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ABSTRACT 

A system capable for purely unsupervised learning of sensory 
context models is presented in this work. The system is based on 
discovery of short-term activity motifs from the sensory data and 
statistical analysis of these motifs on a larger time scale. Detected 
context segments are then clustered into high-level context 
categories and the data corresponding to these categories are used 
to train on-line classifiers for different contexts. Experiments show 
that the method is capable of segmenting sensory recordings into 
epochs of high-level environmental contexts based purely on audio 
signal, and that the classifiers trained from the obtained segments 
are selective towards specific contexts. 
 

Index Terms— context recognition, machine learning, 
unsupervised learning 

1. INTRODUCTION 

Technological development has reached a point where compact 
mobile devices are able to sense their environment using a variety 
of built-in sensors, providing massive amounts of data from the 
surrounding world. However, the raw data as such is meaningless. 
Therefore one of the aims in context-aware computing is to infer 
higher-level abstract representations of the surrounding context 
from the sensory data that would provide useful information 
regarding the current use situation of the device (e.g., location such 
as shop or home or activity such as walking). Majority of the 
previous work in user context recognition has used supervised 
methods to train separate classifiers for different physical activities 
and auditory contexts of interest. For example, Pärkka et al. [1] and 
Ermes et al. [2] have studied classification of physical activity 
from accelerometer data using pre-trained classifiers. Auditory 
context recognition with pre-trained audio classifiers has also been 
studied (e.g., [3]). The general finding of the studies is that the 
context recognition performance achieves relatively good levels 
when the training data has close correspondence to the actual 
testing conditions. When controlled in-lab data sets are evaluated 
in unconstrained situations, performance drops significantly [2,3].  

In order to overcome the limitations of pre-trained classifiers 
and to allow user-specific adaptation of the models, unsupervised 
methodology for context discovery can be utilized. For example, 
discovery of high-level contexts has been studied in the work of 
Clarkson & Pentland [4], who present a hierarchical HMM 
framework where low-level HMMs represent temporally brief 
events such as door closings and cash register beeps, whereas high-
level HMMs are used to model sequences of low-level events 
(“high-level contexts”). Also, Krause et al. [5] have introduced an 
adaptive mobile phone system that learns user contexts 

automatically from numerous sensory streams and adapts the 
system to the user behavior in these contexts.  

In this work, a novel approach for unsupervised learning of 
high-level user contexts from any generic sensory data is 
presented. The system combines unsupervised discovery of short-
term sensory motifs to unsupervised acquisition of high-level 
context models in a hierarchical framework that is computationally 
feasible for platforms with low computational resources. The basic 
idea is to first discover statistically significant recurring structures 
in sensory streams and then to analyze the presence of these 
structures at a larger time-scale in order to find internally coherent 
segments of sensory activity. These segments are then clustered 
into context categories and on-line recognizers are trained for the 
categories using the discovered segments as the training data. 
Performance of the system is demonstrated using realistic audio 
data recordings from various everyday activities and locations.  

2.  DATA 

Palantir Context Data Library 2003 [1,2] used in the experiments 
consist of multisensory recordings (a total of 18 sensors) from 16 
test subjects. Recordings were made with a portable recording 
system while the test subject was performing a variety of everyday 
activities. Each recording is 2-3 hours long and all subjects follow 
a pre-defined scenario that contains both indoor and outdoor 
activities at different locations. The following activities are 
annotated in the data: throwing a ball, biking, playing croquet and 
football, lying, Nordic walking, rowing, running, sitting, standing, 
swinging, and walking. In addition, location information is 
available in terms of following categories: office, bus, indoors, 
lake, library, park, restaurant, shop, street, and unknown. The 
annotation was made during recordings by a separate observer. 

Since experiments with multisensory learning are out of the 
scope of this paper, we will use only audio signals (fs = 22050 Hz) 
recorded from a microphone attached to the strap of a backpack in 
order to demonstrate the feasibility of the basic system.   
 

