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ABSTRACT 

It has been shown that both infants and machines are able to 
discover recurring word-like patterns from continuous speech in 
the absence of supervision. However, these early models for 
words do not always generalize well across different acoustic 
variants of the same words. Instead, several parallel models for 
words or multiple fragments of a word are initially learned. In 
this work, we study a two-stage computational framework for 
refining the initially acquired representations of acoustic word 
patterns. In the first stage, the automatically discovered word 
patterns are studied in the context of visual word referents, 
enabling grounding of the word forms to the systematically co-
occurring objects and actions in the environment. In the second 
stage, synonymy of the words is measured in terms of the 
similarity of their environmental contexts. The word models that 
share similar external context are merged together, producing a 
lexicon with a smaller number of parallel models for each word 
and with a greater generalization capability from each model 
towards new realizations of the word. The experimental results 
show that the context-based equivalence and merging of parallel 
models leads to a more compact and higher quality lexicon than 
a learning process based purely on acoustic similarities.  
 

Index Terms— language acquisition, pattern 
discovery, latent learning, random indexing 

1. INTRODUCTION 

The manner how infants acquire their native language seems 
almost effortless. Towards the end of their first year, they are 
already sensitive to typical phonetic and prosodic aspects of their 
native language, recognize a number of spoken words, and are 
on the brink of producing words by themselves. However, closer 
inspection on early language development reveals that young 
infants are not always successful in understanding previously 
learned words when they are spoken in new prosodic contexts or 
by new speakers with novel acoustic characteristics. Instead, the 
infants may treat the same words spoken by different speakers as 
totally different acoustic patterns (e.g., [1]; see also [2] and 
references therein). Only later, through extensive exposure to the 
words spoken in various situations with non-random referential 
context (events and objects that the words are referring to), the 
infant acquires knowledge that acoustically different patterns can 
map to a same external concept.  

The above behavioral findings are in line with the research 
in automatic speech recognition (ASR) and computational 
modeling of language acquisition (CMLA). In ASR, it is well 
known that acoustic models trained on only one speaker and one 
speaking style generalize poorly to new speakers. This means 
that training data from numerous speakers are required in order 
to build speaker-independent systems. In CMLA, models 
investigating the emergence of early speech perception skills 
face the same problem of acoustic variability.  

For example, in the work of [3] and [4], the distributional 
learning of vowel categories from speech was investigated. The 
authors applied unsupervised statistical methods to estimate 
proper vowel categories from formant frequencies ([3]) or 
MFCC features ([4]). When the obtained distributions were 
evaluated in speaker independent case, the categorization 
performance of vowel tokens was notably lower than in the 
speaker-dependent case. In [5], a computational model for fully 
unsupervised acquisition of ungrounded word patterns from 
continuous speech was presented. When the performance of the 
model was studied in detail, it was found that there were 
typically several parallel internal representations that had been 
learned for each annotated word even for speech material spoken 
by only one speaker. When several speakers with varying voice 
qualities were used to train the model, the number of parallel 
models increased even more [5]. Although the learned word 
models were still responsive to numerous varying tokens of the 
same word, the overall results seem to suggest that the acoustic 
variability, and on the other hand the acoustic overlap between 
different words, is too high in order to obtain perfectly selective 
and sensitive word models in purely bottom-up manner. In the 
absence of any additional source of constraints to the learning 
problem, and in order to maintain distinctiveness of different 
lexical items, the variability inevitably leads to a situation where 
there are initially more acoustic word pattern models than that 
there are actual words; the system has no way of knowing which 
aspects of speech signals are relevant for differentiating phonetic 
content from the acoustic carriers and suprasegmental details 
(but see also [6]). This is similar to the effects reported in the 
study of infant speech perception [2]. 

