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Introduction
e Digital waveguides for physical modeling of musical
Instruments and other acoustic systems (Smith, 1992)

 2-D digital waveguide mesh (WGM) for simulation of
membranes, drums etc. (Van Duyne & Smith, 1993)

 3-D digital waveguide mesh for simulation of acoustic
spaces (Savioja et al., 1994)

- Violin body (Huang et al., 2000)
- Drums (Aird et al., 2000)
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Sophisticated 2-D Wave guide Structures

* In the original WGM, wave propagation speed depends
on direction and frequency (Van Duyne & Smith, 1993)

 More advanced structures ease this problem, e.g.,

—Triangular WGM (Fontana & Rocchesso, 1995,
1998; Van Duyne & Smith, 1995, 1996)

—Interpolated rectangular WGM (Savioja & Valimaki,
ICASSP’'97, IEEE Trans. SAP 2000)

 Direction-dependence is reduced but frequency-
dependence remains

[1 Dispersion
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Interpolated Rectan gular Wave guide Mesh

Hypothetical
Original WGM 8-directional Interpolated WGM
WGM
® ® ® ’ ®
® ® 0\ l /o 1
(Van Duyne & Smith, (Savioja & Valimaki,
1993) 1997, 2000)
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Wave Propa gation Speed

Interpolated WGM
(Bilinear interpolation)

Original WGM
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Wave Propa gation Speed (2
Interpolated WGM

Original WGM (Bilinear interpolation)
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Wave Propa gation Speed (3)

Interpolated WGM
(Quadratic interpolation)
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Original WGM
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Wave Propa gation Speed )

Interpolated WGM
(Optimal interpolation)

Original WGM
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(Savioja & Valimaki, 2000)
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Relative Frequency Error (RFE)

RFE in diagonal and

axial directions:

(a) original and

(b) bilinearly

Interpolated

rectangular WGM
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Relative Frequency Error (RFE) (2

o

RFE in diagonal and
axial directions:

1
8))
T

-
o
T

Optimally interpolated
rectangular WG mesh
(up to 0.25f)

N
(@»]
T

N
(o)
T

/

w
S
o

RELATIVE FREQUENCY ERROR (%)
. .

0.05 0.1 0.15 0.2 0.25 0.3 0.35
NORMALIZED FREQUENCY

Valimaki and Savioja 2000 11



X

HELSINKI UNIVERSITY OF TECHNOLOGY

Frequency Warpin ¢

 Dispersion error of the interpolated WGM can be
reduced using frequency warping because

— The difference between the max and min errors
IS small

— The RFE curve Is smooth

» Postprocess the response of the WGM using a
warped-FIR filter (Oppenheim et al., 1971; Harma et
al., JAES, Nov. 2000)
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Frequency Warpin g: Warped-FIR Filter

: : . -1 )\
e Chain of first-order allpass filters A7) = Z +
5 4 1+Az7
(m A(2) A(2) - A(2)
SOV s(l)f s(2) s(L-l)i
S,(N)
> --- >—>

* 5(n) Is the signal to be warped
* 5,(Nn) Is the warped signal
* The extent of warping is determined by A
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Optimization of Warpin g Factor A

e Different optimization strategies can be used, such as
- least squares
- minimize maximal error (minimax)
- maximize the bandwidth of X% error tolerance

* We present results for minimax optimization
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(a,b) Bilinear
Interpolation

(c,d) Quadratic
Interpolation

(e,f) Optimal
Interpolation

(g,h) Triangular
mesh
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Higher-Order Frequency Warpin ¢g?

 How to add degrees of freedom to the warping to
Improve the accuracy?

— Use a chain of higher-order allpass filters?
Perhaps, but aliasing will occur... No.
— Many 1st-order warpings in cascade?
No, because it’'s equivalent to a single warping
using (A +A,) 1 (1 + A7)
* There Is a way...
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Multiwarpin ¢
e Every frequency warping operation must be
accompanied by sampling rate conversion

— All frequencies are shifted by warping, including
those that should not

e Frequency-warping and sampling-rate-conversion
operations can be cascaded

— Many parameters to optimize: Ay, A,, ... Dy, D,,...

Sampling Y (N)

X;(N)
Frequency

Sampling I Frequency

warping rate conv. warping rate conv.
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Reduced Relative Frequency Error

(a) Warping with

A =-0.32
(b) Multiwarping with
A, =-0.92, D, =0.998
A, =-0.99, D, =7.3

(c) Error in eigenmodes o
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Computational complexity

e Original WGM: 1 binary shift & 4 additions

* |Interpolated WGM: 3 MUL & 9 ADD

« Warped-FIR filter: O(L?) where L is the signal length
e Advantages of interpolation & warping

— Wider bandwidth with small error: up to 0.25
Instead of 0.1 or so

— If no need to extend bandwidth, smaller mesh size
may be used
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Extendin g the Frequency Ran ge

|t is known that the limiting frequency of the original
waveguide mesh is 0.25

— The point-to-point transfer functions on the mesh
are functions of z2, i.e., oversampling by 2

e Fontana and Rocchesso (1998): triangular WG mesh

e How aboutt

— The Inter

nolation ¢

— Maybe also the up
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Relative Frequency Error (RFE)
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Extendin g the Frequency Ran ge ()

 The mapping of frequencies for various WGMs
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Simulation Result vs. Analytical Solution
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N

Error iIn Mode Frequencies
Error in eigenfrequencies
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Conclusions and Future Work

o Accuracy of 2-D digital waveguide mesh simulations
can be improved using
1) the interpolated or triangular WGM and
2) frequency warping or multiwarping
e Dispersion can be reduced dramatically

* |n the future, the interpolation and warping
techniques will be applied to 3-D WGM simulations

 Modeling of boundary conditions and losses must
be improved
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