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Abstract 

This work presents a learning algorithm based on transitional 
probabilities of atomic acoustic events (vector quantized spectral 
features). The algorithm learns models for word-like units in 
speech without any supervision, and without a priori knowledge 
of phonemic or linguistic units. The learned models can be used 
to segment novel utterances into word-like units, supporting the 
theory that transitional probabilities of acoustic events could 
work as a bootstrapping mechanism of language learning. The 
performance of the algorithm is evaluated using a corpus of 
Finnish infant-directed speech. 
Index Terms: unsupervised learning, distributional learning, 
language acquisition, word segmentation 

1. Introduction 
Human children face the complexity of spoken language when 
they are starting to learn their native language during the first 
year of their life. Since spoken language consists mainly of 
continuous acoustic signals without pauses between words, 
segmentation and thereby learning of words is a difficult task 
without pre-existing knowledge of the language. Although some 
cues to word boundaries exist, they are mainly language specific. 
Therefore the word segmentation capabilities of human infants 
cannot be explained solely by innate word segmentation 
mechanisms, but a learning aspect has to be included. One of the 
most widely studied cues for word segmentation are the 
transitional probabilities (TPs) of subsequent speech sounds and 
the closely related phonotactic rules (e.g., [1-3]).  

The idea behind the transitional probability analysis is that 
the probability of transition from one acoustic unit to another is 
higher inside a linguistically relevant pattern such as word than 
in the transitions across two patterns. Studies have shown that 
infants as young as 8 months of age can learn TPs of syllables in 
an artificial language and use these statistical dependencies to 
segment continuous speech stream into word like units [1]. 
Further experiments support the idea that the learned word-like-
unit structures act as lexical candidates if they are presented in a 
proper linguistic context [2]. Lately, Pelucchi et al. [3] have 
shown that infants are able to use transitional probabilities also 
in real speech spoken in a foreign language, and that they also 
take into account backward probabilities of speech sounds. This 
suggests that knowledge of the phonemic or syllabic system of a 
language is not a necessity for distributional learning.  

Based on these findings, it can be hypothesized that infants 
might bootstrap their word segmentation process by analyzing 
regularly recurring stretches of acoustic signals (that can be 
modeled with TPs between atomic acoustic units) without pre-
existing phonemic knowledge (phones, syllables). These 
recurring segments act as preliminary lexical items that can be 

associated to multimodal/motor representations (functional 
aspect) and analyzed in further detail to facilitate speech 
perception (developmental aspect; see, e.g., PRIMIR-theory of 
language acquisition by Werker & Curtin [4]).  

If, however, the TP framework were to be considered as a 
feasible method for the bootstrapping of linguistic learning, the 
parallel existence of a computational mechanism that is able to 
demonstrate such processing would be convenient. As for 
computational models of word segmentation, in [5] and [6] it 
was shown that word segmentation is possible in a weakly 
supervised learning framework where the learning agent receives 
multimodal support from a visual scene. By associating 
recurring segments of speech to objects in the visual scene 
through cross-situational learning, the agent learns to parse 
keywords from the incoming utterances. However, this learning 
paradigm did not lead to learning of words that were not 
systematically related to objects in the environment. Instead, 
only the keywords that were present in both audio and as visual 
categories were learned and segmented properly.  

In the current work, we have modified the previously used 
Concept Matrix (CM) algorithm to perform truly unsupervised 
acquisition of word models without multimodal support. The 
new algorithm will be referred to as self-learning concept 
matrices (SLCM). We show that the algorithm is capable of 
acquiring spectrotemporal representations of recurring word-like 
units from speech without any a priori knowledge of speech 
sounds or words, and that these representations inherently 
segment novel utterances into word-like units.  

2. Methods 
The SLCM algorithm originates from the CM algorithm [6] that 
is based on the analysis of transitional probabilities between 
elements aj ∈ [1, 2,…, NA] in a discrete sequence X = [a1, a2, …, 
an]. Each model c (or concept in a multimodal case) consists of a 
set of matrices that model transition probabilities at different 
temporal distances, or lags, k = {k1, k2 ,.., kK}.  

In the previous work [5,6], the set of models c ∈  C that were 
updated during perception of an utterance was defined by a bag 
of tags that represented contextual information. For example, an 
utterance “What a nice green dog and ball!” would be paired 
with visual tags [ball] and [dog]. This type of weak supervision 
automatically grounds the auditory words with contextual 
knowledge, but as a shortcoming, the contextual information 
determines directly how many internal models are needed and 
forces all content in the audio signal to be updated into these 
models. Therefore, e.g., silence and function words did not 
acquire their own models unless they were somehow presented 
in the contextual information source.  

