
Proceedings of the 1997 International Computer Music Conference, pp. 244–247, Thessaloniki, Greece, Sept. 25–30, 1997

Multirate Extensions for Model-Based Synthesis
of Plucked String Instruments

Vesa Välimäki and Tero Tolonen

Helsinki University of Technology
Laboratory of Acoustics and Audio Signal Processing

P.O.Box 3000, FIN-02015 HUT, Finland
vesa.valimaki@hut.fi, tero.tolonen@hut.fi

http://www.hut.fi/HUT/Acoustics/

Abstract
We describe new developments for model-based sound synthesis of plucked string instruments. The
synthesis model is based on the extended Karplus–Strong algorithm. A new implementation approach
where part of the excitation signal is modeled with interpolated low-frequency resonators and the decay
part of the tones using a multirate string model is introduced. The resonators allow for a full parametri-
zation of the lowest body modes. The computational burden and memory requirements of plucked
string synthesis are decreased using the proposed techniques without degrading the sound quality.

1 Introduction
Almost 15 years ago, Jaffe and Smith introduced several
extensions to the Karplus–Strong algorithm that enabled
high-quality synthesis of plucked string tones [1]. This
model launched the boom of physical modeling of musi-
cal instruments. More details on the physical modeling
aspects of string instruments can be found in [2]. After-
wards, many improvements and further extensions have
been introduced. These include the commutation of the
string and body models to enable computationally effi-
cient and accurate inclusion of body resonances in the
excitation signal [3], [4], an analysis technique based on
the short-time Fourier transform [5], and a transient-
elimination technique to enable smooth glissandos and
vibratos when allpass fractional delay filters are used for
fine-tuning the pitch [6].

In this paper we describe new developments for the
plucked string synthesis algorithm. The guitar is used as
a representative of the plucked string instrument family.
The common factor in the proposed methods is the use
of multirate DSP principles. The lowest resonances of
the body of the guitar are synthesized using interpolated
low-frequency resonators which allow cheap and fully
parametric control of the resonances and enable short-
ening of the excitation wavetables. Furthermore, the
decay part of string tones is generated at a lower sam-
pling rate than the attack. This idea has been proposed
in some former publications [4], [5] but to our knowl-
edge it has not been implemented before.

2 The String Model
The plucked string synthesis model used in this work is
a generalization of the extended Karplus–Strong algo-
rithm. It uses the principle of commuted synthesis where

the response of the instrument body has been incorpo-
rated in the input signal, together with the pluck excita-
tion [3], [4]. A library of excitation signals for different
pluck types and instrument bodies can be stored in
wavetables. The string model itself may consist of one
or two generalized Karplus–Strong models, each of
which simulates one polarization of a vibrating string.

The transfer function of the string model can be
expressed as
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is called the loop filter, and F(z) is a fractional delay
filter used for fine-tuning the pitch. The transfer function
S(z) is completely determined by the following three
parameters: delay-line length L, loop filter gain g, and
loop filter cutoff parameter a. The model is applicable
to the synthesis of many members of the string instru-
ment family, such as guitars, the banjo, and the mando-
lin. For a more detailed description of the synthesis
model and its parameters, see [5]. In [7] we explain how
to calibrate the parameters of the string model.

3 Efficient Modeling of Resonances
This section describes a new technique for reducing the
memory requirements of plucked string synthesis. The
excitation signal is shortened by removing the lowest
body resonances which are reproduced with resonators
that can be implemented efficiently.
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Figure 1: The magnitude response of a guitar body (top) and a
zoom to low frequencies (bottom) where the lowest reso-
nances are visible.

3.1 Extracting Lowest Body Resonances
The huge number of resonances in the response of the
guitar body can be seen in the upper part of Fig. 1. The
lowest two resonances are the Helmholtz or air reso-
nance at approximately 100 Hz and the lowest mode of
the top plate at around 200 Hz [8]. They are very sharp
with a high Q value and are the main cause for the slow
decay of the impulse response of the body. These modes
may be removed from the excitation wavetable of the
guitar model and synthesized separately using second-
order resonators. The excitation wavetable is shortened
considerably and thus a larger number of excitation sig-
nals than before can be stored in a computer memory.

