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Abstract 

The exaggerated intonation and special rhythmic properties of 
infant-directed speech (IDS) have been hypothesized to attract 
infant’s attention to the speech stream. However, studies 
investigating IDS in the context of models of attention are 
few. A number of such models suggest that surprising or 
novel perceptual inputs attract attention, where novelty can be 
operationalized as the statistical predictability of the stimulus 
in a context. Since prosodic patterns such as F0 contours are 
accessible to young infants who are also adept statistical 
learners, the present paper investigates a hypothesis that pitch 
contours in IDS are less predictable than those in adult-
directed speech (ADS), thereby efficiently tapping into the 
basic attentional mechanisms of the listeners. Results from 
analyses with naturalistic IDS and ADS speech show that IDS 
has lower overall predictability of intonation across 
neighboring syllables even when the F0 contours in both 
speaking styles are normalized to the same frequency range. 
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Introduction 
Infant-directed speech (IDS) is a speaking style that talkers 
often use when interacting with young infants. In contrast to 
adult-directed speech (ADS), IDS tends to have exaggerated 
intonational contours with higher fundamental frequency 
(F0) and larger frequency range (e.g., Grieser & Kuhl, 
1988), hyperarticulated vowels (Kuhl et al., 1997; but see 
also Martin et al., 2015), and shorter utterances with a 
higher token/type ratio (Phillips, 1973). In addition to 
serving as language input tuned to the developmental stage 
of the listener (Snow, 1977), one hypothesized role of the 
exaggerated nature of IDS is that it may engage infants’ 
attention to the speech stream more efficiently than ADS 
(e.g., Garnica, 1977; Fernald, 1989; see Soderstrom, 2007, 
for an overview), thereby facilitating language learning 
from speech.  

Although the exaggerated intonation of IDS is often 
implicitly assumed to be the cause for higher attentional 
attractiveness, according to our knowledge, no study has 
systematically evaluated properties of IDS in the context of 
what is known about perceptual mechanisms for stimulus-
driven attention. Instead, the evidence for higher attentional 
capture of IDS largely comes from behavioral studies that 
show that infants prefer to listen to IDS over ADS (Fernald, 

1985; Cooper & Aslin, 1990; Pegg, Werker & McLeod, 
1992). In addition, based on acoustic analyses and their 
perceptual correlates, IDS is often characterized as more 
salient or prominent than ADS, therefore also potentially 
being more interesting to the listeners  (e.g., Garnica, 1977; 
Fernald, 1989). Since stimulus-driven attention and 
prominence of the perceived speech input seem both to be 
driven by unpredictability of the stimuli in the given context 
(see the next sub-section; but see also Kidd et al., 2012), the 
existing knowledge suggests that IDS might be more 
attractive to the listeners simply because it has different 
predictability properties over time than ADS. For instance, 
larger variability of F0 in IDS already implies, but does not 
guarantee1, higher uncertainty regarding the realization of 
the intonation at any moment in time. However, no study 
has systematically compared the prosodic predictability of 
IDS and ADS from a statistical learning point of view, even 
though infants are known to be sensitive to statistical 
regularities in their perceptual experience (c.f., Saffran et 
al., 1996; Soderstrom et al., 2009, and references therein) 
and to the prosodic structure of their native language 
already from an early age (e.g., Nazzi et al., 1998).  

In the present paper, a quantitative investigation is carried 
out in order to test whether IDS is indeed not just more 
variable, but also less predictable than ADS, thereby being 
in line with the recent predictability-based accounts of 
perceptual attention. Importantly, we assume that the 
listener is able to learn the typical behavior of intonational 
contours from speech experience and this creates the basis 
for prosodic expectations for new speech input. In order to 
do this, a straightforward computational model of statistical 
learning is applied to F0 trajectories of naturalistic IDS and 
ADS and tested in its ability to predict intonational contours 
on speech utterances from both speaking styles.  