3.  METHODS 
 

The unsupervised context learning process consists of five main 
stages: 1) pre-processing of the sensory data into vector-quantized 
(VQ) discrete sequences, 2) learning of motifs (recurring patterns) 
from the sequential data, 3) segmentation of the data into temporal 
epochs by studying the prevalence of discovered motifs and VQ-
elements in the data, 4) clustering of the detected segments into 
context categories, and 5) training of on-line classifiers for low-
level features of each high-level context category. Fig. 1 shows a 
schematic view of the entire process. Although audio is used in this 
work, the framework generalizes to any sensory data (e.g., 
acceleration) with sensor specific feature extraction front-end. 



 
Fig. 1: A schematic view of the unsupervised context learning 
system. Long-term statistical analysis of pattern motifs and VQ 
indices is used to discover high-level context classes, for which on-
line classifiers can be then trained.  

3.1. Pre-processing 

Audio is pre-processed by resampling the signals to 16 kHz sample 
rate and then extracting standard 36 MFCC features (12 static, 
delta, and deltadelta) with a Hamming window of 32 ms and a step 
size of 10 ms. Energy is not used since it is not a reliable feature in 
real world recordings using a mobile microphone.  

Then a VQ codebook is created for the audio using self-
learning vector quantization (SLVQ [6]) algorithm that adjusts the 
number of clusters according to the data properties. Then all 
MFCCs are vector quantized using the codebook. After pre-
processing, the sensory data is represented by a discrete sequence 
X = [a1, a2, …, aN] of length N, where each ai belongs to the 
alphabet A = {1, 2, …, NA}. 

3.2. Unsupervised learning of motifs 

The unsupervised learning of motifs from the data is performed 
using the Self-learning Concept Matrices (SLCM) algorithm that 
was originally presented in the context of unsupervised learning of 
word forms from continuous speech [7]. 

When a sequence X =[a1, a2, …, an] is used as input, the 
subsequence Ω of the first L elements Ω(1) = {a1, a2, …, aL} of the 
sequence is chosen and the transition frequencies between element 
pairs f(ai,aj) , a ∈ [1, 2, …, NA], at lags kd ∈ k in Ω(1) are stored 
into transition frequency matrices fc(ai | aj , kd), where c = 1 for the 
first model, i.e., a separate matrix is created for each lag. Then the 
frequency matrices are normalized into transition probability (TP) 
matrices Ps: 
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Then the analysis window is shifted S elements forward to position 
Ω(T = 2) = {a1+T*S, a2+T*S, …, aL+T*S} and the previously learned 
models c are used to compute the transition probabilities of the 
new sequence by using the learned models:  
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i.e., the mean of TPs is computed across all lags k. Finally, the 
mean probability of each model in Ω(T) is computed: 
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Fig. 2: An example of motif detector output for the audio stream. 
Activations of different models are shown in different colors.  
 
Now, if the activation Â(c,T) of any single model exceeds a pre-
defined threshold δ, the TPs of the most activated model are 
updated according to (1) using the transitions in the sequence Ω(T). 
If no sufficiently high activation is achieved, a new model cm is 
created using the transitions in Ω(T). The window is then again 
shifted L elements and the new subsequence Ω(T+1) is recognized 
using the learned models. This windowing process is repeated for 
the duration of entire training signal, leading to the learning of a 
number of models for patterns in the input sequence. 

After the models have been learned, their activity during the 
signal is re-estimated. In order to enhance contrast between the 
learned models, the probability that a specific transition from ai to 
aj occurs in the case of model c and lag k, instead of any other 
models, is incorporated into the activation matrix P by having: 
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where NC is the total number of models. The subtracted term 1/NC 
ensures that non-informative transitions, i.e., transitions that are 
equally probable across all C, have a value of zero. The reason 
why (4) is not applied to novelty detection during learning is that it 
enforces a forced choice between the existing models. This leads to 
poor novelty detection performance since the probability mass of 
each transition across all models is always zero (note that 
activation values can be negative due to the subtraction of the 
constant). However, the normalization (4) has a significant impact 
on segmentation performance. 

Now the activation A of each model c at each moment of time 
t is computed with 
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This provides a temporally local activation estimate for each model 
(Fig. 2). Then the activations are smoothed temporally using a 
simple moving average filtering in a 480 ms window. Only the 
most activated model for each moment of time is retained, leading 
to segmentation of the input into a discrete sequence of motif 
activations. 

