

Interpolated and Warped 2-D Digital Waveguide Mesh Algorithms

Vesa Välimäki¹ and Lauri Savioja²

Helsinki University of Technology ¹Laboratory of Acoustics and Audio Signal Processing ²Telecommunications Software and Multimedia Lab. (Espoo, Finland)

Interpolated and Warped 2-D Digital Waveguide Mesh Algorithms

Outline

- Introduction
- ► 2-D Digital Waveguide Mesh Algorithms
- Frequency Warping Techniques
- Extending the Frequency Range
- Numerical Examples
- ➤ Conclusions

Introduction

- **Digital waveguides** for physical modeling of musical instruments and other acoustic systems (Smith, 1992)
- 2-D digital waveguide mesh (WGM) for simulation of membranes, drums etc. (Van Duyne & Smith, 1993)
- 3-D digital waveguide mesh for simulation of acoustic spaces (Savioja *et al.*, 1994)
 - Violin body (Huang et al., 2000)
 - Drums (Aird et al., 2000)

Sophisticated 2-D Waveguide Structures

- In the original WGM, wave propagation speed depends on <u>direction</u> and <u>frequency</u> (Van Duyne & Smith, 1993)
- More advanced structures ease this problem, e.g.,
 - -Triangular WGM (Fontana & Rocchesso, 1995, 1998; Van Duyne & Smith, 1995, 1996)
 - –Interpolated rectangular WGM (Savioja & Välimäki, ICASSP'97, IEEE Trans. SAP 2000)
- Direction-dependence is reduced but frequencydependence remains
 - \Rightarrow Dispersion

Interpolated Rectangular Waveguide Mesh

Original WGM

Hypothetical 8-directional WGM

Interpolated WGM

(Van Duyne & Smith, 1993)

(Savioja & Välimäki, 1997, 2000)

Original WGM

Wave Propagation Speed

Interpolated WGM (Bilinear interpolation)

Välimäki and Savioja 2000

Välimäki and Savioja 2000

Wave Propagation Speed (3)

Interpolated WGM (Quadratic interpolation)

Wave Propagation Speed (4)

Interpolated WGM (Optimal interpolation)

Välimäki and Savioja 2000

Relative Frequency Error (RFE)

Relative Frequency Error (RFE) (2)

Frequency Warping

- Dispersion error of the interpolated WGM can be reduced using frequency warping because
 - The difference between the max and min errors is small
 - The RFE curve is smooth
- Postprocess the response of the WGM using a warped-FIR filter (Oppenheim *et al.*, 1971; Härmä *et al.*, JAES, Nov. 2000)

Frequency Warping: Warped-FIR Filter

- s(n) is the signal to be warped
- $s_w(n)$ is the warped signal
- \bullet The extent of warping is determined by λ

Optimization of Warping Factor λ

- Different optimization strategies can be used, such as
 - least squares
 - minimize maximal error (minimax)
 - maximize the bandwidth of X% error tolerance
- We present results for minimax optimization

Higher-Order Frequency Warping?

- How to add degrees of freedom to the warping to improve the accuracy?
 - Use a chain of higher-order allpass filters?
 - Perhaps, but aliasing will occur... No.
 - Many 1st-order warpings in cascade?

No, because it's equivalent to a single warping using $(\lambda_1 + \lambda_2) / (1 + \lambda_1 \lambda_2)$

• There is a way...

Multiwarping

- Every frequency warping operation must be accompanied by sampling rate conversion
 - All frequencies are shifted by warping, including those that should not
- Frequency-warping and sampling-rate-conversion operations can be cascaded

– Many parameters to optimize: λ_1 , λ_2 , ... D_1 , D_2 ,...

Reduced Relative Frequency Error

Computational complexity

- Original WGM: 1 binary shift & 4 additions
- Interpolated WGM: 3 MUL & 9 ADD
- Warped-FIR filter: $O(L^2)$ where L is the signal length
- Advantages of interpolation & warping
 - Wider bandwidth with small error: up to 0.25 instead of 0.1 or so
 - If no need to extend bandwidth, smaller mesh size may be used

Extending the Frequency Range

- It is known that the limiting frequency of the original waveguide mesh is 0.25
 - The point-to-point transfer functions on the mesh are functions of z^{-2} , i.e., oversampling by 2
- Fontana and Rocchesso (1998): triangular WG mesh has a wider frequency range, up to about 0.3
- How about the interpolated WG mesh?
 - The interpolation changes everything
 - Maybe also the upper frequency changes...

Relative Frequency Error (RFE) (2)

Välimäki and Savioja 2000

Extending the Frequency Range (3)

The mapping of frequencies for various WGMs

Upper frequency limit always 0.3536 (a) Original (b) Optimally interp. up to 0.25 (c) Optimally interp. up to 0.35 (d) Warped case b

Simulation Result vs. Analytical Solution

Error in Mode Frequencies

Error in eigenfrequencies of a square membrane Warped interpolated WGM Warped triangular **WGM Original WGM**

Conclusions and Future Work

- Accuracy of 2-D digital waveguide mesh simulations can be improved using
 - 1) the interpolated or triangular WGM and
 - 2) frequency warping or multiwarping
- Dispersion can be reduced dramatically
- In the future, the interpolation and warping techniques will be applied to 3-D WGM simulations
- Modeling of boundary conditions and losses must be improved