmentation 
performed in noise (solid lines) and with clean 
speech (dashed lines). 

As the fixed frame representation performs 
better at low noise levels, the optimal alpha for 
these levels is rather high. However, as soon as the 
SNR starts to drop, the optimal alpha starts to 
decrease fast. At very high noise levels the 

 
Figure 3: Word-error rates in channel noise as a 
function of SNR for fixed frames labels every 10 ms, 
segmental labels (one label per phone-like segment) and 
these two combined. Combination of these 
representations has complementary value and increases 
the recognition accuracy. 

segmental descriptions seem to degrade badly and 
alpha shifts back towards fixed frames. This was 
found to be due to fact that at very high noise 
levels the vector quantization process tends to 
attract most of the feature vectors into a handful of 
‘noise-like’ clusters. As these labels start to 
become the majority in the utterance related 
sequences, taking the mode of labels for all 
segments results in same (noise) symbols 
representing most of the segments. However, the 
overall recognition rates at 10 dB are extremely 
poor with all values of alpha. 

Figure 2 also shows that the difference between 
blind segmentation performed in clean and noisy 
speech is not being significantly affected by the 
increase of noise all the way down to SNR = 20 
dB. Only at SNR of 10 dB the degradation of 
segmentation quality becomes clearly visible in 
terms of recognition rate. This suggests that the 
information about segmental boundaries can be 
considered reliable at moderate white noise levels.  

3.5 Experiments with channel noise 

When noise is introduced directly to label 
sequences after quantization, the situation changes 
significantly as the noise affects only some of the 
quantized frames. The results show that the 
qualities of both representations start to degrade in 
a fairly similar manner as the SNR increases 
(figure 3), fixed frame representation being more 
effective all the way down to SNR = -8.5 dB. 
Increasing the number of lags or varying the lag 
lengths did not decrease the WER significantly 



 
Figure 4: Word-error rates shown for different SNR 
levels (channel noise) as a function of alpha. The left 
edge (alpha α = 0) shows results for pure segmental 
representation whereas the right edge (alpha = 1) shows 
results using only fixed frame information. 

from the original 50 ms and 90 ms lags in fixed 
frame conditions or 1, 2, 3, 4, and 5 segments in 
segmental conditions. A value for alpha was again 
optimized for each SNR level separately by finding 
the value resulting in the minimum WER. Figure 4 
shows the recognition rates at different noise levels 
and with different values of alpha.  

A combination of the two different 
representations yields again the best recognition 
results, suggesting that the information about 
larger scale units (speech segments) can aid in the 
recognition process when the input is distorted. 
Next we will consider how this combination can be 
performed automatically when the signal 
conditions change.  

4 Automatic weighting of 
representations 

4.1 Alpha in acoustic white noise 

It was shown that combining fixed frame and 
segmental information is useful when noise is 
introduced to the system. But how does the system 
know how to weight small details (fixed frames) or 
larger units (segments), i.e., how can it 
automatically find a proper value for alpha in 
varying conditions when word-error rates are not 
available for optimization?  

One method is to build a SNR dependent model 
for alpha so that value of alpha can be adjusted 
based on signal conditions. For on the fly 
estimation of SNR of the input, entropy is 
computed from the sequential label input X: 

! 

H(X) = " p(xi)logn p(xi)
i=1

n

#         (3) 

 
Figure 5: Entropy and optimal alpha values for acoustic 
white noise are shown as a function of signal-to-noise 
ratio. 

 
Figure 6: Optimal alpha values as a function of entropy 
and the 2nd order polynomial fitted to data. A nearly 
optimal value for alpha in different noise conditions can 
be chosen dynamically by estimating entropy of the 
input sequences. 

where n is the number of labels in the codebook 
and p is the probability distribution function of X 
that describes the frequency proportion of each 
symbol in the input. By measuring the entropy in 
different noise conditions, it is possible to find a 
mapping between SNR and the optimal alpha 
values. For white noise, entropy measured in the 
baseline SNR condition sets a maximum value for 
the entropy range, where H(X) = 1 would be  
obtained if signal content was entirely random 
(note that base of the logarithm is the size of the 
codebook). Figure 5 shows both entropy and the 
optimal alpha value as a function of SNR in the 
AWN condition. As the amount of noise increases, 
the entropy decreases as the noise-like clusters in 
the codebook start to become more probable.   

By taking entropy estimates and optimal alpha 
values for the test signals at several noise levels, a 
good estimate for alpha can be described as a 2nd 
order polynomial function of entropy of the input 
sequences.  

 

! 

" = a
2
H

2
+ a

1
H + a

0         (4) 



The coefficients a2, a1, and a0 of the equation will 
depend on the used codebook, and therefore it is 
necessary to estimate entropy and WER values as a 
function of noise level and define these parameters 
in the development/training phase of the system. 
For VQ codebooks of size 150/150/100 (static, Δ, 
and ΔΔ labels) used in the experiments, a2 = 12.07, 
a1 = -16.1, and a0 = 5.4 were obtained. The 
parabolic fit to the data used in the experiments is 
extremely good (correlation > 0.999; figure 6) and 
therefore recognition rates are basically identical 
between entropy-based and manually optimized 
alpha, and are not therefore plotted separately (see 
fig. 3 for the results). In practice some deviation 
between these two may occur if the alpha is 
adjusted on the fly, depending on the temporal 
length of input used for estimating the entropy.  