In this work, we extend the work of [5] and use 
computational simulations to explore grounding of automatically 
discovered word forms into external word referents. 
Furthermore, we present a mechanism for merging of 
functionally equivalent (synonymous) word models together in 
order to obtain a more compact lexicon than what can be 
possibly obtained in the case of purely bottom-up acoustic 
clustering. We propose that the referential contexts in which 
words occur play an essential role in the development of early 
vocabulary, providing the necessary constraint for mapping of 
acoustically distant speech tokens under the same linguistic 
categories. The proposed learning process is closely connected 
to the definition of word synonymy, i.e., the degree of similarity 
of contexts in which two or more words typically occur. Here we 
simply expand the definition of synonymy to the level of 
acoustic patterns, studying synonymy of acoustic patterns in the 
presence of events and objects that the words refer to. 

Also note that the present approach is different from word 
learning models such as [7-9] in that it does not assume that 
words are always learned directly in the context of more or less 
definite contextual referents. Instead, the system first learns 
recurring acoustic patterns from speech and only later attempts 
to ground them into their referents through cross-situational 
learning.  



We will first describe the speech material used in the 
experiments, followed by description of the computational 
methods. The third section is dedicated to the experiments with 
word model merging, whereas the final section discusses the 
findings and conclusions from the experiments. 

2. MATERIAL  

The speech material used in the experiments was taken from the 
Y2 UK section of CAREGIVER corpus [10]. In one talker case, 
the entire material from one female speaker (Speaker-02) was 
used so that 2000 utterances were used for training and the 
remaining 397 novel utterances were used for evaluation. For 
two talker case, data from one male and one female was used 
(Speaker-01 and Speaker-02), with a total of 4000 utterances for 
training in randomized order and 794 utterances for evaluation.  

In the CAREGIVER Y2 corpus, each utterance contains 1-4 
target keywords surrounded by carrier sentences (mean 5.96 
words including function words; e.g., “Where is the happy 
horse?”, keywords emphasized). There are a total of 50 different 
keywords in the material and the overall vocabulary size is 80. 
Unlike real speech, the presence of keywords is statistically 
balanced over the corpus in order to remove any word-to-word 
dependencies of the keywords. This is required in order to avoid 
over-simplification of the learning problem. Each of the 50 
keywords is associated with a unique tag that denotes the 
presence of a keyword in an utterance, simulating a situation 
where the learner can simultaneously hear the speech and see the 
salient word referents that are being discussed about. The idea is 
that the tags enable grounding of the learned word patterns to 
their visual referents. Since are typically multiple keywords and 
multiple referents for each utterance, the grounding is essentially 
a cross-situational learning problem. During the discovery of 
initial word patterns, no visual tags were utilized. 

3. METHODS 

3.1. Unsupervised word pattern discovery 

The algorithm used to discover word patterns from speech is 
based on transitional probabilities (TPs) of atomic acoustic 
events [5]. On a conceptual level, the pattern discovery process 
can be considered as a spectrotemporal clustering process in 
which temporally distributed patterns are assigned into a non-
predefined number of clusters (models) based on their temporal 
and spectral similarity.   

The atomic acoustic events are vector quantized (VQ) 
speech frames: features are obtained from standard MFCC 
extraction (12 coefficients, 32 ms window, 10 ms frame shift). A 
subset of MFCCs from the training data is then passed to k-
means clustering in order to obtain a codebook of size N = 150, 
and all vectors are then quantized using the codebook. The 
pattern discovery algorithm analyses TPs between the VQ-
indices at several lags (temporal distances), and builds a non-
predefined number of TP-based models for speech patterns. 
Creation of new patterns is based on the similarity of TPs 
between the contents of the current window of analysis, and the 
TPs characteristic to previously learned models. If the contents 
of the current window of analysis are sufficiently similar to the 
previously learned best matching model, the model is updated 
with the new data. Otherwise a new model is created from the 
contents of the window. Then the window is shifted forward.  
Once a set of models m1,m2,…,mn ∈ M has been learned, it can 
be used to recognize similar patterns from novel input. The 
models also automatically segment novel input into a sequence 
of auditory patterns. When compared to underlying annotation, 

these patterns typically correspond to words, part-words or often 
co-occurring combinations of short words [5]. 