This problem can be overcome by disabling the use of 
external tags for c, and by letting the algorithm itself to decide 



which model or models should be updated. By using the already 
learned models to recognize new input in a limited time window, 
it is possible to decide whether the input is novel or familiar. If 
the activation value of an existing model exceeds a pre-defined 
threshold, this model becomes updated by the contents in the 
analysis window. If no sufficiently high activation is present, a 
new model will be created for the signal in the analysis window. 
Initially, the system is created without any models and the first 
analysis window becomes the first model.  

2.1. Novelty detection and learning 

When a sequence X ={a1, a2, …, an} is used as input, the 
subsequence Ω of the first L elements Ω(1) = {a1, a2, …, aL} of 
the sequence is chosen and the transition frequencies between 
element pairs f[ai,aj] , a ∈ [1, 2, …, NA], at lags kd ∈ k in Ω(1) 
are stored into transition frequency matrices fc(ai | aj , kd), where 
c = 1 for the first model, i.e., a separate matrix is created for each 
lag. Then the frequency matrices are normalized into transition 
probability matrices Ps by having: 
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Then the analysis window is shifted S elements forward to 
position Ω(T = 2) = {a1+T*S, a2+T*S, …, aL+T*S} and the 
previously learned models c are used to compute the transition 
probabilities of the new sequence by using the learned models:  
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i.e., the mean of TPs is computed across all lags k. Then the 
mean probability of each model in Ω(T) is computed: 
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Now, if the activation Â(c,T) of any single model exceeds a pre-
defined threshold δ, the TPs of the most activated model are 
updated according to (1) using the transitions in the sequence 
Ω(T). If no sufficiently high activation is achieved, a new model 
cm is created using the transitions in Ω(T). The window is then 
again shifted L elements and the new subsequence Ω(T+1) is 
recognized using the learned models. This windowing process is 
repeated for the duration of entire training signal, leading to 
learning of a non-predefined number of models for patterns in 
the input sequence. 

2.2. Enhanced segmentation and classification 

In order to enhance contrast between of the learned TP models, 
the probability that a specific transition from ai to aj occurs in 
the case of model c and lag k, instead of any other models, is 
incorporated into the activation matrix P by having: 
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where NC is the total number of models. The subtracted term 
1/NC ensures that non-informative transitions, i.e., transitions 
that are equally probable across all C, have a value of zero. The 
reason why (4) is not applied to novelty detection during 
learning is that it enforces a forced choice between the existing 
models. This leads to poor novelty detection performance since 
the probability mass of each transition across all models is 

always zero (note that activation values can be negative due to 
the subtraction of the constant). However, the normalization (4) 
has a significant impact on segmentation performance. 

Now, when a novel utterance is represented, the activation of 
each model c at each moment of time t is computed  
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This provides a temporally local activation estimate for each 
model. The activations are smoothed temporally using a simple 
moving average filtering in a 480 ms window. Only the most 
activated model for each moment of time is retained, leading to 
segmentation of the input into activation stretches of competing 
models, and segment boundaries are indicated by points in which 
the winning model changes from one to another (fig. 1). 

3. Experiments 

3.1. Material and data preprocessing 

The speech material consisted of 2000 Finnish child-directed 
utterances from a female speaker, taken from the ACORNS 
corpus [7]. The corpus was designed to represent speech input to 
an infant under the age of one year, and contains simple sentence 
structures like “Missä puhelin on nyt?” (“Where is the telephone 
now?”). Together with all nouns, verbs, adjectives and pronouns, 
the size of the vocabulary is 38 words plus silence. Half of the 
utterances were recorded as infant directed speech (IDS) and the 
other half as adult directed speech (ADS). However, no 
distinction between these two modes was made in these 
experiments. 1700 randomly chosen signals were used for 
training and the remaining 300 were used for testing. 

The audio signals were windowed with a Hamming window 
of length 25 ms and a window step size of 10 ms. Standard 
MFCC features (11 coefficients + energy) were extracted from 
each frame, and the relative weights of the energy and first 
cepstral coefficient (spectral tilt) were reduced by multiplying 
the coefficients by a factor of 0.25. A randomly chosen subset of 
MFCC vectors was used to create a vector quantization (VQ) 
codebook of size NA = 150 using the k-means algorithm. All 
utterances were then converted to sequences of VQ-indices using 
the codebook and Euclidean distance metric, yielding one VQ 
label ai for each 10 ms frame. The training set resulted in one 
long sequence (376628 frames) that encompassed all training 
data and was presented to the SLCM in a single pass. Each test 
utterance was represented by a separate VQ sequence to allow 
matching to manual reference on utterance-by-utterance basis. 