Stimulus-driven attention and statistical learning 
A number of models for stimulus-driven perceptual 
attention suggest that attention is drawn to stimuli that are 
low-probability, or unpredictable, in the given context (Itti 
& Baldi, 2009; Zhang et al., 2008; Tsuchida & Cottrell, 

                                                             
1 Unless speech is assumed to be a normally distributed IID 

process without temporal contiguity, a larger F0 range does not 
guarantee lower temporal predictability (c.f., e.g., a sine wave).  



2012; Zarcone et al., 2016), basically enabling the 
perceptual system to focus on aspects of the environment 
with the highest information content (Shannon, 1948), i.e., 
input that is not yet learned and thereby accurately predicted 
by the brain. However, infants are also known to prefer 
stimuli that are surprising or novel only as long as the input 
is not too unlikely in the given context, also known as the 
Goldilocks effect (Kidd et al., 2012). This suggests that the 
input should still be structured enough to support learning, 
thereby providing the basis for statistical expectations and 
evaluation of the relative information value of the inputs. 

Earlier work with prosody perception suggests that low-
probability intonation patterns in the context of otherwise 
predictable prosody are associated with higher perceptual 
prominence of the concurrent words (Kakouros & Räsänen, 
2016a) and alter semantic processing of speech (e.g., Magne 
et al., 2005), having the same consequences as low-
probability words in the given context (see Kakouros et al., 
submitted, for a discussion). Recent evidence also suggests 
that adult listeners are sensitive, and rapidly adapt, to 
changing statistical properties of the intonation patterns, 
leading to experience-based expectations for prosody whose 
violations give rise to the subjective impression of 
prominence (Kakouros & Räsänen, 2016b; Kakouros et al., 
submitted). Overall, the earlier research indicates that 
auditory attention and perceptual prominence are connected 
to the predictability of the prosodic patterns, and this may 
play a role also in the perception of IDS.  

Importantly, the concept of predictability necessitates 
some type of mechanism for learning regularities from 
experience, thus connecting attention and prominence with 
the concept of statistical learning. The most parsimonious 
assumption would be that the prosodic learning utilizes the 
same statistical learning mechanisms hypothesized to play a 
role in other aspects of language acquisition, but now 
operating at the level of prosodic features such as F0 
contours and energy envelopes instead of the phonemic 
units of the language. Since infants are known to be adept 
statistical learners, and since prosodic cues are perceptually 
accessible to them (e.g., Hawthorne, Mazuka & Gerken, 
2016), it is likely that infants are sensitive to statistical 
regularities present at the prosodic level similarly to adults.  

If predictability of the stimulus in a given context is a 
major factor in controlling stimulus-driven attentional 
orientation, as also exemplified by the widely used 
preferential head-turn or looking-time paradigms to probe 
infants’ learning, we would expect IDS to have different 
predictability properties than ADS. In the present study, we 
will look into one specific aspect of IDS, namely, 
intonation, and test how well F0 contours can be predicted 
over time for the two speaking styles in question.  

Data 
The speech material used in the present experiments comes 
from the ManyBabies study that aims to replicate IDS 
preference across a large number of labs (The ManyBabies 
Consortium, 2017). In the context of that study, naturalistic 

speech from female caregivers to their infants or from 
caregivers to other adults was recorded in central Canada 
and Northeastern US. All caregivers had infants aged 122–
250 days. The recordings were carried out in an infant-
friendly greeting area/testing room using lapel clip-on 
microphones connected to smartphones. The task involved 
describing a closed set of labeled objects by asking the 
mother to take each object out of a bag one at a time and 
talk about it to her baby (IDS) or to an experimenter (ADS). 
In addition, there were two types of objects: those 
supposedly familiar to the infants (e.g., a ball or a block) 
and those considered as novel (e.g., a sieve or a whisk). 
After rough manual segmentation of the recordings into 
utterances, the utterances were also classified into three 
categories: utterances containing the familiar object word, 
those containing the unfamiliar object word, and utterances 
without naming of the object. 

