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ABSTRACT
A measure for the effective length of the impulse response of a
stable recursive digital filter based on accumulated energy is
proposed. A general definition and a simple algorithm for its
evaluation are introduced, and closed-form expressions are
derived for first-order IIR filters. The effect of zeros on the
effective length is analyzed. An upper bound for the effective
length of higher-order filters is derived using results for low-
order filters. The new measure finds applications in several fields
of digital signal processing, including estimation of the extent of
attack transients for filters with dynamically varying inputs,
elimination of transients in variable recursive filters, and design
and implementation of linear-phase IIR systems.

1. INTRODUCTION

The impulse response of a stable recursive digital filter is infi-
nitely long in principle, but due to exponential decay it eventu-
ally sinks below the quantization step or the noise in the system.
Thus, in practice the impulse response of a stable recursive filter
can be regarded as finite. A measure for the effective length of
the impulse response of an IIR filter is needed in several applica-
tions, e.g., in estimation of the effective length of the attack tran-
sient of a recursive filter [2].

When changing the coefficients of a recursive filter, transients
will occur. These transients depend on the filter input, but an
impulse-response-based measure can be used to characterize
them. A special case of this problem is encountered when the
transients are eliminated using a novel technique by updating the
state variables of the filter [10], [11]. The transient can be
canceled within desired accuracy, but this accuracy depends on
the effective length of the impulse response of the filter after the
change of coefficients.

Still another application for the effective length of an infinite
impulse response is a realization technique for linear-phase IIR
filters based on cascading a minimum-phase IIR filter H(z) and
its maximum-phase (unstable or noncausal) counterpart H(z–1)
[4], [1], [8]. The filtering is based on processing the input signal
in finite-length blocks of L samples. The basic constraint is to
choose L so that the impulse response of H(z) has decayed to a
small enough level. On the other hand, block length L should be
chosen as small as possible to minimize latency. Although L is an
essential system parameter, techniques to determine its value are

rather heuristic and do not attempt to find an optimal value. In
[4] it was suggested that the filter be implemented in parallel
form employing second-order filter sections and using a rough
time-constant-based measure for the length of the impulse
response of each section. An upper bound for estimating the
resulting errors for a given L was derived in [1] and [8] but no
explicit measure for determining L was given.

Previously, three different amplitude-based methods have been
used for measuring the effective length of an infinitely long but
decaying impulse response. 1) In [7], a general duration d of a
signal was defined. The discrete-time version of the expression is
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where E is the total energy of the signal. 2) A traditional tech-
nique is based on the concept of a time constant. Typically, the
time constant of the pole with the largest radius rmax is used for
estimating the decay rate of the impulse response and an ampli-
tude threshold is chosen to determine the effective length [6].
Smith has proposed to approximate this time constant as 1/(1 –
rmax) which is obtained by truncating the Taylor series of the
exact equation [9], [11]. Based on merely one pole of the system,
this measure is easy to use but gives a crude estimate for the
effective length. 3) Furthermore, an amplitude threshold can be
set and the effective length be determined as the sample index
where the impulse response ultimately goes below this threshold
[10]. In principle, this technique gives a better approximation.
The drawbacks are the lack of analytical methods and the com-
plication of the measure when the impulse response does not
decay monotonically.

From the above it is apparent that several ways to measure the
effective length of infinite impulse responses have been sug-
gested but none of them seems to have gained wide acceptance.
This paper introduces a meaningful yet simple and practical defi-
nition. We define the effective length of the impulse response of a
general recursive filter based on the accumulated percentage of
the total energy. This concept has several advantages: 1) the
energy of an additive disturbance is a natural measure in many
applications, 2) the total energy of a given filter is easy to deter-
mine either in the time or in the frequency domain, thanks to
Parseval’s theorem, and 3) the measure is parametric and thus
flexible.
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2. EFFECTIVE LENGTH OF A GENERAL
RECURSIVE FILTER

2.1 Definitions

Consider an Nth-order recursive filter with transfer function
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where filter coefficients ak and bk are real-valued (k = 0, 1, ..., N).
Assuming a stable and causal implementation, the recursive filter
(2) can also be described via an equivalent difference equation as
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where x(n) and y(n) are the input and output of the filter, respec-
tively. When the input signal is a unit impulse x(n) = δ(n), which
equals unity at n = 0 and zero elsewhere, the output y(n) = h(n) is
the impulse response of the filter.

The total energy of the causal impulse response h(n) is defined as
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where the frequency-domain expression follows from the Parse-
val relation. The determination of the integral in the z-domain
has been addressed in [3], for example.

We define the energy-based effective length (EL) as the smallest
nonnegative integer time index NP by which at least P% of the
total energy of the impulse response has arrived. The corre-
sponding accumulated energy EA(NP) can be expressed as
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Hence, we always require EA(NP) ≥ EP since the effective length
NP must be an integer. Note that this differs slightly from the
usual definition of length of the corresponding FIR filter: the
truncated part contains NP + 1 samples but the effective length
(5) is one less, NP. The energy-based length (for any percentage)
of a filter with a unit impulse as the impulse response is thus
zero, and that of a two-point averager is unity, which is in accor-
dance with common sense.