In our example case the two lowest resonances occur
at 104.7 and 205.2 Hz (see the lower part of Fig. 1).
Also the third lowest resonance at 247.7 Hz has a high
Q value, and it may be useful to remove it as well. The
resonances may be removed from the residual for exam-
ple using a second-order notch filter as proposed by
Karjalainen and Smith [9]. Alternatively, they may be
modeled with sinusoids using the McAulay–Quatieri
(MQ) algorithm [10] and subtracted from the residual
signal as proposed by Serra [11]. The Q values of the
resonances are easily and accurately obtained from the
amplitude envelopes of the sinusoidal representation [7].

Figure 2 illustrates the efficiency of the resonance
extraction method in shortening the excitation signal.
The residual signal of Fig. 2a has been obtained by sub-
tracting the partials of a guitar tone which are modeled
with the MQ algorithm. This approach has been found
effective for obtaining the excitation signal for plucked
string synthesis [7]; the formerly used inverse filtering
technique had problems in some cases [5].

Figure 2b presents the sinusoidal model of the two
lowest body resonances. When it is subtracted from the
residual (Fig. 2a), the excitation signal of Fig. 2c is
obtained. Note that this signal soon decays to small
sample values. In practice we do not subtract all of the
sinusoidal model but for example 90% of it, which cor-
responds to attenuating the resonances by 20 dB. This is
enough for shortening the excitation signal but there is
still energy left at the center frequency of the resonances
so that partials which occur near those frequencies could
be excited.

3.2 The Truncated Excitation Signal
The original residual of Fig. 2a would have been trun-
cated or windowed to a length of 100 ms (2200 samples
at 22 kHz) to include a significant part of the decay of
the body resonances in the excitation signal [5]. The
processed residual of Fig. 2c, on the other hand, may
now be truncated to a length of about 50 ms (1100 sam-
ples). When the processed residual is truncated at 50 ms,
almost the same relative amount of energy is included as
in 100 ms in the case of the original response. It may be
possible to use even shorter truncated residuals after the
resonances have been removed since the lowest body
modes are reproduced using resonators and they are thus
not truncated at all. The use of very short excitation sig-
nals should be verified by listening to the synthesis
results.
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Figure 2: An example of extraction of the excitation signal: (a)
the original residual signal, (b) the sinusoidal model of the
two lowest body resonances, and (c) the excitation signal after
the two resonances have been subtracted.
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3.3 Interpolated Low-Frequency
Resonators

Since the removed body resonances have very low cen-
ter frequencies with respect to the sampling frequency, it
is unnecessary to synthesize them at the full output sam-
pling rate. Instead we propose a multirate scheme where
the resonators run at a much lower sampling rate than
the string model. We lower the sampling rate of the
resonators by factor M, which may be about 5 to 10, and
then suppress the aliased frequency components with an
interpolator. Since the resonances are near to DC (0 Hz),
the interpolator only needs to suppress aliasing near the
multiples of the lowered sampling rate. The interpolator
may then be a Recursive-Running-Sum (RRS) filter
which can be implemented as zeroth-order hold. We call
the combination of downsampled resonators and RRS
filters Interpolated Low-Frequency Resonators (ILFR).

The ILFRs are based on second-order peak filters,
such as those described by Orfanidis [12] (pp. 583–
590). All the ILFRs can share a common interpolator.
The same signal value is observed at the output of the
RRS interpolator for M consecutive sample cycles. This
gives us M sample periods to compute the next output
value. Hence it is advantageous to divide the calcula-
tions of the resonators so that the average computational
cost per output sample is minimized. This can be done,
e.g., by computing only the numerator or the denomi-
nator of one resonator at each output sample cycle. If we
allow one output cycle for the update of the output value
of the RRS interpolator, a suitable downsampling factor
M is 5 for 2 resonators or M = 7 for 3 resonators.