From the perspective of the work reported here, it is most 
important to note that there is a novelty threshold parameter φ in 
the algorithm that defines how good match is required between a 
previously learned model and the current signal content under 
analysis. The higher the threshold φ, the more selective the 
models will be, and the more there will be unique models in 
order to cover the entire speech material with the high selectivity 
models. An interested reader is suggested to see [5] for a more 
detailed description of the algorithm and the related results on 
unsupervised discovery of word patterns from speech. 

 
3.2. Contextual analysis of words 

Once the patterns, or word-like units, M have been learned, their 
occurrences in the context of possible word referents are studied. 
The referents simulate visual input to the learner and the 
assumption is that the learner can perform categorical perception 
of the visual world so that the referents can be represented as a 
set of unique discrete tags c1, c2, …, cj ∈ C. The tags correspond 
to the keywords annotated in the CAREGIVER corpus.  

In order to study the context of each auditory pattern, we 
apply the principles of a technique called random indexing1 (RI; 
[11,12]). More specifically, each word referent ci is assigned 
with a random and unique sparse vector vi of length L that 
contains mainly of zeros, but has a small number of elements 
with +1 and -1 values at random dimensions. Since the vectors 
are long and sparse, each randomly generated vector v is 
approximately orthogonal to all other vectors corresponding to 
other word referents. Also, a zero matrix G of size MxL is 
initialized so that each row in the matrix corresponds to a unique 
auditory pattern discovered in the earlier stage. This will be 
called the context matrix.  

During learning, the speech material is fed to the system 
utterance by utterance. For each utterance, the simultaneously 
present word referents c = {c1,c2,..,cn} are converted into 
corresponding context vectors {v1,v2,…,vn}, and the vectors are 
summed into an overall visual context vcont = v1+v2+….+vn. 
Then for each auditory pattern mi present in the utterance, the 
visual context vector is added to the corresponding row i in the 
context matrix G. After the entire training data is preprocessed, 
the rows of G denote typical visual contexts in which the 
auditory patterns M occur. This information serves two 
purposes: 1) The strength of association between auditory 
pattern mi and visual referent ci can be computed by simply 
computing hivj

T , where hi is the i:th row of G.  2) The degree of 
synonymy (with respect to visual context) between different 
models M can be computed by normalizing the rows G to unit 
vectors and then computing S = GGT. In this representation, 
elements S(i, j) obtain a value between -1 and 1 depending on 
the similarity of the contexts in which i and j typically occur, 
indicating their functional equivalence. 

 
3.3. Merging of synonymous words 

Once the degrees of synonymy between word models are known, 
the word models sharing sufficiently similar contexts can be 
merged. In the experiments of this paper, the synonymy matrix S 
was analyzed incrementally row by row. For each row i, the 
                                                                 
 
1 Note that RI is not necessary to achieve grounding of word 
forms, but simple joint distribution p(c,w) would suffice. 
However, RI allows flexible representation of more complicated 
contexts of multiple items and the memory requirements do not 
scale exponentially with the vocabulary size. 



maximally synonymous column j (i ≠ j) of S was searched for. If 
the degree of synonymy satisfied S(i,j) > δ, where δ was a user 
defined parameter, the models mi and mj were merged together. 
Then the models i and j were excluded from further merges, and 
the analysis proceeded to the next row i+1 of S (naturally only if 
i+1 ≠ j). The process was repeated for each row of S, merging all 
models to the most synonymous one if their mutual synonymy 
exceeded the threshold δ. Note that if the merging would be 
performed based on the acoustic similarity instead of contextual 
similarity, the result would correspond to smaller novelty 
threshold φ in bottom-up word learning, leading to less-
constrained clustering of the patterns. 

The actual merging of models was performed as follows: 
the word models of the algorithm  are in practice sets of matrices 
P explaining TPs between sequence elements at different 
temporal lags, and the TPs are always derived from the 
corresponding frequency matrices F for transitions fi(ay|ax,k) at 
lag k [5,13]. Therefore the model combination is achieved 
directly by summing frequency matrices of mi and mj so that 
fn(ax|ay,k) = fi(ay|ax,k)+ fj(ay|ax,k) for all x,y and k, and then 
normalizing them according to the normal procedure in Räsänen 
[5] in order to obtain model specific transition probabilities.  

