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Abstract 

Linguistic prominence in speech is known to correlate with the acoustic measures of energy, F0, 

and duration. In contrast, the role of spectral tilt in the realization of prominence has remained more 

inconsistent between previous empirical investigations. This may be partially due to the lack of a 

standard method for quantifying spectral tilt or due to difficulties in estimating the acoustical source 

of spectral tilt, the glottal flow, from continuous speech. These issues have rendered interpretations 

and comparisons between studies difficult. In addition, (i) little is known about the robustness of tilt 

estimators for prominence detection in the case when speech is not clean but corrupted, as in real 

life, by environmental noise or telephone transmission (i.e. degradation caused by bandpass filtering 

and quantization noise). Moreover, (ii) little attention has been paid to multidimensional 

representations of source spectrum that can potentially incorporate more information about the 

phonation style than purely scalar measures. In this work, we study spectral tilt in signaling 

prominence in spoken Dutch and French under different levels of additive noise, and for telephone-

band coded speech, and compare several one-dimensional tilt measures that have been previously 

encountered in the literature as well as multidimensional tilt measures. We also compare spectral tilt 

measures with other standard acoustic correlates for prominence, namely, energy, F0, and duration. 

Our results provide further empirical support for the finding that tilt is a systematic correlate of 

prominence in Dutch, that the role is smaller in French, and that energy, F0, and duration appear 

still to be the most robust features for discriminating prominent and non-prominent words. In 

addition, our results show that there are notable differences between different tilt measures at 

different levels of noise, and that multidimensional representations for tilt improve class 

separability from the scalar measures. 

 

Keywords: prosody, sentence prominence, acoustic measures, spectral tilt, noise robustness, DNN 
 
 
 
 
 
 
 



 3 

1. Introduction 

Spoken language contains a multitude of distinct information types at different levels, ranging from 

linguistic content to speaker information, that are all intertwined into a single representational form, 

the acoustic speech signal. One defining difference between spoken and written language is that 

spoken language carries prosodic information. Prosody involves the use of suprasegmental 

properties that allow for a broader way of expression that goes beyond the coding of information 

into individual phonemic or lexical items, and conveys information at slower rates extending across 

individual segments. In this regard, prosody delivers information on how something is spoken as 

opposed to what is spoken (or written), and therefore prosody contributes substantially to the 

naturalness of speech. In addition, prosody impacts the intelligibility of speech, as prosodic cues are 

used to guide perceptual parsing of the speech stream. In this context, prominence is a prosodic 

phenomenon that can be generally defined as the property by which a linguistic unit is perceived to 

be standing out from its environment (see, e.g., Cutler, 2005; Terken & Hermes, 2000; Wagner et 

al., 2015; Shattuck-Hufnagel & Turk, 1996, for related definitions). As the definition for 

prominence is specific to the linguistic domain upon it is evaluated, a particular description for 

sentence prominence encompasses the degree of perceived emphasis for one or more words during 

a sentence (see, e.g., Cole, Mo, & Hasegawa-Johnson, 2010) and for lexical prominence the 

accentuation of syllables within words (see, e.g., Cutler, 2005). It is also important to note that there 

are several terminological variants in the literature to denote the phenomenon, such as stress and 

emphasis, to name a few (see also Wagner et al., 2015, for a discussion). In this work, we will use 

the term prominence to refer to the perceptual impression of standing out, as also defined in the 

work of Terken and Hermes (2000). 

Prominence is an important constituent of speech serving several functions in discourse and 

speech perception. It is therefore a particularly important component for natural language 

applications (see, e.g., Mehrabani, Mishra, & Conkie, 2013; Racca & Jones, 2015). For instance, 

prominence can convey information about the pragmatic context of the discourse, reflecting the 

speaker’s intent to mark specific words as the targets of information focus (Bolinger, 1972). The 

most widely acknowledged function of prominence across studies is in signaling the information 

status of a word (see, e.g., Calhoun, 2010; Cole et al., 2010; Wagner & Watson, 2010). This means 

that prominent words often introduce information that is new or important in the discourse. On the 

other hand, words that lack prominence are seen as given, referring to information that can be 

accessed situationally or anaphorically (see, e.g., Brown, 1983), that is, referring to information that 

is immediately accessible, through, for instance, the context of the preceding discourse. Beyond the 
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communicative role, other studies have investigated the linguistic function and the impact of 

prominence during sentence comprehension (see, e.g., Bock & Mazzella, 1983; Cutler & Foss, 

1977; Terken & Nooteboom, 1987). The general finding from these studies is that prominence 

facilitates speech comprehension through faster processing of the prominent targets (e.g., Bock & 

Mazzella, 1983; Terken & Nooteboom, 1987). In addition, prominence can be indicative of factors 

such as the lexical class of words in a sentence (see, Wagner et al., 2015, for a discussion). 

Earlier research on prominence has identified four acoustic features that are correlated with 

the production and perception of prominent units in speech: signal energy (e.g., Fry, 1955; 

Kochanski, Grabe, Coleman, & Rosner, 2005; Lieberman, 1960), fundamental frequency (F0) (e.g., 

Fry, 1958; Lieberman, 1960; Terken, 1991), duration (e.g., Fant & Kruckenberg, 1994; Fry, 1955; 

Lieberman, 1960), and spectral tilt (e.g., Campbell & Beckman, 1997; Heldner, 2001; Sluijter & 

van Heuven, 1996a, 1996b). For instance, already in the early works of Fry (1955, 1958) and 

Lieberman (1960), it was found that variations in duration (e.g., longer syllable duration) are 

important for prominence, with increased unit duration correlating with increased prominence of the 

unit. The relation between prominent units and F0 seems to be more complex, as simply the 

magnitude of F0 change or distance of F0 maxima to the baseline do not seem to sufficiently 

describe this relationship (Terken, 1991; see also Kakouros & Räsänen, 2016; Gussenhoven, Repp, 

Rietveld, Rump, & Terken, 1997; Rietveld & Gussenhoven, 1985). Moreover, there seems to be a 

competition between duration and F0 in conveying the impression of prominence to the listener 

(see, e.g., Niebuhr & Winkler, 2017). Nonetheless, there is strong correlational evidence of the 

importance of F0 in conveying prominence in speech (see, e.g., Kohler, 2008). As for the role of 

signal amplitude, Kochanski et al. (2005) have shown a strong independent role of energy in 

predicting prominence with some studies also indicating trading relationships of the feature with 

duration (see, e.g., Fry, 1955, 1958; Gay, 1978; Turk & Sawusch, 1996). The acoustic 

operationalization of loudness on the basis of signal energy has been considered as a limiting factor 

in some studies, as it cannot account for the energy allocation across frequency bands that is known 

to affect the perceived loudness of auditory input (see, e.g., Sluijter, van Heuven, & Pacilly, 1997). 

This might potentially limit the capability of the scalar energy measure to characterize the relevant 

prosodic spectral cues used by listeners. Therefore, spectral tilt has been utilized as a measure to 

reflect the differences between the higher and lower frequency bands, and some studies have found 

it to provide cues for the discrimination between prominent and non-prominent units in speech (see, 

e.g., Sluijter & van Heuven, 1996a). However, not all studies have been able to empirically validate 

the contribution of spectral tilt in the task (see, e.g., Campbell & Beckman, 1997; Kochanski et al., 

2005), and the contribution of energy, F0, and duration to the prominence phenomenon seems to be 
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better established than that of spectral tilt. This might be explained by the fact that languages (and 

hence studies) simply differ in their use of these cues for conveying prominence. However, it might 

also be the case that there are established standard ways to measure energy, duration, and F0 (albeit 

to a lesser degree) than what is available for spectral tilt, and therefore the tilt measures between 

studies are not always directly comparable. In addition, some measures of tilt are directly computed 

from the acoustic speech signal while others attempt to quantify spectral balance of the glottal 

excitation, the former being potentially confounded by the linguistic content of speech. 