2.2 General Algorithm

The most straightforward way to compute the impulse response
of a given causal and stable recursive filter is to use the differ-
ence equation (3). When the total energy E is precomputed, the
corresponding accumulated energy EA(NP) ≥ EP for the chosen
percentage P can be determined recursively via the algorithm
presented in Table 1. This simple algorithm can be used for many
recursive filters. However, for narrowband filters the length can
be hundreds of samples. For low-order all-pole filters more prac-
tical closed-form expressions can be derived.

Table 1. Algorithm for computing the effective length of
a general recursive filter.

Step 0: Compute E and EP for the chosen P. Initialize: n = 0,
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Step 3: If EA(NP) ≥ EP = PE /100, then NP = n and stop; else n =
n + 1 and go to Step 1.

3. LOW-ORDER ALL-POLE FILTERS

3.1 First-Order All-Pole Filter

Consider a first-order all-pole filter with the transfer function

 H z az( ) ( )= − −1 1 1 (6)

where a is real-valued and the pole radius a = r < 1 for stabil-
ity. Its causal impulse response is simply h(n) = an for nonnega-
tive n. Accumulated energy EA(NP) can be expressed as
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from which the total energy is also obtained as a limit (NP → ∞)
as E = 1/(1 – r2). The requirement (5) now becomes
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and the EL can be solved as
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where the logarithm can have any (positive) base and · denotes
the ceiling operation (i.e., rounding upwards). Note that quanti-
zation is necessary because NP must be an integer.

Figure 1 presents the EL NP for P = 90%, 95%, and 99% as a
function of pole radius r computed according to (9). These
curves show the expected phenomenon that the EL of the
impulse response increases rapidly as pole radius r approaches
the value 1. Furthermore, it is seen that the EL is fairly insensi-
tive to the percentage value so that the lengths corresponding to
90%-99% energy do not differ much except for when pole radius
r is larger than 0.9.

3.2 Second-Order All-Pole Filters

Similar derivations can be conducted for second-order all-pole
filters. Three different cases have to be elaborated separately: a
complex-conjugate pair, a double real pole, and two distinct real
poles. The derivations are more involved than in the first-order
case. Furthermore, exact closed-form formulas cannot be derived,
but simplified approximations or upper and lower bounds can be
arrived at for the complex-conjugate case. For the other two
cases, it is only possible to derive closed-form formulas for
accumulated energy EA(NP) and total energy E. Unfortunately,
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these do not lend to an easy closed-form solution for NP, but they
can be used to efficiently search for minimum NP by successive
evaluations. Using binary search, about log2(NP) evaluations are
needed, as compared to NP steps of the algorithm of Table 1. For
example, if we can assume that the EL is at most 256, only 8
evaluations of EA(NP) and E are required. The derivations are
omitted due to space limitations. Details are available in a long
version of this work [5].

4. ON THE EFFECT OF ZEROS

The above results consider all-pole filters only. In this section we
show how the zeros affect the EL of recursive filters’ impulse
response. A general first-order filter is studied in detail after
which general conclusions are drawn for higher-order filters.

4.1. General First-Order IIR Filter

Let us consider a first-order IIR filter with transfer function

H z c bz az( ) ( ) ( )= − −− −1 11 1 (10)

where a, b, and c are real-valued and a<1. The impulse
response is now
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The accumulated energy EA(NP) is (for NP > 0)
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from which the total energy is obtained as a limit (as NP → ∞)
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The EL can now be solved as
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where ( )L a b ab b b a( , ) ( ) /= − + −1 2 12 2
.

It is seen that (14) is the same as (9) except for a additive new
term log[L(a,b)]. Since log(a2) < 0, this term increases the length
of the impulse response when L(a,b) is smaller than unity, which
happens when b – a>a. In the limit the additional term goes
asymptotically towards the minimum value log[L(a,b)] → log(a2)
when b→ ∞, which means that the impulse response is length-
ened by one sample at most. In this case the numerator approxi-
mates a unit delay, i.e., 1 – bz–1 ≈ bz–1.

On the other hand, the impulse response is shorter than (or equal
to) that without the zero when b – a<a. For zeros close
enough to the pole, the EL is suppressed down to zero. When b =
a, the zero exactly cancels the pole and the impulse response
reduces to a unit impulse.

4.2 N Zeros

The conclusions for the first-order filter can readily be general-
ized for higher-order filters. Consider a general recursive transfer
function H(z) = B(z)/A(z) with the numerator B(z) of order MB.
Assuming a fixed denominator, the longest possible impulse
response corresponds to a delay of MB units (one per each zero)
and it is attained when the highest-order coefficient bMB
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The smallest possible EL for the high-order filter is zero which
naturally occurs due to (approximate) cancellation of all of the
poles by corresponding zeros. This result is used in the next sec-
tion to obtain a general bound for high-order filters.