An example of generating a resonance using an ILFR
with M = 5 is illustrated in Fig. 3. A sharp resonance at
200 Hz is generated at the sampling rate of 11 kHz. The
magnitude response of a downsampled resonator is
plotted in Fig. 3a together with the response of an RRS
interpolator. Fig. 3b shows their product, i.e., the mag-
nitude response of the ILFR. The dashed line in Fig. 3b
shows the magnitude response of a second-order reso-
nator with the same center frequency and Q value. The
two responses in Fig. 3b are almost identical in the
vicinity of the center frequency but the ILFR response
has aliased components at high frequencies. The worst
case aliased component which occurs at 2.0 kHz has
been attenuated by 19.6 dB. When M = 7, the strongest
aliased component (at 1.4 kHz) would be attenuated by
16.7 dB. If the center frequency is lower than 200 Hz,
the aliased components are attenuated more.

The response of ILFRs is summed to the output of
the string model and this is why a modest attenuation of
less than 20 dB is satisfactory: the aliased components
are mixed with other body resonances at high frequen-
cies and also with the partials of the synthetic string

tone. The method described allows for a fully parametric
but extremely efficient implementation of the most
important body resonances.

4 Multirate Synthesis Algorithm
In this section we present a new multirate implementa-
tion structure for the string model. The synthesis model
is divided into two parts: excitation and decay. The
motivation is that the attack portion of a plucked string
tone includes more energy at high frequencies than the
decay part. Thus, the decay part may be synthesized at a
lower sampling rate. This technique has been formerly
proposed by Smith [4] and further elaborated by
Välimäki et al. [5].

In practice, sampling rates of 22 kHz and 11 kHz
appear adequate for the attack and decay parts, respec-
tively, to produce synthetic plucked string tones which
are virtually identical to the original ones. This may be
demonstrated with a simple listening test: a guitar tone is
filtered using a highpass and a lowpass filter with a
sharp cutoff at 5 kHz. Listening to the filtered signals
reveals that the attack portion requires a higher sampling
rate than the decay part.

When the multirate realization with full-rate excita-
tion signal and a half-rate decay part simulation is com-
bined with the parallel ILFR bank, a new implementa-
tion structure of the string model is obtained (see Fig.
4). Since the full-rate excitation signal x np( )  is directly
fed into the output, it is necessary to modify the string
model to have the following transfer function.
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Figure 3: The magnitude responses of (a) a resonator down-
sampled by factor M = 5 (solid line), an RRS interpolator of
length 5 (dash-dot line), (b) an Interpolated LF Resonator
(solid line), and a second-order resonator (dashed line) with
center frequency 200 Hz and r = 0.99.
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The downsampled excitation signal is fed into the modi-
fied string model. Filters R z1( )  and R z2( )  which are
the ILFRs for simulating the two lowest body modes
have their own input signals. The RRS interpolator is
included in these filters. After upsampling by factor 2,
the output signal of the half-rate system must be lowpass
filtered with a halfband filter H zint ( ) .

The halfband filter and the resonators can be shared
by all the string models (there may be 6 or 12 string
models in a guitar synthesizer). Thus the computational
cost per output sample of the complete string instrument
model is decreased by almost 50% when using the pro-
posed multirate implementation technique. Other advan-
tages of the proposed technique are that the input wave-
tables require 25% less memory and the delay lines are
50% shorter than in the full-rate realization.

5 Conclusion
New multirate methods for improving the efficiency and
parametrization and for reducing memory requirements
of model-based plucked string synthesis have been pre-
sented. We introduced Interpolated Low-Frequency
Resonators (ILFRs) for the synthesis of the most
important body resonances. These resonances are
removed from the excitation wavetable thereby short-
ening it. The ILFRs allow for a full parametric control
of the lowest body resonances and save memory since
the excitation wavetables become shorter. Each ILFR
consists of a second-order resonator running at a low
sampling rate, such as 10–20% of the sampling fre-
quency of the string model, and a cheap interpolator that
suppresses aliasing. In addition, the string model is
implemented as a two-rate system, where the decay part
of tones is synthesized at half the output sampling rate.

The computational load and memory requirements of
guitar synthesis are decreased by almost 50% using the

proposed multirate techniques. In practice this may
mean that 12 strings instead of 6 may be simulated in
real time using a DSP processor without causing audible
degradation in sound quality. In addition, more excita-
tion wavetables may be stored into the on-chip memory
of the processor. The model-based synthesis of plucked
string tones becomes even more attractive than before.
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Figure 4: Block diagram of the multirate implementation of
the guitar synthesis model.