In the present study, we used the Canadian section of the 
recordings, containing speech from a total of 11 mothers. 
The US recordings (4 mothers) were excluded due the 
significant presence of room reverberations that could have 
impacted automatic F0 estimation. All utterances shorter 
than 1 s or with less than five syllables (see Methods) were 
discarded, leading to a total of N = 882 utterances (504 IDS, 
378 ADS) with an average of 80.2 ± 29.9 utterances per 
talker. Average utterance length was 4.0 ± 2.5 seconds (3.1 
± 1.1 for IDS, 5.2 ± 3.1 s for ADS). 

Methods 
The overall goal of the analysis was to compare 
predictability of F0 trajectories in the IDS and ADS 
utterances using a statistical model. This was done by first 
syllabifying and estimating F0 trajectories for all speech, 
parametrizing F0 trajectories during each syllable, clustering 
the syllable-specific parameters into a finite number of 
categories (“F0 shapes”) in an unsupervised manner, and 
then modeling the temporal evolution of these F0 states 
across time. By training the predictive model from a set of 
utterances and then computing the likelihoods of F0 
trajectories on a set of held-out utterances, measures of F0 
predictability can be estimated from the data. Fig. 1 shows a 
schematic picture of the processing pipeline for an 
individual utterance. All experiments were conducted in 
MATLAB unless mentioned otherwise. 

Pre-processing of F0 trajectories 
F0 trajectories were estimated at a 100-Hz sampling rate 
with YAAPT-algorithm  (Zahorian & Hu, 2008; version 
4.0), constraining F0 estimates to the range of 100–600 Hz 
and using YAAPT’s ptch_fix() tool for post-processing of 
the pitch tracks for potential estimation errors and for 
interpolation of the trajectories across unvoiced regions. For 
the predictability analysis, utterance-level F0 tracks were z-
score normalized to zero mean and unit variance in order to 
focus on temporal behavior instead of the absolute mean or 
range of the pitch.  In addition, the original non-normalized 
F0 contours were used as baseline features in the analyses. 
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Figure 1: A schematic view of the F0 predictability analysis. 
The output is the probability of F0 in syllable s given the 
observed F0 in m preceding syllables (after training the 
statistical model on a number of training utterances). 
 

All utterances were syllabified using a sonority envelope-
based automatic syllabifier described in Räsänen, Doyle and 
Frank (submitted; see also Räsänen, Doyle & Frank, 2015, 
for an earlier but similar version). All syllables without any 
frames with reliable voicing (as determined by YAAPT) and 
syllables shorter than 50-ms were merged with the 
neighboring syllables, leading to a total of 8056 syllables in 
the data set. Note that although this type of acoustic 
syllabification is not perfectly accurate in terms of the 
phonological rules of the language, it still provides 
systematic chunking of speech into syllable-like units with 
each unit consisting of a sonorous peak surrounded by less-
sonorous onsets and coda (see also, e.g., Villing, Ward & 
Timoney, 2006, and references therein). Importantly, such 
acoustic-signal based chunking can be argued to better 
match the syllabification capabilities of pre-linguistic 
infants that also must rely on non-phonological acoustic 
cues in their perception of speech before they master the 
sound system of their native language (Räsänen et al., 
submitted).  

Following the syllabification, F0 trajectories during each 
syllable were parametrized by fitting a second order 
polynomial to the trajectory in time (Fig. 2) and using the 
polynomial coefficients without the constant term as a 
parametric description of the F0 during the syllable. 
Parameters across all syllables in the data were then vector 
quantized into Q discrete categories using standard k-means 
clustering with random initialization. In practice, these Q 
shapes correspond to different F0 patterns with varying 
curvature and rate of change as a function of time, larger Q 
simply meaning more fine-grained distinction between F0 
patterns that occur during the syllables. 