1.1 Spectral tilt and prominence 

A variety of methods have been proposed in the literature to measure spectral tilt that are also often 

encountered under different but closely related terms (e.g., spectral balance, spectral tilt, spectral 

emphasis). In addition, there seems to be no consensus on connecting specific measures to the 

utilized terminology or the underlying phenomenon being measured. For instance, some studies 

may use the term spectral tilt with reference to the spectral slope of the excitation of the human 

speech production mechanism (i.e. the glottal volume velocity waveform generated by the vocal 

folds) while others might use it with reference to the spectral slope of the system’s output (i.e. the 

speech pressure signal where the source, tract, and lip radiation are coupled). In this work we will 

use the term source tilt (SOT) in order to denote the slope of the voice source spectrum and surface 

tilt (SUT) to denote the slope of the combined spectrum of the voice source, vocal tract, and lip 

radiation. Moreover, there are several methods to measure tilt that follow different overall 

procedures resulting into measures that are not exactly equivalent but that all attempt to quantify the 

superficially same phenomenon (the relative contribution of high versus low frequency bands of the 

spectrum). As a result, these measures are not necessarily directly comparable, and the implications 

of the potential differences among the tilt estimators are currently largely unknown, especially in 

typical real-world listening and recording conditions where speech is also corrupted with various 

types of additive and channel noise.  

Overall, the diversity of the measures quantifying spectral tilt poses important challenges in 

the interpretation of results across different studies. For instance, several studies have investigated 

the utilization of measures for SUT. Specifically, Sluijter and van Heuven (1996a) measured 

spectral tilt as the band-limited intensity difference across four continuous spectral bands (0–0.5, 

0.5–1, 1–2, and 2–4 kHz). In another study, Campbell and Beckman (1997) used the harmonic ratio 

(difference in dB between the first and second harmonic of F0, H1-H2) in order to quantify a 

measure for spectral tilt. Other studies use an array of different methods, including calculation of 

the difference in dB between the overall intensity and the intensity of the fundamental frequency (or 
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of the intensity in a frequency band centered at F0) (Barbosa, Eriksson, & Åkesson, 2013; Eriksson, 

Thunberg, & Traunmüller, 2001; Heldner, 2001), taking the first cepstral coefficient (C1) 

(Tsiakoulis, Potamianos, & Dimitriadis, 2010), taking the difference in dB between a signal with 

high-frequency pre-emphasis and flat frequency weighting (SPLH-SPL) (Fant, Kruckenberg, 

Liljencrants, & Hertegård, 2000), taking the difference in dB between the first harmonic and third 

formant (H1-F3) (Okobi, 2006), fitting a regression line in the magnitude spectrum (Aronov & 

Schweitzer, 2016; Lu & Cooke, 2009), taking the band-limited spectral energy ratios (Murphy, 

McGuigan, Walsh, & Colreavy, 2008; Prieto & Ortega-Llebaria, 2006), using the long-term average 

spectrum (LTAS) to obtain band-limited energy ratios (Sundberg & Nordenberg, 2006), and using 

all-pole modeling techniques (Magi, Pohjalainen, Bäckström, & Alku, 2009).  

In addition, some studies utilize similar measures, such as regression line fitting and 

harmonic ratio, but, instead of applying the measures directly on the short-term spectrum of speech 

(such as in the case of SUT), they utilize the spectrum of the glottal source waveform obtained 

through glottal inverse filtering (GIF) (see, e.g., Iseli et al., 2006; Jackson, Ladefoged, Huffman, & 

Antoñanzas-Barroso, 1985; Kreiman, Gerratt, & Antoñanzas-Barroso, 2007). Other studies make 

use of various parameterizations of the voice source, such as the Liljencrants-Fant (LF) model 

(Fant, Liljencrants, & Lin, 1985), in order to derive a measure for tilt (see, e.g., Fant & 

Kruckenberg, 1994) and may also use other parameters of the voice source in order to study and 

evaluate different prosodic phenomena (see, e.g., Fant & Kruckenberg, 1994; Iseli et al., 2006). In 

general, it is important to note that the contribution of the voice source in the task of discriminating 

prominence categories, and prosody in general, has remained largely undetermined. This is largely 

due to the fact that the glottal source waveform is hard to quantify as it is not directly observable, 

therefore rendering the accurate estimation of the voice source signal challenging. In addition, due 

to this inherent limitation to reliably and automatically estimate the glottal source waveform, many 

studies have earlier relied on labor-intensive methods that required manual optimization (see, Kane 

& Gobl, 2013, for a discussion) making the analysis on large volumes of data problematic. 

However, current technology also enables automatic voice source estimation from the speech signal 

using GIF techniques such as the Quasi-closed phase analysis (QCP) (Airaksinen, Raitio, Story, & 

Alku, 2014), and an increasing number of studies have utilized this possibility for investigating 

prosodic phenomena. For instance, Ní Chasaide, Yanushevskaya, Kane, and Gobl (2013) proposed 

a so-called voice prominence hypothesis (VPH), suggesting that prominence lending accented 

syllables may be dependent on a number of source parameters (including F0). Their results support 

VPH, indicating a connection between changes in the voice source parameters and changes in the 
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degree of accentuation (Ní Chasaide et al., 2013; see also Yanushevskaya, Gobl, Kane, & Ní 

Chasaide, 2010; Yanushevskaya, Murphy, Gobl, & Ní Chasaide, 2016). 

An additional factor that renders investigations of the voice source challenging is that the 

estimation of the glottal volume velocity waveform is very sensitive to noise, whereas the typically 

used measures, such as the F0, appear to be overall more robust1. It is therefore of interest to make 

use of noise-robust methods for the estimation of the glottal volume velocity waveform as this also 

reflects the majority of real-life situations where speech is typically produced in the presence of 

different types of noise. For instance, a deep neural network (DNN) -based system for robust 

spectral tilt estimation was recently described by Jokinen and Alku (2017) that enables the 

estimation of the glottal source tilt in non-ideal signal conditions without explicitly performing GIF 

in the estimation phase. Instead, the relationship between the speech power spectrum and the 

underlying glottal excitation signal is learned in a supervised manner by the neural network from 

training data consisting of glottal flow signals estimated by GIF from clean speech. In this way, the 

DNN enables the estimation of the glottal volume velocity waveform through non-linear statistical 

regression from the speech spectrum.  

As there exists no single default method to compute spectral tilt but rather many approaches, 

with differences observed at several levels, the goal of the present work is to gain a better 

understanding of the performance differences of a distinct set of tilt measures in characterizing 

prominence. This study builds upon an earlier effort (Kakouros, Räsänen, & Alku, 2017) that 

investigated differences between tilt measures, which, however, was limited in scope, and focused 

only on one corpus and select scalar measures. In this work, the aim is: (i) to compare the most 

well-known measures for spectral tilt together with a newly-proposed DNN-based technique 

(Jokinen & Alku, 2017) for prominence classification in speech, (ii) to evaluate whether 

multidimensional tilt representations bring performance improvements in the task, (iii) to compare 

the relative importance of the evaluated tilt measures with respect to the widely acknowledged 

acoustic correlates of prominence of energy, F0, and duration, and (iv) to examine the performance 

of tilt measures under non-ideal conditions met when processing signals in noisy real-life scenarios. 

The study is conducted using clean and corrupted speech in two languages (Dutch and French) by 

involving two types of corruption (additive noise and telephone band coding). 