 
3.4. Evaluation  

The quality of the word models and the accuracy of the 
grounding was measured using a previously unseen test set of 
speech data. For each frame n in an utterance, the most likely 
word pattern mi was determined. Then the corresponding 
association strengths A(n,c) between the sparse representation of 
mi and all visual referents C were computed from G (see section 
3.2). The cumulative activation A(c) over the entire utterance 
was obtained by summing over all frames n, and the K most 
activated referent hypotheses were compared to the ground truth 
with K true referents. The word association performance (WAP) 
was defined as the proportion of correct hypotheses over the 
entire test set.  

The merging process was evaluated iteratively using the 
following scheme: 1) The entire test data was recognized using 
the learned models Mt and the RI-based context matrix Gt that 
had been computed based on co-occurring visual referents. The 
word association performance was evaluated using the 
grounding information derived from Gt. 2) Synonymous pattern 
models were merged together based on St derived from Gt in 
order to form a smaller set of models Mt+1. 3) The entire corpus 
was analyzed again using the new models Mt+1 in order to learn a 
new context matrix Gt+1. Then the test set was recognized again 
with the new representation. The process in 1)-3) was iteratively 
repeated as long as there were at least one model pair mi and mj 
that exceeded δ in synonymy. It is acknowledged that this was 
somewhat unrealistic learning situation because the same speech 
tokens were perceived by system after each iteration. However, 
it was a necessary simplification due to the finite amount of data 
that was available for the experiments. Naturally, the signals in 
the test were never used in the training but were simply used to 
probe the performance. 

As an outcome of the evaluation process, the WAP was 
obtained as a function of the total number of word models. The 
hypothesis was that the total number of word models can be 
decreased from the originally discovered set using the proposed 
merging scheme, and that the merging could be done without 
essential loss in word association performance. This would lead 
to a more compact set of pattern detectors that would respond 
and generalize selectively to specific words in the audio. In other 
words, the proposed model combination should yield higher 
WAPs for models that are learned from bottom-up statistics and 
refined by additional contextual constraints than in the case 

where the same number of word models are learned purely based 
on acoustic similarity. 

4. RESULTS 

The word association performance was first measured in a 
purely bottom-up approach (no merging) by varying the novelty 
threshold φ ∈ [0.04, 0.059] of the pattern discovery algorithm, 
leading to the discovery of varying number of word patterns. 
The analysis window length of PD was 480 ms with 240 ms 
window shift between the frames (see [5]). For random indexing, 
randomly generated hyperdimensional vectors of length L = 
1500 with 15% of non-zero components were used.  

Blue lines with squares in Fig. 1 show the results from the 
single speaker experiment. As can be observed, the grounding is 
relatively successful, yielding a WAP of 67% correct 
associations between the audio and the referents. Note that, the 
optimal number of word models is notably higher than the true 
number of words in the material (455 vs. 80). This suggests that 
even in the presence of a small number of non-selective “trash” 
models, the overall number of parallel models for acoustic 
variants of each lexical entry is quite large.  

In the merged condition, the original patterns from the 
highest threshold (N = 455 patterns, φ = 0.059) case were used a 
starting point for merging. The blue dashed line in Fig. 1 shows 
the WAP on the single speaker test set, probed while the 
merging proceeds with the synonymy threshold δ = 0.8. As can 
be observed, the association strength between audio patterns and 
the visual referents does not decrease very notably while the 
total number of models is decreased to 12% of the original 
number (N = 56). When the performance is compared to bottom-
up learning result with an equal number of word models, the 
difference is almost 10 percentage units in the favor of the 
merged models. 

Red lines with circles in Fig. 2 show the WAP for speech 
from one male and female talker. Again, the quality of word 
form to word referent associations increases as the number of 
learned patterns is increased. Also, the optimal number of 
acoustic pattern models is notably larger than the true size of the 
lexicon of the material. Again starting from the maximum 
number of word models obtained in bottom-up pattern discovery 
(N = 737), the merging was performed to combine models 
systematically sharing similar visual context. The result shows 
that the number of models reduces to less than fourth of the 
original, leading only to small degradation in performance (from 
63% to 56%). When compared to the performance with the same 
number of purely bottom-up models, the difference is 16 
percentage units in favor of top-down merging, indicating 
notable enhancement in model selectivity and generalization. 
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Fig. 1: Word association performance (WAP) for single speaker 
(blue line with squares) and multiple speakers (red line with 
circles). Results from bottom-up learning (solid line) and after 
top-down merging (dashed line) are shown separately. 