Temporal modeling of F0 state sequences 
As a result of the pre-processing, the F0 trajectory of each 
utterance was described as a sequence of discrete states qs ∈ 
Q, one state per syllable s. In order to quantify the 
predictability of F0, a mixed-order Markov chain model, or 
MOCM, was trained for the sequences (Saul & Pereira, 
1997). Instead of computing n-gram statistics for different 
n-gram orders and then choosing and/or merging the models 
with best predictive capability, MOCM allows modeling of 
varying order Markov chains with a single set of model 
parameters. In MOCM, the probability of an F0 shape qs in 
syllable s, given the preceding m syllables, is calculated as 
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Figure 2: An example of syllable-wise 2nd order polynomial 
approximation of the F0 trajectory. Top: The original 
speech waveform. Bottom: YAAPT-estimated and z-score 
normalized F0 trajectory with interpolation across unvoiced 
segments (blue solid line) and the corresponding 2nd order 
polynomial least-squares fit for F0 during each syllable. 
Syllable boundaries are shown with vertical lines. 
 

P(qs | qs−1,...,qs−m ) =

λk
k=1

m

∑ (qs−k )Mk (qs−k,qs ) [1−
j=1

k−1

∏ λ j (qs− j )]
   (1) 

where lag-specific transition matrices M and transition 
weights λ  are estimated from training data using the 
Expectation Maximization (EM) algorithm (Saul & Pereira, 
1997). In the context of the present study, Mk describes the 
transition probabilities between syllabic F0 contours at 
different lags k while λ  weighs these probabilities from 
different distances based on the reliability of the probability 
estimates in the context of the observed shapes. 

In the experiments, a third order (m = 3) MOCM model 
was trained using the syllabic F0 sequences from 90% of the 
combined pool of IDS and ADS utterances. This was 
followed by syllable-by-syllable estimation of F0 
likelihoods on the remaining held-out utterances using Eq. 
(1). The procedure was repeated in a 10-fold manner until 
all utterances had been used in the training and test sets. The 
division of utterances into training and testing sets was 
purely random, and therefore both contained speech from 
the same 11 unique talkers. We decided not to use speaker-
specific models for F0 due to the modest number of 
utterances per talker that would have caused data sparsity 
issues in the model estimation. As a result, the obtained 
probability estimates describe how expected is the F0 
behavior in the given context given a preceding exposure to 
a large number of F0 trajectories, low probability reflecting 
unexpected and thereby attention capturing intonation. 

Note that the choice of Q, the number of quantization 
levels for the F0 shapes, contains an inherent tradeoff 
between the resolution of the F0 trajectory modeling and the 
amount of data required for model estimation. Although 
there is no a priori reason to consider any Q specifically 
favoring IDS or ADS due to the z-score normalization of all 
F0 values, we wanted to minimize the impact of Q in our 



findings. Therefore the simulation was conducted for Q = 6, 
12, and 24 with syllable-specific likelihood estimates 
averaged across all these runs. In addition, all likelihoods 
were averaged across five runs of the entire experiment to 
diminish variation caused by random initialization of the k-
means clustering process, even though the k-means 
clustering results for the two dimensional features were 
found to be highly consistent across individual runs. 

Data analysis 
Five utterance-level statistical descriptors, namely, the 
mean, SD, min, max, and range (max−min) were calculated 
for the F0 likelihoods across all syllables and for the 
original F0 trajectories in Hz in each utterance. Talker and 
style-specific (IDS vs ADS) means for the descriptors were 
then averaged across all the utterances from the given 
talkers. Before any statistical analysis, the statistical 
descriptors for F0 likelihoods were corrected for the 
variable amount of matching training data for the speaker 
and speaking style in question. This was done by first fitting 
a speaker-independent linear regression model from the 
number of matching training samples to the statistical 
descriptors, and then subtracting the prediction from the 
original values, basically decorrelating the measures with 
respect to the amount of training data.  

In order to test differences between IDS and ADS, the 
normalized descriptors for F0 predictability and descriptors 
for the original F0 values were then compared between the 
IDS and ADS conditions using the paired t-test with 
significance level of p < 0.05 (Holm-Bonferroni corrected 
for the ten comparisons and df = 10 for all reported stats). 