 

                                                
1 Note that many GIF techniques require F0 and/or glottal closure instant estimates as a part of their operation, and are 
therefore inherently limited in their performance by the reliability of the F0 estimation. 
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2. Data 

In this work, a total of three different speech corpora were utilized. Specifically, two corpora, CGN 

(Dutch) and C-PROM (French), consisting of continuous speech from two phonologically distinct 

languages, were used as the basis for all evaluations, as they include prosodic annotations for 

prominence. In addition, a third corpus, the Phonetic Corpus of Estonian Spontaneous Speech 

(Lippus, Tuisk, Salveste, & Teras, 2013), was used for the purpose of providing high-quality speech 

recordings needed for the method described in section 3. All three corpora are described in the next 

subsections in more detail. 

2.1. CGN 

The Spoken Dutch Corpus (Corpus Gesproken Nederlands; CGN) is a corpus of contemporary 

standard Dutch as spoken by adults in the Netherlands and Flanders, containing nearly 9 million 

words (800 hours of speech). The corpus includes manually generated or verified annotations such 

as phonetic transcriptions, word level alignment, and prosodic annotations (see Duchateau, 

Ceyssens, & van Hamme, 2004; Oostdijk et al., 2002, for a more detailed description). For the 

present evaluations, the Dutch news broadcast (component-k) part of the corpus was utilized, 

consisting of 5088 news broadcasts (≈27.4 hours of speech data) and spoken by 29 speakers (22 

male and 7 female). Component-k includes a prosodically annotated subset consisting of 134 news 

broadcasts spoken by 10 different speakers (9 male and 1 female) (≈44.3 minutes of speech data). 

The annotations were hand-labeled using binary (prominent/non-prominent) markings by two 

trained annotators (see Buhmann et al., 2002, for more details), containing a total of 7438 word 

tokens. 

 

2.2. C-PROM 

Sentence prominence was also studied from continuous speech in French by using the C-PROM 

corpus (Avanzi, Simon, Goldman, & Auchlin, 2010) that is specifically annotated for prominence 

studies. The corpus contains different regional varieties of spoken French (Belgian, Swiss, and 

metropolitan French) as well as various discourse genres with multiple levels of annotations. The 

corpus comprises 24 recordings with 70 minutes of speech produced by 28 speakers (12 female and 

16 male) and with 7 different speaking styles (ranging from high to low degrees of formality), 

totaling to 13184 words. The corpus contains phone, syllable, and word level transcriptions along 

with syllable-level prominence labels annotated by two expert phoneticians. The prominence 

labeling is based on a consensual annotation where the two annotators discussed and resolved 
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potential differences in their labeling, resulting in a single set of prominence markings for the data 

(see Avanzi, Goldman, Lacheret-Dujour, Simon, & Auchlin, 2007, for more details). 

 
2.3. EstPhon 

In order to provide a source for high-quality clean speech training signals for DNN-based 

estimation of glottal volume velocity waveforms (section 3), we utilized the Phonetic Corpus of 

Estonian Spontaneous Speech of the University of Tartu2 (EstPhon, see Lippus et al., 2013, for 

more details). The database consists of high-quality recordings of Estonian spontaneous speech 

between conversing test subjects and was recorded using near-field microphones. The corpus 

comprises different types of phonetic segmentations including, for instance, manually verified 

syllable annotations. The corpus contains a total of 60 hours of recordings by speakers from 

different age groups, dialectological, and social backgrounds. In this work, we used 1165 randomly 

chosen utterances from the studio section of the corpus for the DNN training.  

 

3. Methods 

3.1. Estimation of acoustic features 

3.1.1 Energy, F0, and word duration 

Energy, F0, and word duration were used as the reference features in this work, as it has been well 

established across a number of studies that they correlate well with the manifestation of prominence 

in speech (see, e.g., Fry, 1955, 1958; Kochanski et al., 2005; Kohler, 2008; Lieberman, 1960; 

Terken, 1991). In order to compute them, speech data were initially downsampled to 16 kHz. F0 

estimation was carried out using a noise robust pitch tracker (Drugman & Alwan, 2011) with a 100-

ms window and 10-ms hop size. The pitch tracker provided pitch estimates as well as a voicing 

decision for each frame of the analysis. Energy was computed using a 20-ms window and 10-ms 

hop size, and word durations were extracted directly from the corpora annotations. 

 
3.1.2 Spectral tilt measures 

For the comparative analysis of the spectral tilt measures, a number of different tilt estimation 

techniques that are commonly encountered in the literature were utilized. In this work, beyond the 

standard scalar one-parameter models, we also include in the analysis four multidimensional 

                                                
2 Information about the Phonetic Corpus of Estonian Spontaneous Speech is also available at 
http://www.keel.ut.ee/en/languages-resourceslanguages-resources/phonetic-corpus-estonian-spontaneous-speech. 
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features. All tilt measures are described in more detail in Tables 1 and 2 and were computed over a 

20-ms window and using a 10-ms hop size. 

 

 

 

Table 1: Definitions of surface tilt (SUT) measures utilized in this study, where D denotes the 

dimensionality of the features. 

Tilt measure D Definition 

H1-H2 (dB) 1 
Difference in dB between the first and second harmonic (see, e.g., 

Campbell & Beckman, 1997). 

H1-F3 (dB) 1 
Difference in dB between the first harmonic and third formant (see, e.g., 

Okobi, 2006). 

C1 1 
The first Mel-frequency cepstral coefficient (MFCC; see, e.g., 

Tsiakoulis, Potamianos, & Dimitriadis, 2010). 

SER 1 
Spectral energy ratio (in dB) between 0–1 kHz and 1–5 kHz (see, e.g., 

Murphy et al., 2008). 

SLF 1 

Slope of the line obtained by fitting a first order polynomial to the short-

term logarithmic magnitude spectrum of speech (spectral regression – 

see, e.g., Aronov, & Schweitzer, 2016). 

LP1 1 First order forward linear prediction coefficient (LPC). 

SLF6D 6 
Coefficients of a sixth order polynomial fitted to the short-term 

logarithmic magnitude spectrum of speech. 
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Table 2: Definitions of source tilt (SOT) measures utilized in this study, where D denotes the dimensionality 

of the features. 

Tilt measure D Definition 

QCP 1 

Slope of the line fit to the logarithmic magnitude spectrum of the glottal 

volume velocity waveform obtained from quasi-closed phase glottal 

inverse filtering (Airaksinen et al., 2014). 

DNNC 1 
Slope of the line fit to the short-term logarithmic magnitude spectrum of 

the DNN-estimated glottal volume velocity waveform. 

QCP6D 6 

Coefficients of a sixth order polynomial fitted to the logarithmic short-

term magnitude spectrum of the glottal volume velocity waveform 

obtained from quasi-closed phase glottal inverse filtering (Airaksinen et 

al., 2014). 

DNNC6D 6 

Coefficients of a sixth order polynomial fitted to the logarithmic 

magnitude spectrum of the DNN-estimated glottal volume velocity 

waveform. 

 
 
3.1.3 DNN-based spectral tilt estimation 

Jokinen and Alku (2017) recently proposed a method to estimate and parameterize the glottal 

source spectrum in noisy, non-ideal conditions where conventional GIF analysis cannot be used due 

to its known sensitivity to noise (Alku, 2011). This method used a feed-forward DNN to map an 

input feature vector (the logarithmic speech power spectrum) into an output vector (all-pole model 

of the glottal source spectrum parameterized using line spectrum frequencies, or LSFs). In this 

work, a DNN was trained for the prediction of the source LSFs, describing the glottal source 

spectrum directly from the logarithmic FFT magnitude spectrum of the speech input (20-ms 

window, 10-ms hop size; see also Fig. 1). The DNN was trained on high-quality clean speech only. 