3.2. Evaluation 

The temporal accuracy of the word segmentation was evaluated 
by comparing the standard deviation σs of the distance from 
detected word boundaries to boundaries produced by automatic 
HMM-based forced-alignment segmentation. The mean number 
of insertions per annotated word was also computed to ensure 
that the apparent increases in the segmentation accuracy were 
not achieved by introduction of additional segment boundaries. 

  The contents and quality of the learned models were 
analyzed by computing the entropy of the distribution of word 
classes represented by each model. First, the temporal segments 
of speech where each model was most active were detected. 
Only segments exceeding 150 ms in length were included in 
further analysis. These segments were compared to the 
underlying word-level annotation in order to obtain a distribution 



of underlying words that explained what words were actually 
spoken when the given model was active. Purity of a model’s 
distribution was then measured by the Shannon entropy  
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that yields zero for a fully selective model and one for a totally 
unselective model. Here, R denotes the total number of words 
and α denotes the word in the reference annotation. Entropy was 
computed separately for all of the models c, and the overall 
mean entropy HC was computed by weighting the model 
entropies with the frequencies fc that denote how many times the 
model c was activated in the test set: 

 

€ 

Hc = fc
c=1

Nc

∑ H(c) / fc
c=1

Nc

∑     (7) 

In addition, word class entropy Ha was measured. Ha indicates 
how many models exist for a given annotated word class α, and 
it can be computed similarly to Hc by simply swapping c with α, 
and replacing R with NC in (6), and then by computing the 
(unweighted) mean of these entropies across all words. For a low 
overall Ha, only a small number of models exist for each 
annotated word, whereas Ha that approaches one indicates that 
all models are equally representing all of the words.  

3.3. Word segmentation results 
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Figure 1: Signal waveform for utterance “Näytä äiti” (top) and 
the corresponding model activations at different rows (bottom). 
Words “näytä” and “äiti” are represented by strong activations 
of two of the models. 
 
Lags k = {1, 2, …, 8} were used in the experiments. The training 
produced a total of 60 models using parameter values of δ = 
0.039, L = 600 ms, and S = 200 ms. Once the training data was 
processed as described in section 2.1, the learned models were 
normalized for recognition using (4) and the test set of 300 novel 
utterances was used as input to the recognition process (5). This 
yielded 1293 word segments exceeding 150 ms length (4.31 per 
utterance).  

Figure 2 illustrates the overall entropies Hc and Ha of the 
process as a function of training time while figure 3 shows a 
surface-plot of the same entropies for all models separately. As 
can be seen, the entropies drop very rapidly in the beginning as 
new models are being created. Most of the models are already in 
place after 10 minutes of speech and only a small number of new 
models are formed later. As the amount of training time 
increases, selectivity of the existing models increases as well. 
After training over the entire training set, the overall selectivity 
achieves Hc = 0.22 and the annotation entropy Ha = 0.25. 

Figure 4 shows the number of insertions per annotated word 
(left) and the mean segment boundary deviation from the 
reference (right) as a function of training time. Behavior of the 
curves is not strictly monotonically decreasing, especially near 
the beginning. However, the overall descending trend in both 
curves indicates that the segmentation becomes more accurate as 
more training data is introduced, and that this increase in 
accuracy is not obtained by introducing superfluous boundaries. 

Table 1 shows the underlying word distributions for the 17 
most selective models after removing models reacting mainly to 
silence (#h). There are nine word models that are reacting only 
to the corresponding word over 70 % of the time. Models for 
words “katso” (look), “hassu” (funny), “pullo” (bottle), and 
“kirja” (book) are especially selective, since they only react to 
silence in addition to the their own word.  

The reason why silence is included in many of the models is 
the fact that many of the words are systematically positioned at 
the beginning or ending of an utterance, and the windowing 
mechanism in the learning process captures some of the silence 
preceding or following the words. In addition, the forced-
alignment annotation of the corpus systematically deviates from 
SLCM at utterance endings due to the slowly fading “breathy” 
spectrum characteristic of words in sentence final position.	  
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Figure 2: Model entropy Hc and word class entropy Ha as a 
function of time trained (in minutes). 
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Figure 3: Surface-plot of model entropies Hc as a function of 
training time. The zero-entropy area in the right-back corner is 
due to models that were formed only later on during the training. 
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Figure 4: Number of segment boundary insertions per annotated 
word (left) and mean boundary deviation from reference (right) 
as a function of training time. 