Results 
Fig. 3 shows a summary of the results together with markers 
and t-statistics for significant differences between IDS and 
ADS. As expected, the mean frequency of F0 in the 
utterances is higher in IDS (210.9 Hz ± 29.0 Hz) than in 
ADS (189.9 ± 23.9 Hz). In addition, the average utterance-
level maximum and minimum F0 are significantly higher in 
IDS, but the overall variability and absolute range (in Hz) 
are not different between the speaking styles.  

As for the predictability, the mean predictability of F0 in 
IDS was significantly lower than in ADS (t(10) = 4.82, 
Cohen’s d = 1.93). In addition, maximum predictability 
during each utterance was also lower (t(10) = 5.46, d = 2.10) 
and so was the range of predictability values across the 
syllables in the utterances (t(10) = 5.19, d = 1.88). In 
contrast, variability of predictability across the utterances 
was not different between IDS and ADS. Notably, the 
average F0 probabilities are within a similar range to what 
was found to be optimal stimulus complexity for attentional 
capture in the visual perception experiments of Kidd et al. 
(2012) and significantly above chance-level (p = 0.0972). 
This suggests that the F0 trajectories might be in a suitable 
complexity region for triggering novelty preference, 
enabling predictive learning but also leaving room for 
unpredictable patterns and events.  
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Figure 3: Top: Utterance-level statistical descriptors of F0 
predictability, averaged across all ADS/IDS utterances. 
Middle: F0 predictability after controlling for the amount of 
matching training data (speaker & style) for each utterance. 
Bottom: Utterance-level descriptors of original F0 in Hz, 
averaged across all utterances. Error bars denote ±1 SE 
across all talkers. Significant differences between IDS and 
ADS are denoted with asterisks and related t-values (paired 
t-test, df = 10, and using significance level p < 0.05 with 
Holm-Bonferroni correction for the ten comparisons).  
 

We also repeated the entire analysis but now using linear 
instead of the 2nd order model for the syllabic F0 contours 
(i.e., encoding only the average direction and rate of change 
in F0 during the syllable). This replicated all the main 
findings (significantly lower mean, max, and range for the 
predictability of F0 in IDS; not shown separately). We also 
tested whether there were differences in the predictability 
descriptors between the three sentence types (familiar 
object, unfamiliar object, no labeling) but none of the tests 
were significant after controlling for multiple comparisons. 
In addition, the predictability difference is not simply due to 
a larger quantization error for IDS parameters, since the 
reported pattern of results persists also if only the IDS data 
are used for the k-means codebook creation leading to lower 
quantization errors (RMSE) for the IDS F0 trajectories.  

Overall, the main result confirms the hypothesis that the 
intonation contours in IDS are less predictable than in ADS, 
at least for the present data set in question. 

As a follow-up validation of the findings, we also ran 
binary logistic regression to classify all the individual 
utterances into IDS or ADS classes using the utterance-level 
descriptors for probabilities and raw F0 values as features 
and using likelihood ratio as the criterion for forward 
stepwise feature selection (using SPSS version 23.0, IBM 
Corp., Armonk, NY). The resulting model achieved 
IDS/ADS utterance classification rate of 74.8% using a final 



set of four features: SD of likelihood (Wald statistic = 
31.28, p < 0.001; df = 1 for all features), mean likelihood (W 
= 23.08, p < 0.001), likelihood range (W = 88.34, p < 
0.001), together with max of original F0 in Hz (W = 66.24, p 
< 0.001). This further shows that the predictability 
differences of intonation in IDS and ADS do not simply 
appear as aggregate measures across a large number of 
utterances, but can be also used to effectively classify 
individual utterances into ADS or IDS. 