In our earlier study, augmentation of the training data with noise-corrupted versions of the signals 

was also investigated (Kakouros, Räsänen, & Alku, 2017). Since this did not lead to performance 

improvements, only clean training is utilized in the current setup. It is worth emphasizing that the 

DNN-based spectral tilt estimation method does not require GIF in the estimation phase. GIF is 

used only in the training phase to estimate the glottal flow from studio-quality speech. The 

spectrum of the estimated glottal flow is then parameterized by the DNN using the LSF feature 

vector. In the current study, the quasi closed phase (QCP) method (Airaksinen et al., 2014) was 

used as the GIF algorithm in training of the DNN. 
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Before training, the 255-dimensional spectral frame inputs and 8-dimensional LSF outputs 

of the DNN were z-score normalized across all training data to ensure proper scaling. The 

implementation of the utilized feed-forward neural network consisted of a configuration layout of d 

= [64, 32, 16] hidden units per layer, sigmoid activation function for the hidden layers, a linear 

output layer, a learning rate of 0.1, 100 epochs, minibatch size of 1000, and mean squared error 

(MSE) as the cost function. This resulted in a single DNN for tilt prediction based on clean speech 

(DNNC). The final tilt estimates used in the comparisons were then obtained by fitting a first 

(DNNC) or sixth (DNNC6D) order polynomial in the spectrum of the glottal waveform as 

parametrized by the predicted LSFs. The order of the multidimensional DNN measure, and also of 

the multidimensional measures in Tables 1 and 2 (see also Jokinen and Alku, 2017, for a 

comparison with other multidimensional measures), was selected as a compromise between a low 

enough dimensionality to avoid detailed fitting to the formant structure yet high enough to comply 

with the order of the DNN-based SOT method described in Jokinen and Alku (2017) and utilized 

here. We also compare the resulting tilt estimates to those computed directly from speech using 

QCP. 
 

 

Figure 1: Schematic diagram of the training/testing process for the DNN-based tilt estimator. 
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3.2 Word-level statistical descriptors of the acoustic features 

All evaluations in this study were carried out at the word level on the CGN and C-PROM corpora. 

Specifically, the manually labelled prominence markings were used to divide the data into two 

categories: prominent and non-prominent words. The original CGN data contain labels by two 

annotators, thus we considered all words with at least one prominence marking as prominent (see 

Kakouros & Räsänen, 2016, for a similar approach). For the C-PROM corpus, the original 

prominence labelling is based on a consensual annotation where the two annotators discussed and 

resolved potential differences in the coding, resulting in a single set of prominence labels for the 

data that were used as the reference (see Avanzi, Goldman, Lacheret-Dujour, Simon, & Auchlin, 

2007, for more details). As C-PROM contains syllable-level annotations, the syllable-level 

prominence labels were aligned with the word-level transcriptions in order to provide word-level 

binary prominence annotations (see also Kakouros & Räsänen, 2016; Rosenberg, Cooper, Levitan, 

& Hirschberg, 2012). 

In order to evaluate and compare all the different acoustic features at the word level, five 

word-level statistical descriptors were computed for all but the duration feature: (i) mean, (ii) max, 

(iii) min, (iv) standard deviation (SD), and (v) range (max-min) of the given feature during the word 

(see, e.g., Christodoulides & Avanzi, 2014; Kakouros & Räsänen, 2016, for a similar approach). 

For the multidimensional features, these descriptors were computed independently for each of the 

feature dimensions.  

 

3.3. Evaluation of prominent/non-prominent class separation 

3.3.1 Separation of scalar measures for energy, F0, duration, and spectral tilt 

In order to compare separability of the different features and their descriptors for the prominent and 

non-prominent classes, the estimated Z-score based effect-size r from Wilcoxon rank sum test (Eq. 

(1)) was utilized together with the symmetric Kullback–Leibler (KL) divergence (Eq. (2)). KL-

divergence was computed by quantizing the data into Q = 25 discrete bins with a uniform number 

of samples in all bins across the entire data set. Both measures quantify the degree of separability of 

the prominent and non-prominent classes with zero corresponding to no difference. In Eq. (1) and 

Eq. (2), Ppr and Pnpr denote the probability density of the matching bins and Npr and Nnpr denote the 

number of samples for the two classes, respectively. 

r = Z
Npr + Nnpr

  (1) 

DKL = Ppr∑ log(
Ppr
Pnpr

)+ Pnpr∑ log(
Pnpr
Ppr
)  (2) 
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3.3.2 Separation of multidimensional measures and feature combinations 

Two standard supervised classification methods, namely the k-nearest-neighbor (kNN) and support 

vector machines (SVMs), were used to compare multidimensional tilt features and feature 

combinations since statistical tests, such as the Wilcoxon rank sum test, can be applied only on 

populations with one-dimensional data. In addition, in order to obtain a benchmark of the overall 

performance in comparison to the class separation approach described in section 3.2.1, we also ran 

supervised classification for all scalar measures (where classification was run for a combination of 

all statistical descriptors, resulting in 5-dimensional vectors for the scalar measures). Both 

classifiers were trained and tested in an n-fold manner using the binary prominence labels and the 

corresponding word-level feature descriptors, and with the classification carried out in a context-

independent manner for each word token. In particular, for CGN, supervised classification of words 

into prominent and non-prominent classes was run in a 10-fold classification procedure that was 

carried out by always training with data from 9 speakers and testing with a held-out talker (see 

section 2.1 for the corpus description). Correspondingly, for C-PROM, one recording was always 

used for testing while the remaining 23 recordings were used for training, resulting in a 24-fold 

evaluation procedure (see section 2.2 for the corpus description). 

We wanted to ensure that the separability measures (classification accuracies) for different 

features were based on the same metrics while measuring the degree of class overlap under ideal 

(potentially non-linear) decision boundaries. Therefore, hyperparameters for kNN and SVMs were 

optimized for maximal average performance across all features on the test data, separately for each 

fold. Note that, in this case, overfitting of the hyperparameters is not a concern, as we simply want 

to measure class separability in our given sample, not to deploy a practical classifier for 

prominence. In practice, classification performance for kNN was computed for all values of k in the 

range between 1 and 20 and the average of the fold-specific best results (same k for all features of 

the same fold) is reported in the result section. For the SVM training, a radial basis kernel function 

was used. The SVM scaling factor σ and box-constraint C were optimized by first using a 

subsampling scheme to find an initial estimate σinit and then using an exhaustive grid-search across 

σ = [0.001, 0.01, …, 1000] × σinit and C = [0.001, 0.01, …, 1000] to find an optimal combination of 

the two, using again the average performance across all features in the fold as the criterion. 

For the evaluation of classification performance, precision (PRC), recall (RCL), their 

harmonic mean (F-value), and accuracy (ACC) were used as the main quality measures and were 
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defined according to the equations below –where true positives (tp), true negatives (tn), false 

positives (fp), and false negatives (fn) define the classification outcomes: 

RCL = tp / (tp + fn)          (3) 

PRC = tp / (tp + fp)          (4) 

F = (2 x PRC x RCL) / (PRC + RCL)       (5) 

ACC = (tp + tn) / (tp + fp + fn + tn)        (6) 

In addition, Fleiss kappa (Fleiss, 1971) was used as a measure of the reliability of agreement 

between the human annotation reference for prominence and the classification output. The Fleiss 

kappa (FK) measure allows for comparison between the typical agreement for human annotators 

(see, e.g., Kakouros & Räsänen, 2014; Mo, Cole, & Lee, 2008). FK measures the degree of 

agreement between two or more annotators within a nominal scale of κ ∈ [-1,1], where an outcome 

of κ = 1 indicates a full agreement and κ ≤ 0 indicates no agreement (κ = 0 suggests that the number 

of agreements is what would be expected by chance). 
 