Table 1. Correspondence between the learned models and the 
reference annotation. Each row represents the contents of a 
model i. N denotes the number of times a given model was 
activated in the test set. Only words with p>0.05 are shown. 

i N word 1 p1 word 2 p2 
1 26 katso 0.9     
2 8 pullo 0.84 on 0.07 
3 7 vaippa 0.83 nyt 0.13 
4 16 hassu 0.82 #h 0.14 
5 18 pullo 0.82 #h  0.17 
6 26 kirja 0.8 #h  0.18 
7 6 nyt 0.8 on 0.13 
8 35 on 0.78 puhelimen 0.16 
9 8 nyt  0.74 isi 0.13 

10 27 auto 0.67 #h  0.27 
11 20 äiti 0.66 kylvyn 0.08 
12 12 onpas 0.65 on 0.15 
13 33 Johanna  0.63 äidin 0.31 
14 24 hassu  0.61 #h  0.2 
15 6 isi 0.61 nyt 0.33 
16 24 ota 0.59 #h  0.27 
17 12 kiva 0.57 isi 0.22 

When the detected speech segments are listened to, many of the 
models exhibit fairly accurate word segmentation in terms of 
subjective perceptual judgment. As can be expected based on 
table 1, some of the models are very pure and only rarely contain 
extraneous signal contents in addition to one specific word, 
whereas some of the models represent two different words. 
These multi-word models are often due to the windowing that 
spans partially across two short words when the model is first 
created. This causes the model to react to the two words either in 
isolation or combination, and subsequently the model will be 
updated to incorporate more and more detailed representations of 
the both words. This type of problem is especially pronounced 
for often co-occurring short words such as “se on” (it is), “nyt 
on” (now is), or “nyt isi” (now daddy). 

4. Discussion and conclusions 
The present work demonstrates that automatic word 
segmentation and learning of primitive ungrounded lexical items 
from real speech is possible without pre-existing linguistic or 
phonemic knowledge or contextual support by simply analyzing 
transitional probabilities between atomic acoustic events. This 
provides support to the distributional learning hypothesis (e.g., 
[1-2]) and PRIMIR theory of language acquisition [4]. 

The proposed algorithm is computationally straightforward 
and it is likely that, with further development, the performance 
of the algorithm can be enhanced. For example, by utilizing a 
varying length windowing synchronized to the temporal 
envelope of the speech could facilitate learning and increase 
model selectivity. Despite current shortcomings, the algorithm 
clearly demonstrates a capability for the incremental learning of 
internal representations from speech without supervision.  

Previous approaches to unsupervised word learning have 
been reported by Park & Glass [8] and Aimetti [9].  Park & 
Glass [8] used dynamic time-warping (DTW) to find recurring 
stretches of speech signals and then linked these acoustically 
similar segments through graph clustering. A cognitively 
inspired system by Aimetti [9] also performs unsupervised 
acquisition of word models by using DTW-based detection of 
recurring units between acoustic episodes. The difference with 
DTW-based approaches and the SLCM is that a DTW-based 
system looks for repetitions on an utterance by utterance basis, 
requiring storage of feature representations of all utterances in 
memory, whereas the SLCM does not store episodic 

representations in full detail, but only stores statistical 
dependencies (“TPs”) between atomic acoustic units in the case 
of each model and uses the obtained statistical models to 
recognize new inputs. This makes SLCM computationally very 
attractive, since the computational complexity does not increase 
with the input length, but only linearly as a function of number 
of learned models. However, the DTW approaches are also 
compatible with the idea of tracking transitional probabilities in 
speech, i.e., they succeed in the task if such statistical structure 
exists, even though the algorithms do not explicitly count and 
store probabilities of subsequent acoustic events. 

Finally, despite the possibility for totally unsupervised 
learning of lexical candidates, it should not be forgotten that real 
linguistic development takes place in a much richer world where 
the learner is embedded in a tight interaction with its caregivers 
and the surrounding environment [10]. When compared to the 
unimodal learning situation as was used in this work, the 
interaction with the complex real world and other social agents 
actually imposes additional constraints and provides feedback 
that can aid in linguistic development (see, e.g., [11]). Also, the 
only way to acquire meaning for the auditory word forms is to 
ground them in combination with other perceptual systems and 
actions of the agent, something that was not studied in this work. 
It is also noteworthy that a real infant is exposed to a much 
larger amount of speech during infancy than what was used in 
this study, or any other known studies attempting to perform 
computational modeling of language acquisition. 
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