5. DISCUSSION AND CONCLUSIONS 

The focus of this work was to study the quality of word models 
when they are first learned in a purely unsupervised manner 
from speech, and only later grounded to external referents such 
as objects and events in the environment. It was also studied how 
the selectivity and generalization capability of the word models 
change when parallel models representing same lexical items are 
merged together based on their synonymy (or functional 
equivalence). 

The obtained results suggest that the bottom-up acoustic 
learning can lead to notably above chance-level in word to 
referent associations. However, the number of word models is 
much higher than the true number of lexical items in the data. 
When contextual information regarding the visual referents 
corresponding to the spoken utterances is provided to the learner, 
the learning algorithm is able to estimate the degree of 
synonymy of the learned models. By merging the models with a 
high degree of synonymy, the overall number of internal 
representations for words can be decreased notably with only a 
minor impact on the ability of the lexicon to account for 
previously unseen word tokens. On the other hand, 
generalization ability of each single model increases notably in 
the process. This can seen as increased word association 
performance of the contextually merged word models when 
compared to the same number of models learned purely on the 
basis of acoustic similarity. 

The current work also provides the first transitional 
probability based word learning framework in which words are 
first discovered from continuous speech based on their acoustic 
similarity and only later associated to contextual referents 
through cross-situational learning. As can be observed, the word 
association performance is not perfect. Actually, it is notably 
worse than in a learning process where the acoustic patterns are 
directly learned in the context of relevant grounding information. 
For example, Räsänen and Laine report a keyword recognition 
rate of above 92% in the same task using the TP analysis 
algorithm in a weakly-supervised training mode [13], whereas 
the current unsupervised approach achieves only 67% on the 
same performance scale. The same experiments have also been 
conducted on a simpler 10 keyword material of CAREGIVER 
Y1 corpus, leading to approximately 96% WAP with indirect 
grounding using the currently discussed methodology 
(unpublished results), whereas  WAP of 100% is achieved in 
weakly-supervised learning mode [14].  

However, the difference between indirect and direct 
grounding is not surprising because the statistical constraints 
available in the in the weakly-supervised situation are much 
stronger. For example, in discovery of a word, a weakly-
supervised algorithm can take into account only those utterances 
that are present concurrently with the respective visual referent. 
Also, the number of unique lexical items can be derived from the 
number of visual referents in the training set (i.e., the algorithm 
is able to listen to speech in the context of each specific 
referent). When the patterns are discovered in an unsupervised 
manner, the only constraints are provided by the statistics of the 
auditory stream itself. This necessarily leads to sometimes vague 
or inaccurate models that do not precisely correspond to true 
words (see [5] for detailed analysis). However, this is also what 
is observed in young infants when they are learning their first 
words (see [2] and references therein), and also allows learning 
of representations for lexical items that do not have directly 
perceivable referents. 

Given the current result and the ones obtained earlier in [5], 
two main hypotheses can be formulated that should be studied in 
more detail in future:  

1) Given a distributional framework for unsupervised word 
learning from purely acoustic signals, it seems that the acoustic 
variability across different realizations of words is too high for a 
learner to directly achieve high-quality speaker-independent 
word models for each lexical item in the familiarization data. 
Instead, multiple parallel representations for words are 
discovered, corresponding to realizations of the words in 
different linguistic contexts or spoken by different talkers.  

2) The quality and generality of the original proto-lexical 
items becomes refined as the learner accumulates experience of 
situated spoken language with caregivers and other people. The 
role of contextual referents is important in this process, allowing 
the discovery of functional equivalence between acoustically 
different patterns (or distinctiveness between acoustically similar 
patterns) that would be otherwise impossible to derive purely on 
the basis of speech signal properties. 
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