3.4. Preparation of noisy and coded speech 

For the purpose of the evaluations in non-ideal conditions, additive background noise and 

simulation of speech transmission in telephone networks (i.e. degradation caused by bandpass 

filtering and generation of quantization noise) were utilized. Specifically, noisy versions of the 

CGN and C-PROM signals were generated by corrupting them with additive babble noise (different 

signals from the ones used for corrupting the DNN training data) with SNRs of -10, -5, 0, 5, 10, 15, 

20, 40, and 60 dB in addition to using clean speech. It is important to note here that the broadcast 

speech in CGN and the different discourse genres in C-PROM are inherently noisier than ideal 

studio-quality recordings (e.g., EstPhon data), and therefore “clean” refers to the (potentially non-

ideal) signal quality where no further artificial degradations have been introduced.  

In order to simulate signal degradation caused by telephone transmission, the original 

speech signals from both corpora were coded using the adaptive multi-rate (AMR) codec (see, 

European Telecommunications Standards Institute [ETSI], TS 126 090, TS 126 204, 2011, for more 

details). AMR is a speech compression method that was developed by the 3rd Generation 

Partnership Project (3GPP), standardized by ETSI, and that consists of several different codecs. 

AMR is widely used in digital cellular networks such as the Global System for Mobile 

Communications (GSM) and the Universal Mobile Telecommunications System (UMTS). In this 

work, we use the narrowband AMR codec (AMR-NB) that is used for transmission of the 

traditional telephone band speech in the range of 300–3400 Hz as well as the wideband version of 
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the AMR (AMR-WB) that provides a bandwidth between 50–7000 Hz. Taken together, speech 

signals from both CGN and C-PROM were degraded using both AMR-NB and AMR-WB and 

tested in the experiments along with the additive noise conditions. 

 

4. Experiments 

The capability of the different tilt measures to discriminate between prominent and non-prominent 

words was evaluated in two experiments. The first experiment involved an evaluation over all 

individual one-dimensional (scalar) measures using class separability metrics, while the second 

consisted of an evaluation of all distinct multidimensional features and features combinations (with 

the addition of all scalar measures) using supervised classification of words into prominent and 

non-prominent classes. All reported results below are presented at the word level and separately for 

the CGN and C-PROM corpora.  

 
4.1. Prominence class separation for scalar measures 

After training the DNN using the Estonian corpus, the 134 annotated speech signals of CGN 

component-k and 24 annotated recordings of C-PROM corpus were used in order to compute all 

features from clean, noisy, and AMR-coded versions of CGN and C-PROM, respectively. Since the 

overall behavior of DKL was found to be nearly identical to the effect size r across all conditions, 

only the latter is reported in the following sections. 

4.1.1 Energy, F0, duration 

4.1.1.1 Separability on CGN 

The results for the standard acoustic features of energy, F0, and duration provide a strong indication 

of their importance in distinguishing between prominent and non-prominent categories in Dutch. 

An overview of the features’ performance for the five statistical descriptors is presented in Figure 2 

for clean speech and different SNRs in the added noise condition and in Figure 3 for AMR-coded 

speech. A substantial variation in the overall class separation for the different descriptors can be 

observed, with min providing the least consistent and lowest performance across all evaluated 

statistical descriptors. Overall, it seems that measures of dispersion, such as the SD and range, 

enable a better characterization of the two prominence classes. In particular, it is possible that these 

descriptors (range, SD) can better capture the dynamic behavior of the features over words, also 

reflecting the inherent dynamic nature of the prosodic phenomena. On the other hand, min and max 

alone cannot capture dynamic properties of the features (over words) and might also lack in 
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robustness as they are very sensitive to outliers –potentially also explaining the weak and variable 

separation that is observed for min in Figure 2. As for the mean, it provides the second weakest 

separation (see also Figure 3) and also has the highest reduction in performance for AMR-coded 

speech. On the whole, the best performing separation is achieved for the descriptors of range and 

SD with max, mean, and min following in order of relative performance. 

For the individual features’ performance, duration seems to be the most robust feature in 

characterizing prominence, reaching a class separation of r = 0.72. F0 and energy are also very 

important features for the task with, however, substantially lower performance. Specifically, for the 

range descriptor and clean speech, F0 reached r = 0.56 and energy r = 0.46. With decreasing SNR 

levels (Figure 2), all descriptors seem to be affected starting from 10 dB SNR and with the 

performance deteriorating from that point onwards. For AMR-coded speech (Figure 3), both F0 and 

energy are heavily impacted by the coding, with the performance significantly deteriorating from 

the baseline (note that the class separation for duration remains unimpaired as it is independent of 

the coding process). 

 

 

Figure 2: Prominent and non-prominent class separation (r) for energy, F0, and duration plotted for mean, 
SD, max, min, and range. SNR varies from -10 dB to +Inf (clean signal). Data taken from CGN. 
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Figure 3: Prominent and non-prominent class separation (r) for energy and F0 and for the mean, SD, max, 
min, and range. Data from CGN as clean, or coded using AMR-NB or AMR-WB. 
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smoothing; see Bessette et al., 2002, for more details) improved the overall quality of speech in C-

PROM, at least at the signal level, and respectively allowed for a better prominence class separation 

performance for energy. 

 
 
 
 

 

Figure 4: Prominent and non-prominent class separation (r) for energy, F0, and duration plotted for mean, 
SD, max, min, and range. SNR varies from -10 dB to +Inf (clean signal). Data taken from C-PROM. 

 
 

 

 

Figure 5: Prominent and non-prominent class separation (r) for energy and F0 and for the mean, SD, max, 
min, and range. Data from C-PROM as clean, or coded using AMR-NB or AMR-WB. 
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4.1.2 Separability of scalar tilt measures 

A total of eight one-dimensional tilt measures (6 SUT and 2 SOT) were evaluated for CGN and C-

PROM. Specifically, the class separation was evaluated for (i) H1-H2, (ii) H1-F3, (iii) LP1, (iv) C1, 

(v) SLF, (vi) SER, (vii) QCP, and (viii) DNNC at different SNR levels and for AMR-coded speech, 

as reported in the next subsections. 

4.1.2.1 CGN 
The results for different tilt measures on CGN can be seen in Figure 6. For clean speech, the best 

overall performance is attained for the range of C1 and DNNC with r = 0.44 and r = 0.45, 

respectively. Decreasing SNR levels start to have a major effect on class separation performance 

from approximately 10 dB SNR and reaching r = 0 at -5 dB. AMR coding of speech decreases the 

performance for both AMR-NB and AMR-WB for all tilt measures and across all statistical 

descriptors (see Table 3). For instance, separability of C1 range drops from r = 0.44 to r = 0.29 

(AMR-NB) and to r = 0.30 (AMR-WB), and for DNNC range from r = 0.45 to r = 0.27 (AMR-NB) 

and to r = 0.28 (AMR-WB). 

A closer look in the performance across the five statistical descriptors reveals a different 

behavior for tilt measures to what was observed for energy and F0 (where range and SD had the 

best overall performance). On the whole, the main finding is that range and max are the statistical 

descriptors that better capture the differences between the two prominence classes for tilt in CGN. 

Range is consistently the best descriptor among all tilt measures examined and max is the second. 

