

Adaptive Design of a Unidirectional Source in a Duct

Vesa Välimäki¹ and Seppo Uosukainen²

¹Helsinki University of Technology

Laboratory of Acoustics and Audio Signal Processing (Espoo, Finland)

²VTT Building Technology, Acoustics (Espoo, Finland)

Adaptive Design of a Unidirectional Source in a Duct

Outline

- Introduction
- Principal unidirectional two-element constructions
- Adaptive design of a unidirectional two-element source
- Simulation examples
- Conclusions and future work

Introduction

A unidirectional acoustic source in a narrow duct

- ➤ multiple actuators (see Refs. [1-7] of the paper)
- The input of each actuator must be processed (filtered)
 Motivation
- ► to be used in *feedforward* broadband ANC systems

anti-noise must to radiate downstream but not upstream

In this paper, we present structures and an adaptive design method for unidirectional two-element sources

Advantages of unidirectional sources

- ➤ the acoustic feedback is eliminated
- Feedback neutralization filter is not needed
- SPL does not increase in the upstream direction due to the secondary source

➤ the sound pressure level may be attenuated in the upstream direction, since further reflections from duct terminations are eliminated

Disadvantages of unidirectional sources

- Imited frequency band of about 2 to 4 octaves:
- not unidirectional at low frequencies (close to 0 Hz) and above an upper frequency limit
- need for several actuators
- ► in practice, both disadvantages are tolerable
- > also other ANC systems also suffer from these defects

Why adaptive design?

> deviations in the actuator responses degrade the obtainable attenuation of unidirectional ANC systems

- mutual difference
- ➤ also, measurement error in the distance between the actuator elements causes degradation

➤ to automatically overcome both problems, we propose an adaptive design method that learns how to equalize the loudspeakers and account for the propagation delay between them

► related earlier work: Elliott, 1993

Principal unidirectional 2-element constructions

➤ 4 different unidirectional two-element structures have been proposed:

- two-element Swinbanks source (Swinbanks, 1973)
- three versions of the JMC-based two-element source (Uosukainen & Välimäki, 1998)
- ► these will be reviewed in the following

Two-element Swinbanks source

- ideal 2-element unidirectional source by Swinbanks:
 - delay the 1st actuator by delay between the sources, $\boldsymbol{\tau}$
 - feed the actuators in oppposite phases

> the amplification factor is A = kd / sin(kd)

JMC-based solutions

➤ the JMC method (Jessel, Mangiante & Canévet) is suitable for formulating the ANC problem with the general system theory

➤ three types of secondary sources are needed: monopoles, dipoles, and quadripoles

➤ in the case of plane waves (such as in a narrow duct), quadripoles vanish

ideal JMC actuators in a duct consist of monopole and dipole sources only

JMC-based two-element sources

- ► inter-channel delay can be optimized in 3 different ways
 - 1. downstream
 - 2. upstream
 - 3. no delay at all
- ► the control structures for the 3 cases are illustrated next

Inter-channel delay optimized downstream

► filters a and b are given in Table 1

Vesa Välimäki & Seppo Uosukainen 1998

Inter-channel delay optimized upstream

No Inter-channel delay

➤ in the non-adaptive case, the delayless version has been found to be easiest to design (Uosukainen & Välimäki, 1998)

Adaptive design of a unidirectional two-element source

Different phases of the adaptive design

- adaptive design contains 3 phases
 1. calibrate transfer functions S_{ij}(z) from both actuators to both microphones
 - 2. calibrate the unidirectionality (using the above system)
 - 3. calibrate the error path from the unidirectional source to the error detector
- ➤ after these phases, the ANC operation may start using a single-channel adaptive system (one more adaptive filter!)

Adaptive Swinbanks configuration

- ➤ the proposed adaptive structure can in principle design any of the four unidirectional two-element structures
- here we show examples of designing the Swinbanks source
- ➤ the adaptive structures for the JMC-based structures are shown in our paper

Example 1

► the delay between the two actuators has been chosen to be $T = 1/f_s$, that is, one sampling interval

► the impulse responses of filters $H_1(z)$ and $H_2(z)$ are shown here (20 coefficients)

magnitude responses upstream (upper) and downstream (lower) in Example 1

back-to-front ratio (La Fontaine & Shepherd, 1985)

obtainable sound radiation downstream (w/ideal anti-noise)

magnitude responses upstream (upper) and downstream (lower) in Example 2 (delay between actuators = 2 samples)

Conclusions and future work

- > automatic design of a unidirectional two-element system was described
- ➤ further work is needed to implement and evaluate the adaptive design of JMC-based unidirectional structures
- ➤ a more advanced adaptive system could be designed that adapts all transfer functions online: $H_1(z)$, $H_2(z)$, $S_{ij}(z)$, and the error path model
- finally, adaptive unidirectional systems should be tested in actual real-time situations