3.3. Segmentation of signal into activity epochs 

The segmentation stage of the system studies the distribution of 
motifs and VQ-indices in a longer time window in order to 
discover epochs of internally coherent sensory activity that are 
assumed to correspond to different user contexts. During the 
process, a window of length LW is moved in steps of LS across the 
motif sequence and a histogram ht of motif occurrences is 
computed for each window position. Each histogram is normalized 
to have a sum of one and cross-correlation matrix Cmotif is 
computed for all histograms:  
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Now statistically coherent sections of the signal can be observed as 
square-formed plateaus of high correlation in the resulting matrix 
C (Fig. 3). The assumption is that the sensory context stays 
constant during such a coherent segment. In the experiments of this 
paper, values of LW = 2000 (20 seconds) and LS = 200 (2 seconds) 
were used. Cross-correlation matrix Cvq is also computed for the 
original VQ-sequence (distribution of VQ-indices), and elements 
of motif- and VQ-cross-correlation matrices are multiplied in order 
to obtain the final cross-correlation representation, i.e.  
  C(t1,t2) = Cvq(t1,t2)Cmotif(t1,t2).  (7) 
In order to extract segments from C, a 2-dimensional filter is 
applied to the cross-correlation matrix (see [8]) that reacts strongly 
at the points in time where the coherence of signal changes 
suddenly. The filter is composed of one square region A of size d1 
x d1 with its top-right corned placed against the diagonal of the 
matrix C, and of two identical triangles B1 and B2 with side lengths 
of d2 that are next to the square and whose hypotenuses are also 
placed against the diagonal (Fig. 4). As the filter moves 
downwards along the diagonal, the means of cross-correlation 
matrix elements under the triangles B1 and B2 are subtracted from 
the mean of elements under the square A at each timed step.  
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s( t) = A(t) −B1( t) −B2( t)    (8) 
This produces a signal s(t) where deep valleys indicate segment 
boundary locations and valley depth indicates respective reliability 
of the segmentation. Simple peak/valley detection algorithm is then 
applied to extract temporal locations of segment boundaries.  

 
Fig. 3: Cross-correlation matrix C of motif histograms. Coherent 
epochs of sensory data can be seen as square sections along the 
diagonal. 

 
Fig. 4: 2D-filter used in the segmentation of the cross-correlation 
matrix C. 
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Fig. 5: An example clustering of discovered context segments. 

3.4 Clustering of context segments 

In order to cluster similar segments together, all segments are first 
represented by their characteristic features. These features include 
1) the mean distribution µvq,s of VQ-indices over the segment, 2) 
the mean distribution µm,s of motifs over the segment, 3) variance 
of VQ indices over the segment, and finally 4) variance of motifs 
over the segment. In order to have equal weight for each feature, 
the feature vectors are all normalized separately to have a sum of 
one. Then the features are concatenated into one representative 
feature row-vector for each segment s: 
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An agglomerative hierarchical cluster tree (Fig. 5) is constructed 
from the feature vectors by merging nearest feature vectors or 
clusters containing these vectors together at each step. Final 
clusters are defined by using a cutoff threshold d for cluster tree 
inconsistency, below of which all subtrees are considered as 
separate clusters, or as learned context categories. Inconsistency is 
defined as the ratio between edge weight and the average of other 
nearby edge weights.  

3.5. Training of context category classifiers 

Since the temporal boundaries between epochs of high-level 
contexts and corresponding category identities (cluster indices) are 
known, it is possible to use this labeling in association with the 
original sensory data in order to train a standard supervised 
classifier for each context category. This allows on-line detection 
of similar contexts in future data. In our work, we use 
computationally light Concept Matrix (CM) classifiers [9], but, 
e.g., standard HMM classifiers can be also used if sufficient 
computational resources are available.  

4. EXPERIMENTS 

A two-hour recording from one test subject was used to 
demonstrate the functionality of the system. For the given data, the 
SLVQ clustering produced N = 74 clusters for the MFCC features. 
Then the SLCM was used for learning with a novelty threshold of 
δ = 0.045, window length L = 1 second, window shift S = 1 second, 
and lags k = {1, 2, 3, 4, 5, 7, 9, 12, 15}, leading to the discovery of 
a total of 248 audio motifs from the VQ-data. Segmentation of the 
2 hour VQ and motif data produced 23 segments, from which 19 
clusters were obtained with cluster inconsistency threshold of d = 
0.6. 