5. HIGH-ORDER RECURSIVE FILTERS

Analytical treatment of higher-order filters soon becomes cum-
bersome. Instead of trying to derive complicated formulas of
questionable utility, approximate upper bounds are derived. Let
us focus on the case of effective length for a relatively large P
(90...99.99%) so that most of the energy has arrived by time
index NP and we can neglect the tail of the impulse response. We
define the length-NP truncated impulse response as
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As the truncated impulse response is genuinely finite-length, we
can obtain a simple approximative limit for the length of the
convolution of two impulse responses h1(n) and h2(n) with effec-
tive lengths NP1 and NP2 as

{ } { }N h n h n N h n h n N NP P TR TR P P1 2 1 2 1 2( ) ( ) ( ) ( )∗ ≈ ∗ ≤ + (17)

This follows because the length of the convolution of two
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Figure 1. The effective length of a first-order all-pole
filter for P = 90% (solid line), P = 95% (dashed line),
and P = 99% (dotted line) as a function of pole radius r.
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sequences of lengths (NP1 + 1) and (NP2 + 1) is equal to NP + 1 =
(NP1 + 1) + (NP2 + 1) – 1 = NP1 + NP2 + 1, or NP = NP1 + NP2

(remember that the effective length is one shorter than the num-
ber of coefficients!). Applying this result for many convolutions
we can express a formula for a filter consisting of K subsections:

{ }N h n h n h n N N NP K P P PK1 2 1 2( ) ( ) ( )∗ ∗ ∗ ≤ + + +� � (18)

Let us then consider a transfer function where poles are divided
into at most second-order real-coefficient sections as follows:
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where the numerator B(z) is of order MB, and KA denotes the
number of sections in the denominator. Combining (18) with
(15), we obtain an approximative upper bound for the EL as
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This is a general-purpose result which can be applied to any kind
of stable filters when the factorization to first or second-order
real-coefficient sections is available. Note that the obtained esti-
mate for the EL is an approximate upper bound and it may be
pessimistic for filters with poles and zeros close to each other.

6. APPLICATION EXAMPLE

Let us then consider a real-life example where the estimation of
the length of the impulse response of the IIR filter is crucial. As
discussed in the Introduction, linear-phase IIR filters can be
implemented by cascading a minimum-phase IIR filter H(z) and
its maximum-phase counterpart H(z–1). For this the effective
length of H(z) must be determined. In [4], Kormylo and Jain
designed a third-order elliptic lowpass filter for the processing of
a noisy ECG signal. The filter specifications were: passband
ripple Ap = 0.05 dB, passband cutoff frequency ωp = 0.175π (or
35 Hz for 400 Hz sampling frequency), and stopband attenuation
Ap = 16 dB. For the cascaded linear-phase system the ripple val-
ues are of course doubled, i.e., the composite stopband attenua-
tion is 32 dB.

For block implementation, an estimate for the length of the
impulse response of the elliptic filter is required. In [4] it was
suggested (apparently heuristically) that the length of four times
the time constant τ of the pole with the largest radius should be
used, which yields the length estimate of 24.25 sample intervals
(using Smith’s approximation, i.e., time constant τ = 1/(1 – rmax)
—in [4] no figures were given). The desired 32 dB stopband
attenuation suggests that at most 10–3.2 = 0.00063096 or 0.063%
of the impulse response energy can be lost in the truncation,
which corresponds to P = 99.937%. This yields an energy-based
EL (exact, using the algorithm of Table 1) of NP = 21 samples,
which is not far from the 4τ estimate.

In [8], Powell and Chau employed a seventh-order elliptic low-
pass filter with the passband ripple Ap = 0.005 dB, passband
cutoff frequency ωp = 0.65π and stopband attenuation Ap = 35
dB. Requiring that a bound for the maximum amplitude of tran-
sient errors be 70 dB below the signal level, it was derived in [8]
that the block length of 200 samples is necessary. By requiring
the residual energy of the impulse response to be below 70 dB,

i.e., P = 100% × (1 – 10–7) = 99.99999%, results in the exact EL
of NP = 160 samples. Hence, assuming that the energy-based
criterion is suitable for the application, 20% savings in the proc-
essing delay can be achieved by using the proposed EL of the
impulse response.

7. CONCLUSIONS

A new approach for determining the effective length (EL) of the
impulse response of a recursive filter based on the accumulated
energy was proposed. The energy-based measure is argued to be
better suited for many signal processing problems than former
techniques that focus on the amplitude of the impulse response or
the time constant of the system. Alongside a simple recursive
algorithm to determine the EL for any stable IIR filter, closed-
form formulas were derived for first-order all-pole and pole-zero
filters. The effect of zeros was studied in a general case, and an
approximate upper bound was derived for estimating the EL for
higher-order filters using formulas for low-order filters. The
results of this paper find applications in several fundamental and
advanced signal processing problems. An example of the appli-
cation of the new measure to the design of the block length in
linear-phase IIR filtering was presented.
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