Variations in performance can also be observed across the descriptors where it is evident that not all 

tilt measures perform the same way across the different descriptors. For instance, for clean speech, 

H1-H2 and SER seem to be performing best for the range and max whereas for C1 and H1-F3 the 

respective best descriptors are the range and min. These variations are likely due to qualitative 

differences in the tilt measures reflected into their class separation performance. 
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Figure 6: Prominent and non-prominent class separation (r) for one-dimensional tilt measures plotted for 
mean, SD, max, min, and range. SNR varies from -10 dB to +Inf (clean signal). Data taken from CGN. 

 

 
Table 3: Prominent and non-prominent class separation (r) for one-dimensional tilt measures for the mean, 

SD, max, min, and range. CGN data were coded using AMR-NB (NB) and AMR-WB (WB). 
 

  H1-H2 H1-F3 LP1 C1 SLF SER QCP DNNC 
  NB WB NB WB NB WB NB WB NB WB NB WB NB WB NB WB 

Mean 0.01 0.01 0.00 0.00 0.08 0.08 0.00 0.01 0.02 0.02 0.09 0.09 0.01 0.00 0.03 0.02 

SD 0.18 0.18 0.17 0.18 0.20 0.19 0.16 0.21 0.15 0.15 0.18 0.18 0.10 0.12 0.13 0.12 

Max 0.18 0.19 0.18 0.20 0.21 0.20 0.19 0.18 0.19 0.19 0.20 0.20 0.19 0.21 0.21 0.22 

Min 0.20 0.21 0.21 0.21 0.18 0.20 0.19 0.18 0.20 0.20 0.19 0.20 0.19 0.19 0.17 0.21 

Range 0.28 0.29 0.28 0.30 0.25 0.24 0.29 0.30 0.27 0.28 0.22 0.23 0.24 0.26 0.27 0.28 
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also noted for F0 earlier in section 4.1.1.2 for the same corpus. For instance, separability of C1 

range drops from r = 0.32 in clean speech to r = 0.28 with AMR-NB and to r = 0.30 with AMR-

WB, whereas for DNNC the separability drops from r = 0.28 (clean speech) to r = 0.26 (AMR-NB) 

and to r = 0.28 (AMR-WB). As in the case for F0 and energy earlier (see discussion in section 

4.1.1.2), this difference may be due to the encoding process and non-ideal signal quality of the 

recordings. Finally, class separation performance across the statistical descriptors seems to behave 

similarly to that of CGN with the difference that, in addition to range and max, SD seems to be 

performing approximately at the same level with max. As in CGN, the same type of variation in 

performance for the different tilt measures across descriptors is also observed for C-PROM. 

 
 

 

Figure 7: Prominent and non-prominent class separation (r) for one-dimensional tilt measures plotted for 
mean, SD, max, min, and range. SNR varies from -10 dB to +Inf (clean signal). Data taken from C-PROM. 

 
 
 
 
 
 
 
 
 

-10 -5 0 5 10 15 20 40 60 +Inf
0

0.1

0.2

0.3

 r

Mean

-10 -5 0 5 10 15 20 40 60 +Inf
0

0.1

0.2

0.3

SD

-10 -5 0 5 10 15 20 40 60 +Inf
0

0.1

0.2

0.3

Max

-10 -5 0 5 10 15 20 40 60 +Inf
0

0.1

0.2

0.3

Min

-10 -5 0 5 10 15 20 40 60 +Inf
0

0.1

0.2

0.3

Range

H1-H2
H1-F3
LP1

-10 -5 0 5 10 15 20 40 60 +Inf
0

0.1

0.2

0.3

 r

-10 -5 0 5 10 15 20 40 60 +Inf
0

0.1

0.2

0.3

-10 -5 0 5 10 15 20 40 60 +Inf
0

0.1

0.2

0.3

-10 -5 0 5 10 15 20 40 60 +Inf
0

0.1

0.2

0.3

-10 -5 0 5 10 15 20 40 60 +Inf
0

0.1

0.2

0.3

C1
SLF
SER

-10 -5 0 5 10 15 20 40 60 +Inf
SNR

0

0.1

0.2

0.3

 r

-10 -5 0 5 10 15 20 40 60 +Inf
SNR

0

0.1

0.2

0.3

-10 -5 0 5 10 15 20 40 60 +Inf
SNR

0

0.1

0.2

0.3

-10 -5 0 5 10 15 20 40 60 +Inf
SNR

0

0.1

0.2

0.3

-10 -5 0 5 10 15 20 40 60 +Inf
SNR

0

0.1

0.2

0.3

QCP
DNNC



 23 

Table 4: Prominent and non-prominent class separation (r) for one-dimensional tilt measures for the mean, 
SD, max, min, and range. C-PROM data were coded using AMR-NB (NB) and AMR-WB (WB). 

 
  H1-H2 H1-F3 LP1 C1 SLF SER QCP DNNC 
  NB WB NB WB NB WB NB WB NB WB NB WB NB WB NB WB 

Mean 0.02 0.02 0.00 0.01 0.12 0.11 0.09 0.06 0.04 0.01 0.12 0.11 0.01 0.01 0.01 0.03 
SD 0.17 0.18 0.17 0.17 0.20 0.20 0.17 0.23 0.11 0.17 0.17 0.18 0.11 0.11 0.14 0.14 
Max 0.16 0.16 0.16 0.17 0.22 0.21 0.11 0.12 0.20 0.17 0.20 0.21 0.19 0.19 0.20 0.23 
Min 0.13 0.14 0.18 0.19 0.14 0.16 0.24 0.20 0.16 0.16 0.16 0.17 0.19 0.19 0.20 0.19 
Range 0.27 0.28 0.27 0.28 0.24 0.24 0.28 0.30 0.23 0.27 0.21 0.22 0.23 0.23 0.26 0.28 

 
 
 

 

Figure 8: Prominent and non-prominent class separation (r) for the best configuration of clean speech and 
range descriptor. Features included are energy, F0, duration, and the three best performing one-dimensional 

tilt measures. Data taken from CGN and C-PROM. 
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multidimensional tilt measures seem to have more invariable performance across SNRs with the 

exception of mean which performs the poorest with agreement levels in the range of κ = 0 and 0.38 

(not plotted here separately). As can be seen in Figure 9, the best overall performance is attained for 

range and max and for the measures of DNNC6D and SLF6D. In particular, for SVM, clean speech, 

and the max descriptor, DNNC6D reaches κ = 0.50 and SLF6D κ = 0.46.  

Combining the five statistical descriptors adds robustness in the measures’ behaviour across 

different SNRs and also further boosts their overall classification performance. For instance, 

DNNC6D reaches κ = 0.54 and SLF6D κ = 0.55 whereas the corresponding best performance for 

the one-dimensional measures for SVM (all descriptors combined) was DNNC κ = 0.50 and SLF 

κ = 0.47 –note that the best performance for a single descriptor (range, clean speech) was for 

DNNC κ = 0.41 and SLF κ = 0.27. As in the case of the multidimensional measures, inclusion of all 

descriptors for the one-dimensional measures also improves their performance (see Figure 10). 

However, even with the addition of all descriptors, their performance remains lower than that 

obtained for the multidimensional measures. For instance, the best performing one-dimensional tilt 

measures with combined descriptors are C1 and H1-H2, reaching κ = 0.50 and 0.48, respectively. 

Taken together, the performances of all multidimensional tilt measures are at the level of energy 

and F0 with κ = 0.55 and 0.56, respectively (with combined descriptors, see also Figure 10). 

Decreasing levels of SNR affect the performance of multidimensional measures similarly to what 

was observed for one-dimensional measures, with the highest degradation taking place below 10 dB 

SNR. Correspondingly, AMR coding of speech has a major impact on tilt measures with 

performance dropping to κ = 0.31, 0.33 for AMR-NB and κ = 0.32, 0.34 for AMR-WB, for the 

measures of DNNC6D and SLF6D, respectively. 
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Figure 9: SVM and kNN Fleiss kappa (κ) performance for multidimensional tilt measures plotted for SD, 
max, min, range, and all descriptors combined. SNR varies from -10 dB to +Inf (clean signal). Data taken 

from CGN. 
 