Fig. 6 shows the result of the segmentation. Blue line denotes 
the annotated context (activities at the bottom and locations at the 
top) whereas red dashed lines show the detected segment 
boundaries and green bars at the bottom reflect the saliency of the 
boundary (higher bars correspond to higher saliency). As can be 
observed from the figure, the segment boundaries react mainly to 
the changes in user location, but sometimes user activity also 
causes changes in the discovered context. In terms of location,  



0 20 40 60 80 100 120

activity=ball
activity=bike

activity=croquet
activity=football

activity=lie
activity=nordic

activity=row
activity=run
activity=sit

activity=stand
activity=swinging

activity=walk
location=VTT
location=bus

location=indoors
location=lake

location=library
location=park

location=restaurant
location=shop

location=street

time (minutes)  
Fig. 6: Unsupervised context segmentation based on audio data. 
Blue line denotes the current context and red dashed lines show 
detected activity segment boundaries.  
 
segmentation accuracy is relatively good with a mean deviation of 
σ = 29.0 s from reference boundaries and 5 insertions, mean purity 
of segments being 92%. For user activity, the mean deviation is σ 
= 78.92 s with -7 insertions (seven less boundaries were discovered 
than there are annotated boundaries). Table 1 shows the contents of 
discovered segments (left) and selectivity of the CM classifiers 
when they were validated with the same data (right).  

Many of the differences between the segmentation and 
annotation can be understood by manually listening to the audio 
signals. For example, the over-segmented restaurant visit between 
45 and 65 minutes actually consists of two distinct main stages 
with different auditory characteristics: queuing and operating at the 
cash desk and eating at the table. On the other hand, accurately 
segmented points typically consist of highly contrasting changes 
such as going indoors from the street or going to bus from the 
street. 

5. CONCLUSIONS 

A novel method for unsupervised discovery of high-level user 
contexts from low-level sensory data was presented in this work. 
The proposed system first discovers statistically significant short 
patterns, or motifs, from sensory data and then segments the signal 
into segments of different contexts by analyzing the distribution of 
patterns in the signal. These segments are then clustered into 
context categories based on their spectrotemporal similarities. 
Finally, a classifier is trained for each context category, making 
on-line recognition of previously encountered contexts possible.  

The first experiments with recordings from various real-life 
situations show that the system can discover segments of audio 
activity that have high correspondence to manually annotated user 
locations. More experiments with multiple test subjects, 
independent test sets and additional sensors will be addressed in 
future work. For example, the performance of the on-line 
classifiers should be evaluated using a data set with independent 
test material in order to understand how well the system 
generalizes to similar but not exactly the same situations. 
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Table 1: Contents of discovered context segments (left) and 
selectivity of learned on-line classifiers (right). Only 1-2 best 
matching classes are shown per token. 

SEGMENTS CLASSIFIER SELECTIVITY 
S % ID M % ID % ID 
1 95.8% office 1 95.6% street 4.4% shop 
2 93.2% street 2 73.6% shop 23.4% street 
3 99.7% street 3 88.4% street 8.5% library 
4 100.0% bus 4 96.3% street 3.7% shop 
5 96.0% street 5 41.1% shop 40.9% street 
6 70.5% shop 6 100% library     
7 95.2% restaur. 7 93.2% street 6.8% office 
8 100.0% restaur. 8 97.0% office 3.0% street 
9 100.0% restaur. 9 50.8% park 49.2% street 

10 96.8% restaur. 10 89.7% restaur. 10.3% street 
11 100.0% shop 11 90.6% park 9.4% street 
12 91.7% street 12 100% restaur.     
13 100.0% library 13 100% shop     
14 49.5% shop 14 100% office     
15 100.0% shop 15 82.6% bus 12.9% street 
16 75.1% street 16 95.0% shop 5.0% restaur. 
17 94.0% street 17 89.5% office 10.5% street 
18 100.0% office 18 95.6% street 4.5% shop 
19 98.8% street 19 100% restaur.     
20 84.4% park      
21 100.0% park      
22 86.5% street      
23 100.0% office      
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