4.2 Alpha in channel noise 

Entropy based alpha estimation can also be used in 
channel noise situation. In contrast to AWN, the 
entropy now increases as SNR decreases since 
labels at random locations become replaced with 
random labels. A reasonably good fit between 
entropy and alpha values can be obtained with a 1st 
order polynomial using eq. 4. However, even a 
more straightforward approach to select a proper 
alpha exists. It can be grossly approximated from 
figure 4 that the valleys of the curves are located in 
the middle section of the alpha range. Fixing α to 
0.5 is then a trivial and computationally efficient 
method to combine information from both 
temporal resolutions in both clean sequences and 
noisy sequences.  

 
Figure 7: WER as a function of SNR for alpha 
optimized for each noise level separately, calculated 
from signal entropy, and α = 0.5 for all noise levels. 
Weighting segmental and fixed frame information 
equally in all conditions leads to nearly same 
recognition accuracy as in optimized situation. 

Figure 7 displays results from the recognition task 
in channel noise as was performed previously, now 
also including results with entropy based alpha 
estimation and the manually defined α. The 
difference between recognition rates using optimal 
alpha values and alphas estimated from the input 
entropy are small. However, having fixed alpha of 
0.5, that is, weighting the segmental and fixed 
frame information equally, leads to even better 
accuracy than the entropy based estimation. This 
suggests that this type of noise that does not take 
into account the spectral content of the speech, but 
uniformly affects entire quantized sequences, can 
be compensated by equally weighting fixed frame 
and segmental sized representations with NMF.  

4.3 Discussion about noise experiments 

An important finding here is that the information 
from larger temporal scales seems to become more 
and more important as the signal-to-noise ratio 
becomes worse (figures 2,4,5). Changes in the 
SNR of the input can be approximated with 
entropy after it is known how the entropy behaves 
at different levels of noise. This information can be 
then used to adjust the weight between scales 
dynamically. 

When noise is introduced to the acoustic signal 
before vector quantization (e.g., external noise 
source), the quality of quantized labels suffers 
greatly as the spectral structure of the input 
becomes dominated by the noise, biasing the NMF 
word activations towards specific word models. It 
seems that integrating temporal information over 
phone-like speech segments helps to form more 
systematic representations than treating each small 
time-scale unit as a meaningful event in the 
presence of external (white) noise. Combining 
these two representation leads to better recognition 
accuracy than using either of them alone. 

If noise is introduced directly to label sequences 
after quantization, weighting of small- and large- 
scale temporal information equally at all noise 
levels is much more straightforward and leads to 
similar or even better results than dynamic entropy 
estimation. It may be so that the balance between 
activations emerging in NMF representations on 
different temporal scales is automatically adjusted 
by the ambiguity of the incoming patterns at each 
scale, since this type of noise does not bias the 
representations in any specific direction (except 
towards general randomness). When small-scale 



(more detailed) patterns match well with the small-
scale representations, they dominate large-scale 
information in activation levels due to richness of 
information. When the small-scale patterns are 
distorted, previously learned large-scale patterns in 
the memory start to become more dominant. This 
linear weighting of cues has an interesting relation 
to perceptual processing in humans, where such 
summation of different cues embedded in the input 
takes place in, e.g., vision (Bruce et al., 2003; Oruc 
et al., 2003).  

5 Conclusions 
The use of segmental representations instead of 
fixed 10 ms frames degrades the recognition 
accuracy noticeably with clean speech. The 
magnitude of difference between these two is 
slightly surprising, as there are supposed to be 
several advantages of using segmental information, 
as was discussed in the introduction. However, it 
was found out that the segmental information is 
helpful in noisy conditions, adding robustness to 
the recognition decisions and therefore reducing 
the word-error rates. The weighting between 
segmental and fixed frame information can be 
estimated by utilizing entropy measure to the 
vector quantized labels. Parameters for this 
adaptive process have to be estimated in advance 
with well-defined input so that approximate 
entropy values for clean speech and several noise 
levels can be obtained.  

In case of uniformly distributed random channel 
noise, simply using constant equal weight for both 
small and large temporal scales results in nearly 
optimal results. This may be because the strength 
of activation of internal representations in NMF at 
different temporal scales seems to follow the 
amount of previously learned structure available at 
these scales. This has striking similarity to theories 
of linear summation of cues from different scales 
of processing. Why this type of self-adjustment 
does not occur in case of AWN is not certain, but it 
may be due to the fact that the noise in 
quantization input changes the process 
systematically (reducing entropy). As such, it 
biases activations of internal representations 
towards a specific set of words instead of 
uniformly impeding all internal representations. 
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