 

Figure 10: SVM and kNN Fleiss kappa (κ) performance for all measures, combined descriptors, and clean 
speech for CGN. The horizontal dotted line marks the overall best tilt performance. 
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one-dimensional measures (SVM, combined descriptors) attain for DNNC κ = 0.20, SLF κ = 0.15, 

and QCP κ = 0.14. In all, the performance of the multidimensional measures for C-PROM is close 

to that of energy, F0, and duration (see Figure 12). 

Across the different statistical descriptors, it can be seen in Figure 11 that performance 

varies with the lowest scores attained for mean (agreement levels in the range of κ = 0 and 0.12; 

mean not plotted here separately). Conversely, the best performing descriptors for C-PROM are the 

range, max, and min. For instance, for SVM, max, and clean speech, DNNC6D reaches κ = 0.29, 

SLF6D κ = 0.24, and QCP6D κ = 0.23. The corresponding best results for the one-dimensional 

measures (SVM, range, clean speech) are for DNNC κ = 0.20, SLF κ = 0.18, and QCP κ = 0.09. 

For reference, the best performance for the same configuration for energy, F0, and duration is 

κ = 0.23, κ = 0.36, and κ = 0.38, respectively. SNR levels have a more variable impact on the 

performance of the multidimensional tilt measures with max, range, and min being affected already 

at approximately 15 dB SNR whereas SD and mean seem more volatile. Finally, AMR coding of 

speech has an impact on tilt measures with performance dropping (for SVM, range) to κ = 0.21, 

0.15, 0.13 for AMR-NB and to κ = 0.23, 0.24, 0.14 for AMR-WB, for the measures of DNNC6D, 

SLF6D, and QCP6D, respectively. 

 

Figure 11: SVM and kNN Fleiss kappa (κ) performance for multidimensional tilt measures plotted for mean, 
SD, max, min, and range. SNR varies from -10 dB to +Inf (clean signal). Data taken from C-PROM. 
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Figure 12: SVM and kNN Fleiss kappa (κ) performance for all measures, combined descriptors, and clean 
speech for C-PROM. The horizontal dotted line marks the overall best tilt performance. 
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carry much overlapping and redundant information. Similarly, when combining all tilt measures 

that belong to either of the two groups (SOT, SUT) together with energy, F0, and duration, 

performance does not improve over what is achieved with a combination of only the three (basic) 

features. Equally, combinations of the best performing basic features (energy, F0, duration) together 

with the single best performing tilt measures from the source (DNNC6D) and surface (SLF6D) 

groups do not improve performance beyond the result of the combined basic features. This, 

however, might not necessarily reflect that tilt measures do not convey relevant information for 

characterizing prominence. To further probe the effect of tilt in separating the two prominence 

categories, a combination of the best source (DNNC6D) and surface (SLF6D) tilt measures together 

with the features of energy and F0 was examined. The results indicated that the inclusion of tilt 

brings important improvements in performance in both cases and for both corpora (see also Table 

5). 

 
Table 5: SVM classification performance for independent features and feature combinations. Data taken 

from CGN and C-PROM. Values in bold indicate the best performing features in each group. 
 

 Basic κ  Source tilt κ  Surface tilt κ  Combined κ  Combined κ  

C
G

N
 

F0 0.55 QCP 0.45 H1-H2 0.48 All Basic 0.72 EN+F0 0.62 
Energy 0.56 QCP6D 0.48 H1-F3 0.48 All SUT 0.52 EN+F0+DNNC6D 0.64 
Duration 0.69 DNNC 0.50 C1 0.50 All SOT 0.48 EN+F0+SLF6D 0.65 

    DNNC6D 0.54 SER 0.10 All Basic+All 
SUT 0.68 EN+F0+C1 0.65 

        LP1 0.43 All Basic+All 
SOT 0.66 DNNC6D+SLF6D 0.53 

        SLF 0.47 All 
Basic+DNN6D 0.71 DNNC+C1 0.54 

        SLF6D 0.55 All 
Basic+SLF6D 0.72     

 Basic κ  Source tilt κ  Surface tilt κ  Combined κ  Combined κ  

C
-P

R
O

M
 

F0 0.36 QCP 0.14 H1-H2 0.20 All Basic 0.60 EN+F0 0.50 
Energy 0.39 QCP6D 0.34 H1-F3 0.20 All SUT 0.41 EN+F0+DNNC6D 0.53 
Duration 0.38 DNNC 0.20 C1 0.27 All SOT 0.35 EN+F0+SLF6D 0.54 

    DNNC6D 0.36 SER 0.06 All Basic+All 
SUT 0.56 EN+F0+C1 0.54 

        LP1 0.07 All Basic+All 
SOT 0.54 DNNC6D+SLF6D 0.38 

        SLF 0.15 All 
Basic+DNN6D 0.60 DNNC+C1 0.34 

        SLF6D 0.36 All 
Basic+SLF6D 0.59     

 
 

5. Discussion and conclusions 

The experiments in the present work investigated the realization of prominence in speech from the 

perspective of the most well-known spectral tilt measures together with a recently proposed DNN-

based technique, including scalar and multidimensional representations for tilt. In addition, to 
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understand the behavior of the tilt measures under non-ideal conditions encountered in noisy real-

life scenarios, corrupted versions of the original speech material were also examined. Comparisons 

to the widely acknowledged acoustic correlates of prominence of energy, F0, and duration were 

also conducted. All investigations were carried out on Dutch and French continuous speech.  

The results from the present experiments revealed differences in the performance of the 

distinct tilt measures, indicating that the different methods also lead to different separability of the 

prominent and non-prominent categories. The present analysis also revealed that the inclusion of 

higher-dimensional parameterizations for tilt can lead to substantial performance improvements, 

even in the case of surface tilt where higher-order features should be already somewhat sensitive to 

the formant structure of speech (content vs. style). Speech degradation affected all tilt measures, 

where, on average, at approximately 10 dB SNR, performance started to deteriorate rapidly for all 

scalar measures in the added noise condition. In contrast, the multidimensional tilt measures 

exhibited more robustness with increasing levels of noise. Telephone-band coding of speech had a 

similar degrading effect on tilt, with, however, lower impact on the overall performance than low 

SNR additive noise. For all tilt measures examined (scalar and multidimensional) in the two 

corpora, both narrowband and wideband coding of speech reduced the prominence class separation 

with the narrowband coding always having the highest impact on performance. The most robust tilt 

measures across the tests for telephone-band coded speech were the DNNC6D, SLF6D, and C1. 

In particular, the first experiment shows that the well-known one-dimensional measures for 

tilt can vary in performance, and that the well-established measures of energy, F0, and duration 

have an overall higher separability between prominent and non-prominent words, and appear also to 

be more robust in the presence of noise. In addition, it was found that the overall best performing 

one-dimensional measures for tilt in CGN and C-PROM were the C1, DNNC, and H1-F3, although 

some corpus-specific variation in performance was also evident. It is also interesting to note that the 

two examined corpora exhibited large differences in their class separability potential. These 

differences may be largely attributable to the underlying differential phonological structure of the 

languages and, consequently, to their inherent dissimilarities in conveying prosodic information. 