Finally, a subset of the utterances used in the present 
study had been previously rated for their IDS-likeness using 
a low-pass version of the recordings as part of the 
ManyBabies project (see The ManyBabies Consortium, 
2017, for details). These utterances were rated on a 7-point 
Likert scale by several naïve raters recruited from Amazon’s 
mechanical Turk. We therefore calculated the correlation 
between all the utterance-level F0 descriptors and the 
human IDS-likeness ratings for all the IDS utterances with 
ratings (N = 442). The human judgments of IDS-likeness 
correlated with the mean (Spearman’s r = 0.25, p < 0.001), 
SD (r = 0.31, p < 0.001), min (r = 0.154, p = 0.002), max (r 
= 0.35, p < 0.001), and range (r = 0.32, p < 0.001) of the 
original F0 values, i.e., with all of them. Surprisingly, all the 
descriptors of F0 trajectory likelihoods were uncorrelated 
with the human ratings (p > 0.05 for all comparisons).  

Since predictability was nonetheless a reliable cue in our 
classification of utterances into IDS and ADS based on the 
original study labels, the finding with the naïve ratings data 
suggests a dissociation between perceptual correlates of 
IDS-like speech in naïve listeners (e.g., high and variable 
pitch) and the lower predictability of intonation in IDS as a 
potential attractor of listeners’ attention. Notably, an earlier 
study by Singh, Morgan & Best (2002) has also reported 
that higher and more variable pitch alone was not sufficient 
to capture infants’ attention when pitted against affective 
speech. This suggests that the properties that make an 
utterance sound IDS-like to a naïve listener may be 
unrelated to those that lower the predictability of IDS. How 
those properties relate to the attentional attractiveness of 
IDS is currently unclear and requires further investigation.  

Discussion and conclusions 
This study aimed to test whether the exaggerated intonation 
in IDS also translates into less predictable prosody over 
time. The results support this idea, even when the actual 
mean and range of F0 values in the predictive analysis was 
normalized between the IDS and ADS utterances. In 
addition, while IDS intonation is less predictable than ADS, 
it is still relatively structured as indicated by the mean 
predictability that is significantly above the chance-level 
given the analyzed quantization levels. These findings 
provide initial support to the idea that IDS may be more 
attentionally attractive simply because it is more surprising 
without being too chaotic (c.f., Kidd et al., 2012), thereby 
tapping to the basic attentional mechanisms causing 
orientation towards unfamiliar inputs. 

In addition, some evidence for a dissociation between 
human ratings of IDS-likeness and predictability of the 
utterances was also discovered, warranting further research 
in the issue. In fact, a dissociation between F0 variability 
and F0 predictability is expected on the basis of 
predictability-based accounts to prominence and attention in 
speech. More specifically, it has been argued that the 
perceptual system should allocate processing resources to 
the aspects of the input that are not yet predicted by the 
brain independently of the physical magnitude or other 
absolute property of the input. In contrast, highly 
predictable inputs, by definition, have low information 
value and are therefore low priority targets for sensing and 
learning even if they have large magnitude on some scale 
such as loudness or pitch (e.g., Kakouros & Räsänen, 
2016b; Kakouros et al., submitted; see also, e.g., Friston & 
Kiebel, 2009). In the context of speech, the talker can 
control the listener’s attention by freely using non-canonical 
prosodic forms on any word or words of choice without 
changing the literal meaning of the utterance (Kakouros et 
al., 2016b; Kakouros et al., submitted). The present study 
suggests that caregivers may (implicitly) utilize a similar 
strategy to maintain infants’ attention on the speech stream 
or highlighting certain segments of speech.  

However, the present work only provides an initial 
investigation into the predictability aspects of IDS using a 
certain modeling approach. Much more work is needed to 
understand the underpinnings of IDS and how it relates to 
learning and attention mechanisms of the human cognition. 
This also includes the need to replicate the present 
investigation on different speech data and also preferably 
with alternative approaches to quantifying suprasegmental 
statistical structure. In addition, prosody is much more than 
F0 trajectories, and therefore aspects such as timing, 
utterance duration, and intensity should be investigated from 
the predictability point of view independently and in 
conjunction with F0.   
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