French and Dutch are two very distinct languages phonologically with Dutch having a clearer 

characterization for prominence (see, e.g., Sluijter & van Heuven, 1996a, for a discussion) and 

French a more intricate representation that is at times met with arguments of whether the language 

does carry prominence at all (see, Frost, 2011, for a discussion and comparison). This difference is 

also reflected in the present study where the best overall class separation for the scalar measures 

was substantially higher for CGN (r = 0.71 for duration) than for C-PROM (r = 0.48 for duration). 

This corpus-specific difference extends across all measures analyzed. However, it is difficult to 
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disentangle language-specific differences from any other potential differences in the two corpora, 

such as differing recording conditions. 

The second experiment aimed at investigating the potential benefits of including higher-

order parameterizations of tilt in the examination of prominence class separation. The introduction 

of three multidimensional measures, namely, DNNC6D, SLF6D, and QCP6D, led to performance 

improvements in both CGN and C-PROM that exceeded that of energy for both corpora and were at 

approximately the same level with F0. An evaluation of all one-dimensional measures together with 

the multidimensional measures independently in supervised classification showed clear evidence 

that the multidimensional versions are among the best performing measures for tilt. Specifically, the 

best overall performing tilt measures were DNNC6D, SLF6D, and C1 –note that all measures in 

this comparison were evaluated using five statistical descriptors, therefore, the one-dimensional C1 

in this case corresponds to a five-dimensional vector and, respectively, the x6D measures to 30-

dimensional vectors. The performance of these measures is at the same level with energy and F0, 

rendering these measures as equally important for the discrimination of prominent categories in our 

study.  

To further investigate the contribution of tilt measures and the complementary information 

they might add in the classification task, we also examined several feature combinations. The 

results showed that the best overall feature combination was that of energy, F0, and duration in both 

corpora whereas combinations of different tilt measures alone and together with energy, F0, and 

duration, did not seem to improve class separation. Although surprising, earlier studies have also 

observed little improvements with the addition of tilt measures in supervised classification tasks 

(see, e.g., Kakouros, Pelemans, Verwimp, Wambacq, & Räsänen, 2016; Streefkerk, Pols, & ten 

Bosch, 1999). To further examine the effect of tilt in prominence class separation performance, a 

combination of the best performing basic features (energy, F0, duration) together with the single 

best performing tilt measures from the source (DNNC6D) and surface (SLF6D) groups were tested 

and showed no improvements beyond what was achieved with a combination of all basic features. 

However, this result does not necessarily imply that tilt does not bring complementary information 

in characterizing prominence categories. To investigate this, combinations of energy and F0 

together with DNNC6D and SLF6D were tested separately and compared to the performance of the 

combination of energy and F0. The result revealed improvements in class separation in both corpora 

indicating that tilt does bring complementary information for the task. However, the performance is 

still lower to that of a combination of all basic measures together. Perhaps the inclusion of tilt does 

not introduce much supplementary information in identifying prominence categories, especially 
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when compared to duration, a potentially dominant feature, at least for Dutch (see Sluijter & van 

Heuven, 1996a). 

A general observation from the findings in the present study was that some tilt measures 

exhibited performance that was substantially lower to that of the rest of the spectral tilt measures. In 

this regard, one important aspect to consider is that, although all tilt measures attempted to quantify 

the same superficial phenomenon, the underlying estimation procedures differed for each individual 

measure. For instance, it was observed that the worst performing tilt measures were the SER and 

LP1 in both C-PROM and CGN, where SER had the lowest overall performance. The reliance of 

SER on band-limited energy ratios (ratio of the spectral energies in the range between 0–1 kHz and 

1–5 kHz) may make the measure more susceptible to noise present in the original signal recordings, 

as different noise sources have different spectral energy distributions across the frequency range. As 

both corpora consisted of non-ideal recordings with various noise sources being present, SER was 

likely greatly impacted by the noise present in the original signals. For LP1 (the first order forward 

linear predictor coefficient), the performance is also low for C-PROM, similarly to SER, but this is 

not observed for CGN where performance of LP1 is substantially better than SER. In practice, the 

frequency response of the first order linear prediction filter provides an approximation of tilt 

(similar to a regression line fit). In the case of LP1, the presence of noise can also considerably 

impact the estimated tilt, as, similarly to SER and any other 1-dimensional representation of tilt, 

LP1 can be also very sensitive to any type of noise degradation. Interestingly, measures that rely on 

either fitting a linear model (SLF), a near-linear approximation (LP1), or computing the energy 

ratio (SER) directly on the logarithmic magnitude spectrum of speech do not seem to perform well 

for C-PROM, whereas, in contrast, for CGN, the only measure to reach low performance level was 

SER. Again, this is likely related to the quality of the recordings where the overall subjective 

quality of CGN is better than C-PROM even though both do not comprise of high-quality speech 

recordings. As an example, the occasional signal clipping in C-PROM introduced unwanted 

harmonic frequency components, as discussed in section 4.1.1.2, and this may also impact some of 

the tilt estimators more than others. In comparison, the only measure that approximates the slope of 

the surface spectrum and performed well in both corpora, was the first MFCC coefficient, C1. Since 

C1 is computed as the first basis function of the discrete cosine transform (DCT), performed on the 

logarithmic Mel-spectrum, the used Mel-filtering may improve robustness of the measure against 

certain signal corruptions over the other alternatives. A further observation for C-PROM is that tilt 

measures that include higher order parameterizations (DNNC6D, SLF6D, QCP6D) performed 

systematically better. In this case, the more detailed representation of the spectrum could be more 

robust to noise sources that impact specific frequency regions but do not equally mask all aspects of 
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the spectral envelope. In contrast, fitting a linear model can be very sensitive to outliers such as 

individual noise peaks in the spectrum.  

Considering the role of surface and source tilts in prominence class characterization, 

measures from both categories seem to have an important impact on the separability of prominent 

and non-prominent words, the best variants reaching the level of basic features (energy, F0, 

duration). Combination of different tilt measures from the same group (source or surface) does not 

improve separability performance but leads to a deterioration of the overall classification result in 

the second experiment. In contrast, combination of the best source (DNNC6D) and surface 

(SLF6D) tilt leads to an increase in class separability (similarly also to other across-group 

combinations), indicating that the two distinct groups may hold complementary information that is 

relevant for prominence. This observation suggests that factors present in the glottal flow also hold 

a role for prominence expression, a finding that is also in line with other studies suggesting that 

prominence may be dependent on a number of source parameters (including F0) (see Ní Chasaide et 

al., 2013). 

In all, the present study provides important insights about the contribution of spectral tilt to 

the identification of prominent words in the speech stream, including analyses under the presence of 

additive noise and degradations caused by telephone transmission (AMR codec). Earlier, studies 

have examined the impact of the narrowband and wideband versions of the AMR codec on different 

acoustic parameters in the speech signal (see, e.g., Guillemin &Watson, 2006; Ireland, Knuepffer, 

& McBride, 2015) but there has not been an in-depth examination of prosodic prominence and, 

also, there has been little evidence for the impact of the codec on tilt in particular. The importance 

of tilt in prominence has been at times elusive with its contribution being seemingly undetermined 

across studies, including various practices for estimating tilt either from the surface structure of the 

speech signal or from the estimated glottal excitation. In general, the earlier studies have not been 

conclusive on the role of tilt in prominence (see, e.g., Campbell & Beckman, 1997; Sluijter & van 

Heuven, 1996a). Our present findings suggest that both surface and source measures of tilt hold an 

important role in identifying prominent categories, at least for the Dutch and French speech 

analyzed here. However, more work is needed to further validate the present findings through the 

inclusion of more languages in the evaluation. In addition, in the current setup only two types of 

speech degradation were considered. Therefore, it would be of interest to examine more types of 

degradation (e.g., competing talkers) that are commonly encountered in everyday communication 

scenarios.  
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